Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 959
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biol Chem ; 405(6): 407-415, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38598859

RESUMO

Radiation-induced skin injury is a common side effect of radiotherapy, but there are few therapeutic drugs available for prevention or treatment. In this study, we demonstrate that 18ß-Glycyrrhetinic acid (18ß-GA), a bioactive component derived from Glycyrrhiza glabra, substantially reduces the accumulation of reactive oxygen species (ROS) and inhibits apoptosis in HaCaT cells after ionizing radiation (IR), thereby mitigating radiation-induced skin injury. Mechanistically, 18ß-GA promotes the nuclear import of Nrf2, leading to activation of the Nrf2/HO-1 signaling pathway in response to IR. Importantly, Nrf2 silencing increases cell apoptosis and reverse the protective effect of 18ß-GA on radiation-induced skin injury. Furthermore, 18ß-GA preserves skin tissue structure after irradiation, inhibits inflammatory cell infiltration, and alleviates radiation dermatitis. In conclusion, our results suggest that 18ß-GA reduces intracellular ROS production and apoptosis by activating the Nrf2/HO-1 signaling pathway, leading to amelioration of radiation dermatitis.


Assuntos
Ácido Glicirretínico , Heme Oxigenase-1 , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , Transdução de Sinais , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/análogos & derivados , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Animais , Espécies Reativas de Oxigênio/metabolismo , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Pele/metabolismo , Pele/patologia , Apoptose/efeitos dos fármacos , Camundongos
2.
J Biochem Mol Toxicol ; 38(2): e23655, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348715

RESUMO

Bisphenol A (BPA) is a synthetic environmental pollutant widely used in industry, as well as is an endocrine disrupting chemicals and has a toxic effects on heart tissue. The aim of this study is to reveal the cardioprotective effects of 18ß-glycyrretinic acid (GA) against BPA-induced cardiotoxicity in rats. In this study, 40 male rats were used and five different groups (each group includes eight rats) were formed. The rats were applied BPA (250 mg/kg b.w.) alone or with GA (50 and 100 mg/kg b.w.) for 14 days. Rats were killed on Day 15 and heart tissues were taken for analysis. GA treatment decreased serum lactate dehydrogenase and creatine kinase MB levels, reducing BPA-induced heart damage. GA treatment showed ameliorative effects against lipid peroxidation and oxidative stress caused by BPA by increasing the antioxidant enzyme activities (glutathione peroxidase, superoxide dismutase, and catalase) and GSH level of the heart tissue and decreasing the MDA level. In addition, GA showed antiapoptotic effect by increasing Bcl-2, procaspase-3, and -9 protein expression levels and decreasing Bax, cytochrome c, and P53 protein levels in heart tissue. As a result, it was found that GA has cardioprotective effects on heart tissue by exhibiting antioxidant and antiapoptotic effects against heart damage caused by BPA, an environmental pollutant. Thus, it was supported that GA could be a potential cardioprotective agent.


Assuntos
Compostos Benzidrílicos , Poluentes Ambientais , Ácido Glicirretínico/análogos & derivados , Traumatismos Cardíacos , Fenóis , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Estresse Oxidativo , Poluentes Ambientais/farmacologia
3.
Bioorg Chem ; 131: 106337, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603244

RESUMO

With the soaring number of multidrug-resistant bacteria, it is imperative to develop novel efficient antibacterial agents and discovery new antibacterial pathways. Herein, we designed and synthesized a series of structurally novel glycyrrhetinic acid (GA) derivatives against multidrug-resistant Staphylococcus aureus (MRSA). The in vitro antibacterial activity of these compounds was evaluated using the microbroth dilution method, agar plate coating experiments and real-time growth curves, respectively. Most of the target derivatives showed moderate antibacterial activity against Staphylococcus aureus (S. aureus) and MRSA (MIC = 3.125-25 µM), but inactivity against Escherichia coli (E. Coli) and Pseudomonas aeruginosa (P. aeruginosa) (MIC > 200 µM). Among them, compound 11 had the strongest antibacterial activity against MRSA, with an MIC value of 3.125 µM, which was 32 times and 64 times than the first-line antibiotics penicillin and norfloxacin, respectively. Additionally, transcriptomic (RNA-seq) and quantitative polymerase chain reaction (qPCR) analysis revealed that the antibacterial mechanism of compound 11 was through blocking the arginine biosynthesis and metabolic and the H2S biogenesis. Importantly, compound 11 was confirmed to have good biocompatibility through the in vitro hemolysis tests, cytotoxicity assays and the in vivo quail chicken chorioallantoic membrane (qCAM) experiments. Current study provided new potential antibacterial candidates from glycyrrhetinic acid derivatives for clinical treatment of MRSA infections.


