Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.004
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 176(1-2): 144-153.e13, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30554877

RESUMO

Abasic sites are one of the most common DNA lesions. All known abasic site repair mechanisms operate only when the damage is in double-stranded DNA. Here, we report the discovery of 5-hydroxymethylcytosine (5hmC) binding, ESC-specific (HMCES) as a sensor of abasic sites in single-stranded DNA. HMCES acts at replication forks, binds PCNA and single-stranded DNA, and generates a DNA-protein crosslink to shield abasic sites from error-prone processing. This unusual HMCES DNA-protein crosslink intermediate is resolved by proteasome-mediated degradation. Acting as a suicide enzyme, HMCES prevents translesion DNA synthesis and the action of endonucleases that would otherwise generate mutations and double-strand breaks. HMCES is evolutionarily conserved in all domains of life, and its biochemical properties are shared with its E. coli ortholog. Thus, HMCES is an ancient DNA lesion recognition protein that preserves genome integrity by promoting error-free repair of abasic sites in single-stranded DNA.


Assuntos
5-Metilcitosina/análogos & derivados , Reparo do DNA/fisiologia , DNA de Cadeia Simples/fisiologia , 5-Metilcitosina/metabolismo , Ácido Apurínico/metabolismo , DNA/metabolismo , Dano ao DNA/fisiologia , Replicação do DNA/fisiologia , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases , Escherichia coli/metabolismo , Polinucleotídeos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo
2.
Mol Cell ; 84(15): 2984-3000.e8, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39002544

RESUMO

5-methylcytosine (m5C) is a prevalent RNA modification crucial for gene expression regulation. However, accurate and sensitive m5C sites identification remains challenging due to severe RNA degradation and reduced sequence complexity during bisulfite sequencing (BS-seq). Here, we report m5C-TAC-seq, a bisulfite-free approach combining TET-assisted m5C-to-f5C oxidation with selective chemical labeling, therefore enabling direct base-resolution m5C detection through pre-enrichment and C-to-T transitions at m5C sites. With m5C-TAC-seq, we comprehensively profiled the m5C methylomes in human and mouse cells, identifying a substantially larger number of confident m5C sites. Through perturbing potential m5C methyltransferases, we deciphered the responsible enzymes for most m5C sites, including the characterization of NSUN5's involvement in mRNA m5C deposition. Additionally, we characterized m5C dynamics during mESC differentiation. Notably, the mild reaction conditions and preservation of nucleotide composition in m5C-TAC-seq allow m5C detection in chromatin-associated RNAs. The accurate and robust m5C-TAC-seq will advance research into m5C methylation functional investigation.


Assuntos
5-Metilcitosina , Sulfitos , Transcriptoma , 5-Metilcitosina/metabolismo , 5-Metilcitosina/química , Animais , Humanos , Camundongos , Sulfitos/química , Metiltransferases/metabolismo , Metiltransferases/genética , Perfilação da Expressão Gênica/métodos , Diferenciação Celular
3.
Mol Cell ; 84(15): 2935-2948.e7, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39019044

RESUMO

Mitochondria are essential regulators of innate immunity. They generate long mitochondrial double-stranded RNAs (mt-dsRNAs) and release them into the cytosol to trigger an immune response under pathological stress conditions. Yet the regulation of these self-immunogenic RNAs remains largely unknown. Here, we employ CRISPR screening on mitochondrial RNA (mtRNA)-binding proteins and identify NOP2/Sun RNA methyltransferase 4 (NSUN4) as a key regulator of mt-dsRNA expression in human cells. We find that NSUN4 induces 5-methylcytosine (m5C) modification on mtRNAs, especially on the termini of light-strand long noncoding RNAs. These m5C-modified RNAs are recognized by complement C1q-binding protein (C1QBP), which recruits polyribonucleotide nucleotidyltransferase to facilitate RNA turnover. Suppression of NSUN4 or C1QBP results in increased mt-dsRNA expression, while C1QBP deficiency also leads to increased cytosolic mt-dsRNAs and subsequent immune activation. Collectively, our study unveils the mechanism underlying the selective degradation of light-strand mtRNAs and establishes a molecular mark for mtRNA decay and cytosolic release.