Assuntos
Antibacterianos , Arginina , Desenho de Fármacos , Ácido Glicirretínico , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Arginina/biossíntese , Escherichia coli/efeitos dos fármacos , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Sulfeto de Hidrogênio/metabolismo
4.
Eur J Nutr ; 61(7): 3437-3447, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35578042

RESUMO

PURPOSE: Glycyrrhizin (GL) and its metabolites 18α-glycyrrhetinic acid (18α-GA) and 18ß-glycyrrhetinic acid (18ß-GA) are used as traditional medicine and food sweeteners. As the major rout of their administration is oral way, therefore their impact on intestinal epithelial cells are investigated. METHODS: The effects of GL and its metabolites on cell viability using MTT assay, on cytotoxicity using LDH release, on integrity of intestinal epithelial cells by measuring the transepithelial electrical resistance (TEER) and Luciferase permeability tests, on the expression of tight junction proteins at mRNA and protein level by qPCR and western blot techniques, and ultimately on the rate of test compounds absorption via Caco-2 cells monolayer were investigated. RESULTS: MTT assay showed a concentration- and time-dependent decrease in metabolic activity of Caco-2 cells induced by GL, 18α-GA, and 18ß-GA, while only 18ß-GA increased the LDH leakage. The monolayer integrity of Caco-2 cells in TEER assay only was affected by 18ß-GA. The permeability of paracellular transport marker was increased by 18α-GA and 18ß-GA and not GL. In transport studies, only metabolites were able to cross from Caco-2 cells monolayer. qPCR analyses revealed that 18ß-GA upregulated the expression of claudin-1 and -4, occludin, junctional adhesion molecules and zonula occludens-1, while 18α-GA upregulated only claudin-4. The expression of claudin-4 at protein level was downregulated non-significantly at 50 µM concentration of 18ß-GA. CONCLUSION: Our results suggest that 18ß-GA may cause cellular damages at higher concentrations on gastrointestinal cells and requires a remarkable attention of the nutraceutical and pharmaceutical industries.


Assuntos
Ácido Glicirretínico , Células CACO-2 , Claudina-4/metabolismo , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/metabolismo , Ácido Glicirretínico/farmacologia , Ácido Glicirrízico/metabolismo , Ácido Glicirrízico/farmacologia , Humanos , Mucosa Intestinal/metabolismo , Permeabilidade
5.
Bioorg Chem ; 122: 105714, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276603

RESUMO

18ß-glycyrrhetinic acid (GA) is a well-known natural compound of oleanane-type triterpene and is found possessing antimicrobial and anti-inflammatory properties. Nonetheless, its relatively low bioactivity restricts its potential in pharmaceutical applications. To maximize the potential use of this natural herbal compound as antimicrobial and anti-inflammatory agents, the rational modification of GA to enhance its pharmacological activity with low toxicity and to understand the mechanism of action is critically essential. We reported herein the design and synthesis of a series of new GA derivatives. The antimicrobial activities of these new compounds were evaluated by inhibition zone test and minimum inhibitory concentration (MIC) assay. In addition, the anti-inflammatory activity was evaluated by LPS induced BV2 cells inflammation model and 12-O-tetradecanoyl phorbol-13-acetate (TPA) induced ear inflammation mice model. It was found that the derivatives functionalized with a di-substituted phenyl group at the 2-position of GA generally displayed high antimicrobial activity against Gram-positive bacteria (MIC down to 2.5 µM) and potent anti-inflammatory effects (inhibition of NO production up to 55%, comparable to dexamethasone). The in vitro and in vivo results also showed that GA-O-02 and GA-O-06 exert their anti-inflammatory activities through downregulation of NO, pro-inflammatory cytokines and chemokines (IL-1ß, IL-6, IL-12, TNF-α, MCP-1 and MIP-1α) and upregulation of anti-inflammatory cytokines (IL-10). The anti-inflammatory mechanism may involve the inhibition of NF-κB, MAPKs and PI3K/Akt related inflammatory signaling pathways and activation of Nrf2/HO-1 signaling pathway. The results demonstrated that GA-O-02 and GA-O-06 possess great application potential as potent antimicrobial and anti-inflammatory agents.


Assuntos
Ácido Glicirretínico , Fosfatidilinositol 3-Quinases , Animais , Antibacterianos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Camundongos
6.
Exp Parasitol ; 236-237: 108258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421387

RESUMO

Glycyrrhetinic acid (GA) is one of the important Pentacyclic Triterpenoids (PT) found in the roots of licorice. This study aimed to evaluate the in vitro growth inhibitory effect of 18ß-GA (18ß-Glycyrrhetinic acid) and C-30 esters against Theileria annulata, the causative agent of Tropical Bovine Theileriosis. C-30 esters of 18ß-GA were synthesized and their structures were elucidated using spectroscopy. The pharmacodynamic properties of 18ß-GA and its C-30 esters were predicted using DataWarrior and Swiss ADME tools. Cattle isolates of T. annulata schizont-infected bovine lymphoblastoid cells were cultured using standard conditions and the growth inhibitory effect of GA and its esters were evaluated using MTT assay. The isopropyl ester of 18ß-GA (GI50- 1.638 µM; R2- 0.818) showed improved anti-theileriosis efficacy than other 18ß-GA derivatives. The propyl (GI50 - 5.549 µM), ethyl (GI50 - 5.638 µM), and benzyl (GI50 - 7.431 µM) esters also showed considerable inhibitory effect. The GI50 value for 18ß-GA was recorded as 6.829 µM. This study throws light on the usefulness of 18ß-GA and its esters for the treatment of Tropical Bovine Theileriosis.


Assuntos
Ácido Glicirretínico , Theileriose , Animais , Bovinos , Ésteres/farmacologia , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/química , Ácido Glicirretínico/farmacologia , Extratos Vegetais , Theileriose/tratamento farmacológico
7.
Metab Brain Dis ; 37(6): 1931-1940, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35699857

RESUMO

The exposure to bisphenol A (BPA) is inevitable owing to its common use in the production of polycarbonate plastics. Studies to reduce side effects are gaining importance since BPA causes severe toxicities in important tissues such as testes, lungs, brain, liver and kidney. The current study was planned to study ameliorative effect of 18ß-glycyrrhetinic acid (18ß-GA) on BPA induced neurotoxicity. Fourty Wistar albino rats were divided into five equal groups as follows: I-Control group, II-18ß-GA group (100 mg/kg), III- BPA group (250 mg/kg), IV-250 mg/kg BPA + 50 mg/kg 18ß-GA group, V-250 mg/kg BPA + 100 mg/kg 18ß-GA group. BPA intoxication was associated with increased MDA level while reduced GSH concentration, activities of glutathione peroxidase, superoxide dismutase, and catalase. BPA supplementation caused apoptosis in the brain by up-regulating caspase-3 and Bax levels and down-regulating Bcl-2. BPA also caused endoplasmic reticulum (ER) stress by increasing mRNA transcript levels of PERK, IRE1, ATF-6 and GRP78. Additionally, it was observed that BPA administration activated JAK1/STAT1 signaling pathway and levels of TNF-α, NF-κB, p38 MAPK and JNK in the brain. However, co-treatment with 18ß-GA at a dose of 50 and 100 mg/kg considerably ameliorated oxidative stress, inflammation, apoptosis, ER stress and JAK1/STAT1 signaling pathway in brain tissue. Overall, the data of this study indicate that brain damage associated with BPA toxicity could be ameliorated by 18ß-GA administration.


Assuntos
Estresse do Retículo Endoplasmático , Fármacos Neuroprotetores , Animais , Apoptose , Compostos Benzidrílicos , Ácido Glicirretínico/análogos & derivados , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Fenóis , Ratos , Ratos Wistar , Fator de Transcrição STAT1/farmacologia , Transdução de Sinais
8.
Ecotoxicol Environ Saf ; 242: 113858, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809393