Assuntos
5-Metilcitosina , Citosol , Mitocôndrias , Estabilidade de RNA , RNA de Cadeia Dupla , RNA Mitocondrial , Humanos , Citosol/metabolismo , 5-Metilcitosina/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/genética , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Células HEK293 , Células HeLa , Metiltransferases/metabolismo , Metiltransferases/genética , Imunidade Inata , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Sistemas CRISPR-Cas
4.
Cell ; 167(5): 1430-1430.e1, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863253

RESUMO

This SnapShot depicts key sequencing-based methods used in the analysis of epigenomes, including (1)bisulfite sequencing, (2) chromatin immunoprecipiation sequencing, (3) determination of open chromatin, and (4) 3D chromatin capture.


Assuntos
Imunoprecipitação da Cromatina , Epigenômica/métodos , 5-Metilcitosina/metabolismo , Cromossomos/química , Metilação de DNA
5.
Cell ; 161(4): 879-892, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25936837

RESUMO

N(6)-methyldeoxyadenosine (6mA or m(6)A) is a DNA modification preserved in prokaryotes to eukaryotes. It is widespread in bacteria and functions in DNA mismatch repair, chromosome segregation, and virulence regulation. In contrast, the distribution and function of 6mA in eukaryotes have been unclear. Here, we present a comprehensive analysis of the 6mA landscape in the genome of Chlamydomonas using new sequencing approaches. We identified the 6mA modification in 84% of genes in Chlamydomonas. We found that 6mA mainly locates at ApT dinucleotides around transcription start sites (TSS) with a bimodal distribution and appears to mark active genes. A periodic pattern of 6mA deposition was also observed at base resolution, which is associated with nucleosome distribution near the TSS, suggesting a possible role in nucleosome positioning. The new genome-wide mapping of 6mA and its unique distribution in the Chlamydomonas genome suggest potential regulatory roles of 6mA in gene expression in eukaryotic organisms.


Assuntos
Adenina/análogos & derivados , Chlamydomonas reinhardtii/genética , Sítio de Iniciação de Transcrição , 5-Metilcitosina/metabolismo , Adenina/metabolismo , Chlamydomonas reinhardtii/metabolismo , DNA de Algas/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Nucleossomos/metabolismo , Transcrição Gênica
6.
Nature ; 634(8035): 986-994, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39358506

RESUMO

Mutation of tet methylcytosine dioxygenase 2 (encoded by TET2) drives myeloid malignancy initiation and progression1-3. TET2 deficiency is known to cause a globally opened chromatin state and activation of genes contributing to aberrant haematopoietic stem cell self-renewal4,5. However, the open chromatin observed in TET2-deficient mouse embryonic stem cells, leukaemic cells and haematopoietic stem and progenitor cells5 is inconsistent with the designated role of DNA 5-methylcytosine oxidation of TET2. Here we show that chromatin-associated retrotransposon RNA 5-methylcytosine (m5C) can be recognized by the methyl-CpG-binding-domain protein MBD6, which guides deubiquitination of nearby monoubiquitinated Lys119 of histone H2A (H2AK119ub) to promote an open chromatin state. TET2 oxidizes m5C and antagonizes this MBD6-dependent H2AK119ub deubiquitination. TET2 depletion thereby leads to globally decreased H2AK119ub, more open chromatin and increased transcription in stem cells. TET2-mutant human leukaemia becomes dependent on this gene activation pathway, with MBD6 depletion selectively blocking proliferation of TET2-mutant leukaemic cells and largely reversing the haematopoiesis defects caused by Tet2 loss in mouse models. Together, our