RESUMO

Carbon nanotubes (CNTs) have become far and wide used in a number of technical and merchant applications as a result of substantial advances in nanotechnology, therein single-walled carbon nanotubes (SWCNT) are one of the most promising nanoparticles. Inhaling CNTs has been linked to a variety of health problems, including lung fibrosis. Glycyrrhetinic acid 3-O-mono-ß-D-glucuronide (GAMG), a natural sweetener, has anti-inflammatory and antioxidant capacities. The purpose of this study was to evaluate the potential for GAMG to alleviate SWCNT-induced lung inflammation and fibrosis. During days 3-28 after SWCNT intratracheal administration, we observed a remarkable increase of IL-1ß, IL-6 and TNF-α in bronchoalveolar lavage fluid (BALF) on day 3 and collagen deposition on day 28. GAMG treatment remarkably ameliorated SWCNT-induced pulmonary fibrosis and attenuated SWCNT-induced inflammation and collagen deposition, and suppressed the activation of PI3K/AKT/NF-κB signaling pathway in the lungs. Therefore, GAMG has a therapeutic potential for the treatment of SWCNT-induced pulmonary fibrosis. Targeting PI3K/AKT/NF-κB signaling pathway may be a potential therapeutic approach to treat pulmonary fibrosis in mice with SWCNT.


Assuntos
Ácido Glicirretínico , Nanotubos de Carbono , Pneumonia , Fibrose Pulmonar , Animais , Colágeno/metabolismo , Fibrose , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/metabolismo , Ácido Glicirretínico/toxicidade , Pulmão/metabolismo , Camundongos , NF-kappa B/metabolismo , Nanotubos de Carbono/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Pneumonia/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Transdução de Sinais
9.
Chem Biodivers ; 19(4): e202100928, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35243763

RESUMO

To integrate the active advantages of 18ß-glycyrrhetinic acid (18ß-GA) and emodin, improve bioavailability, increase efficiency, and reduce toxicity, a one-step innovative synthetic route was set up for the first time: 4-dimethylaminopyridine (DMAP) was used as catalyst, 1-ethyl-(3-dimethylaminopropyl)carboimide hydrochloride (EDCI) as condensation agent, dry dichloromethane (DCM) as solvent at 25 °C for 12 h, the three target products were obtained and purified by high performance liquid chromatography (HPLC), the chemical structures of them were characterized by nuclear magnetic resonance (NMR) technique and high resolution electron ionization mass spectrometry (HREI-MS), namely, 18ß-glycyrrhetinic acid-3-emodin ester (1, yield 78.83 %, known), di-18ß-glycyrrhetinic acid-1-emodin ester (2, yield 6.49 %, new), and di-18ß-glycyrrhetinic acid-8-emodin ester (3, yield 1.81 %, new). To estimate their effects of the products on toxicity in zebrafish embryos and juvenile fishes, the two precursors and three target products were assayed involving in hatching rate, survival rate, morphology, heart rate, and apoptosis of cardiomyocytes. The results showed that the target products enhanced the hatching and survival rate of zebrafish embryos, decreased the malformation rate and the apoptosis of cardiomyocytes. It should be suggested that the one-step synthesis route with high yield makes the industrial application of the target products possible due to significantly reduced toxicity. The two new by-products provide potential candidates for the applications of pharmaceutical industry in the future.


Assuntos
Emodina , Ácido Glicirretínico , Animais , Ésteres/farmacologia , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/química , Ácido Glicirretínico/farmacologia , Peixe-Zebra
10.
Ren Fail ; 44(1): 660-671, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35699239

RESUMO

INTRODUCTION: Chronic kidney disease (CKD) is characterized by renal fibrosis without effective therapy. 18ß-Glycyrrhetinic acid (GA) is reported to have detoxification and anti-inflammatory functions and promotes tissue repair. However, the role of GA in CKD remains unclear. In this study, we investigated whether GA has a potential therapeutic effect in kidney fibrosis. METHODS: A renal fibrosis mouse model was established by ischemia/reperfusion (I/R) injury via clamping unilateral left renal pedicle for 45 min; then, the mice were treated with vehicle or GA. Kidney tissues and blood samples were extracted 14 days after reperfusion and renal function, histopathological staining, quantitative PCR, and western blotting were performed. RNA-seq was performed to explore the changes in the transcriptional profile after GA treatment. RESULTS: Renal function, pathological and molecular analysis displayed that fibrosis was successfully induced in the I/R model. In the GA treatment group, the severity of fibrosis gradually reduced with the best effect seen at a concentration of 25 mg kg -1. A total of 970 differentially expressed genes were identified. Pathway enrichment showed that reduced activation and migration of inflammatory cells and decreased chemokine interaction in significant pathways. Protein-protein interaction networks were constructed and 15 hub genes were selected by degree rank, including chemokines, such as C3, Ccl6, Ccr2, Ptafr, Timp1, and Pf4. CONCLUSIONS: GA may alleviate renal fibrosis by inhibiting the inflammatory response. GA is a promising therapy that may perhaps be used in treating renal fibrosis and CKD.


Assuntos
Ácido Glicirretínico , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Animais , Fibrose , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/uso terapêutico , Rim/patologia , Camundongos , Insuficiência Renal Crônica/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo
11.
Chin J Physiol ; 65(4): 187-198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36073567

RESUMO

Endoplasmic reticulum stress (ERS)-induced inflammation participates in the occurrence of pulmonary arterial hypertension (PAH) by promoting pulmonary vascular remodeling, which involved in the activation of PERK/eIF2α/NF-κB signaling pathway. 18ß-Glycyrrhetinic acid (18ß-GA) has been found efficacious for attenuating PAH through its anti-remodeling effects in our previous research and it remains unclear whether 18ß-GA has an effect on the remodeling caused by ERS-induced inflammation. In this study, we made observations in monocrotaline-induced PAH rats and found improvement of hemodynamic and histopathological parameters, decreases in the right ventricular hypertrophy index, and alleviation of pulmonary vascular remodeling after 18ß-GA administration in vivo. Moreover, 18ß-GA could significantly inhibit the proliferation and DNA synthesis of human pulmonary arterial smooth muscle cells (HPASMCs) induced by platelet-derived growth factor BB. At the cellular and molecular levels, we found that 18ß-GA could significantly reduce the accumulation of misfolded protein in rat lung tissue, inhibit ERS activation, reduce the expression of GRP78, p-PERK, p-eIF2α, and p-NF-κB p65, and increase IκB protein expression. 18ß-GA could inhibit the migration of NF-κB into the nucleus, reduce the contents of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and monocyte chemoattractant protein-1 (MCP-1) in the culture supernatant of HPASMCs, and reduce GRP78, p-PERK, p-eIF2α, p-NF-κB p65, TNF-α, IL-6, and MCP-1 protein expression, increase IκB protein expression in HPASMCs. According to what we observed, this study indicated that 18ß-GA could treat PAH, which is related to the inhibition of PERK/eIF2α/NF-κB signaling pathway.


Assuntos
Ácido Glicirretínico , NF-kappa B , Hipertensão Arterial Pulmonar , Animais , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Humanos , Proteínas I-kappa B/metabolismo , Inflamação/tratamento farmacológico , NF-kappa B/metabolismo , Ratos , Transdução de Sinais , Fator de Necrose Tumoral alfa , Remodelação Vascular
12.
Molecules ; 27(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35889533

RESUMO

To understand that 18ß-Glycyrrhetic acid 3-O-mono-ß-D-glucuronide (GAMG) showed better pharmacological activity and drug-like properties than 18ß-Glycyrrhizin (GL); a rapid and sensitive HPLC-MS/MS method was established for the simultaneous determination of GAMG and its metabolite 18ß-Glycyrrhetinic acid (GA) in rat plasma and tissues after oral administration of GAMG or GL. This analytical method was validated by linearity, LLOQ, specificity, recovery rate, matrix effect, etc. After oral administration, GAMG exhibited excellent Cmax (2377.57 ng/mL), Tmax (5 min) and AUC0-T (6625.54 mg/L*h), which was much higher than the Cmax (346.03 ng/mL), Tmax (2.00 h) and AUC0-T (459.32 mg/L*h) of GL. Moreover, GAMG had wider and higher tissue distribution in the kidney, spleen, live, lung, brain, etc. These results indicated that oral GAMG can be rapidly and efficiently absorbed and be widely distributed in tissues to exert stronger and multiple pharmacological activities. This provided a physiological basis for guiding the pharmacodynamic study and clinical applications of GAMG.


Assuntos
Ácido Glicirretínico , Ácido Glicirrízico , Animais , Glucuronidase/metabolismo , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Ácido Glicirrízico/metabolismo , Ratos , Espectrometria de Massas em Tandem
13.
Anal Biochem ; 631: 114342, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34419454

RESUMO

18ß-Glycyrrhetinic acid (GA) is the triterpenoid aglycone component of glycyrrhizic acid, a natural product of traditional Chinese medicine, and has been proven to possess a variety of pharmacological effects. The protection function and the mechanism of GA on rats with high-altitude pulmonary hypertension (HAPH) are studied using proton nuclear magnetic resonance (1H NMR) metabonomics technology and biochemical analysis. An HAPH model is established, and 60 male rats are randomly divided into the following groups: Control(normal saline, 0.4 mL/100 g), model (normal saline, 0.4 mL/100 g), Nifedipine (nifedipine, 2.7 mg/kg), and high-, medium-, and low-dose GA groups (100, 50, and 25 mg/kg GA designated as GA.H, GA.M, and GA.L, respectively). Serum biochemical indicators of rats in each group are measured, and pathological changes in the pulmonary artery are observed. 1H NMR metabonomics technology is used for serum analysis. Results show that GA can significantly reduce pulmonary arterial pressure and malondialdehyde levels and increase the glutathione peroxidase and superoxide dismutase activities in HAPH rats. Pathological results show that GA can alleviate pulmonary artery injuries of HAPH rats. Metabolomics analytical findings show that GA can alleviate the metabolic disorder of HAPH rats through anti-oxidation and anti-inflammatory effects, improve their bodies' ability to resist hypoxia, and restore various metabolic pathways (energy metabolism, amino acid metabolism, and lipid metabolism). GA has potential therapeutic effects on HAPH rats, but its target needs to be further studied.


Assuntos
Doença da Altitude/prevenção & controle , Ácido Glicirretínico/análogos & derivados , Hipertensão Pulmonar/prevenção & controle , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Substâncias Protetoras/farmacologia , Doença da Altitude/etiologia , Doença da Altitude/patologia , Animais , Análise Química do Sangue/métodos , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Ácido Glicirretínico/administração & dosagem , Ácido Glicirretínico/farmacologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/sangue , Análise Multivariada , Substâncias Protetoras/administração & dosagem , Prótons , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/ultraestrutura , Ratos Sprague-Dawley , Superóxido Dismutase/sangue
14.
Bioorg Med Chem ; 41: 116204, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34022526

RESUMO

Zika virus (ZIKV) is an arbovirus of the Flaviviridae family (Flavivirus genus), causing serious neurological complications, such as Guillain-Barre Syndrome (GBS) in adults and fetal microcephaly. Licensed vaccines or specific antiviral agents against ZIKV do not currently exist. Therefore, the search and development of anti-ZIKV agents are particularly relevant and necessary. Glycyrrhetinic (3ß-hydroxy-11-oxo-18ßH-Olean-12-en-30-oic acid) (GA) 1 is one of the well-known pentacyclic triterpenoids isolated from licorice root (Glycyrrhiza glabra L., Gl. uralensis Fisher) (Leguminosae) possessing many biological features, including antiviral activity. This paper is devoted to the synthesis and studies of a number of nitrogen and sulfur-containing GA derivatives as ZIKV inhibitors. Sixteen GA and related triterpenoids (3ß-hydroxy-18ßH-Olean-12-en-30-oic acid and 3ß-hydroxy-11-oxo-18ßH-Olean-12(13),18(19)-dien-30-oic acid) derivatives were synthesized (amides, semi- and thiosemicarbazones, and 1,2,3-thiadiazoles) and antiviral activity against ZIKV was studied in vitro, including the inhibitory assays on cytopathic effect (CPE), viral protein synthesis, and replication stages. Four active compounds were found among GA derivatives tested, 13 (3-O-acetyl-30-aminopyridine GA), 16 (3-semicarbazone-30-butyl GA), 18 (1,2,3-thiadiazole-30-methyl GA), and 19 (1,2,3-thiadiazole-30-butyl GA) with IC50 < 1 µM against ZIKV replication. These compounds had a stronger inhibitory activity on ZIKV-induced CPE and viral protein translation in infected cells as compared to derivatives of 11-desoxo-GA. The most active compound was amide 13 (IC50 0.13 µM, TI ˃ 384). Time-of-addition assays indicated that 1,2,3-thiadiazole ring is important for inhibiting viral entry stage (compounds 18 and 19), while the 30-butyl ester group influenced on post-entry stage (compound 19). The molecular docking analysis demonstrated that lead compounds 13 and 19 forms a hydrogen-bond interaction with the catalytic triad (His51-Asp75-Ser135) of ZIKV NS2B-NS3 protease. Therefore, the active GA derivatives are promising for developing new antiviral agents against ZIKV infection.


Assuntos
Antivirais/farmacologia , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Infecção por Zika virus/tratamento farmacológico , Zika virus/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Ácido Glicirretínico/síntese química , Humanos , Simulação de Acoplamento Molecular , Proteínas Virais/genética , Proteínas Virais/metabolismo
15.
Bioorg Chem ; 110: 104755, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33652342

RESUMO

To develop new anti-inflammatory drugs for the prevention and treatment of acute kidney injury, a series of novel glycyrrhetic ureas were designed, synthesized and evaluated for anti-inflammatory activity using RAW264.7 cells. Compounds 5r-5u (2.04, 2.50, 3.25 and 2.48 µM, respectively) with acidic or neutral amino acid showed potent anti-inflammatory activity (IC50 = 2-3 µM for NO inhibition), amongst them, compound 5r also inhibited tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in a dose-dependent manner. In cisplatin-induced AKI mice model, compound 5r significantly reduced the level of pro-inflammatory factors, ameliorated the pathological damage of kidney tissue, and maintained the normal metabolic capacity.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/síntese química , Ureia/análogos & derivados , Ureia/síntese química , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Cisplatino/toxicidade , Desenho de Fármacos , Ácido Glicirretínico/farmacologia , Inflamação/tratamento farmacológico , Camundongos , Células RAW 264.7 , Ureia/farmacologia
16.
Bioorg Chem ; 106: 104461, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223202

RESUMO

Novel Glycyrrhetinic Acid (GA) derivatives with fused heterocycles on A ring were structure-based designed and synthesized. Their potential anti-inflammatory effects were investigated by a classical LPS stimulated macrophage model. Surface plasmon resonance (SPR) was used to verify the binding of GA analogues with HMGB1. A preliminary structure-activity relationship was summarized and an analogue GA-60 with ortho-methoxybenzyl pyrozole showed stronger anti-inflammatory effect and higher affinity for HMGB1 with a Kd value of 12.5 µM. In addition, this compound exhibited excellent inhibitory functions on NO (96%), TNF-α (94%), and IL-6 (100%), by interfering with phosphorylation of p38, ERK, JNK MAPKs, as well as that of NF-κB p65 and IKKα/ß. Moreover, GA-60 extended the survival of either the classic CLP-induced or LPS-induced sepsis mouse models. Molecular modeling predictions further supported these findings, clearly indicating that inhibiting HMGB1 release, using fused heterocyclic GA derivatives, is a promising strategy for treatment of sepsis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/uso terapêutico , Proteína HMGB1/antagonistas & inibidores , Sepse/tratamento farmacológico , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/toxicidade , Ceco/cirurgia , Desenho de Fármacos , Ácido Glicirretínico/metabolismo , Ácido Glicirretínico/toxicidade , Proteína HMGB1/metabolismo , Ligadura , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Células RAW 264.7 , Ratos , Sepse/induzido quimicamente , Relação Estrutura-Atividade
17.
Acta Pharmacol Sin ; 42(1): 18-26, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32144337

RESUMO

The first description of the medical use of licorice appeared in "Shennong Bencao Jing", one of the well-known Chinese herbal medicine classic books dated back to 220-280 AD. As one of the most commonly prescribed Chinese herbal medicine, licorice is known as "Guo Lao", meaning "a national treasure" in China. Modern pharmacological investigations have confirmed that licorice possesses a number of biological activities, such as antioxidation, anti-inflammatory, antiviral, immune regulation, and liver protection. 18ß-glycyrrhetinic acid is one of the most extensively studied active integrants of licorice. Here, we provide an overview of the protective effects of 18ß-glycyrrhetinic acid against various acute and chronic liver diseases observed in experimental models, and summarize its pharmacological effects and potential toxic/side effects at higher doses. We also make additional comments on the important areas that may warrant further research to support appropriate clinical applications of 18ß-glycyrrhetinic acid and avoid potential risks.


Assuntos
Ácido Glicirretínico/análogos & derivados , Hepatopatias/prevenção & controle , Substâncias Protetoras/uso terapêutico , Animais , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/uso terapêutico , Ácido Glicirretínico/toxicidade , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatopatias/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/toxicidade
18.
Phytother Res ; 35(12): 6932-6943, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34709693

RESUMO

It has been shown that 18ß-glycyrrhetinic acid (18ß-GA), the main bioactive compound of licorice, can modulate oxidative stress and metabolic processes in liver and skin. Given the critical role of oxidative stress and energy metabolism in exercise-induced fatigue, we hypothesized that 18ß-GA could exert an ergogenic action by inhibiting excess reactive oxygen species (ROS) induction and promoting energy production in muscles. Mice were gavage-fed with 18ß-GA for four consecutive days. Running ability was assessed based on the exhaustive treadmill test with high- and moderate-intensity. Western blot analysis, enzyme-linked immunosorbent assay, and immunofluorescence staining were used to measure the changes of muscle fatigue-related markers, oxidative stress status, and energy metabolism in response to 18ß-GA exposure. Treatment with 18ß-GA significantly increased the exhaustive running distance (~37%) in the high-intensity exercise, but not in the moderate-intensity exercise. Mechanistically, reduction of oxidative stress and induction of antioxidants (SOD, CAT, and GSH) by 18ß-GA were observed. Moreover, 18ß-GA treatment caused an improved preservation of muscle glycogen (12%), which was associated with upregulation of glucose transporter 4 (GLUT4) (91%) and increased insulin level (17%). The findings of the present study clearly suggest that 18ß-GA holds excellent potential as a novel bioactive agent against high-intensity exercise-induced fatigue.


Assuntos
Glucose , Ácido Glicirretínico , Animais , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Camundongos , Estresse Oxidativo , Espécies Reativas de Oxigênio
19.
Molecules ; 26(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467083

RESUMO

Chitosan is the only cationic polysaccharide found in nature. It has broad application prospects in biomaterials, but its application is limited due to its poor solubility in water. A novel chitosan derivative was synthesized by amidation of chitosan with 18ß-glycyrrhetinic acid and sialic acid. The chitosan derivatives were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and measurement of the zeta potential. We also investigated the solubility, cytotoxicity, and blood compatibility of chitosan derivatives. 18ß-glycyrrhetinic acid and sialic acid could be grafted onto chitosan molecular chains. The thermal stability of the synthesized chitosan derivatives was decreased and the surface was positively charged in water and phosphate-buffered saline. After chitosan had been modified by 18 ß-glycyrrhetinic acid and sialic acid, the solubility of chitosan was improved greatly in water and phosphate-buffered saline, and percent hemolysis was <5%. Novel amphiphilic chitosan derivatives could be suitable polymers for biomedical purposes.


Assuntos
Quitosana , Ácido Glicirretínico/análogos & derivados , Teste de Materiais , Ácido N-Acetilneuramínico , Linhagem Celular , Quitosana/análogos & derivados , Quitosana/síntese química , Quitosana/química , Quitosana/farmacologia , Ácido Glicirretínico/química , Ácido Glicirretínico/farmacologia , Humanos , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/farmacologia , Solubilidade
20.
Molecules ; 26(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34443491

RESUMO

Glycyrrhetic acid (GA) and stearyl glycyrrhetinate (SG) are two interesting compounds from Glycyrrhiza glabra, showing numerous biological properties widely applied in the pharmaceutical and cosmetic fields. Despite these appreciable benefits, their potential therapeutic properties are strongly compromised due to unfavourable physical-chemical features. The strategy exploited in the present work was to develop solid lipid nanoparticles (SLNs) as carrier systems for GA and SG delivery. Both formulations loaded with GA and SG (GA-SLNs and SG-SLNs, respectively) were prepared by the high shear homogenization coupled to ultrasound (HSH-US) method, and we obtained good technological parameters. DSC was used to evaluate their thermotropic behaviour and ability to act as carriers for GA and SG. The study was conducted by means of a biomembrane model (multilamellar vesicles; MLVs) that simulated the interaction of the carriers with the cellular membrane. Unloaded and loaded SLNs were incubated with the biomembranes, and their interactions were evaluated over time through variations in their calorimetric curves. The results of these studies indicated that GA and SG interact differently with MLVs and SLNs; the interactions of SG-SLNs and GA-SLNs with the biomembrane model showed different variations of the MLVs calorimetric curve and suggest the potential use of SLNs as delivery systems for GA.


Assuntos
Calorimetria , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Lipídeos/química , Nanopartículas/química , Ácido Glicirretínico/química , Cinética , Membranas , Eletricidade Estática , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA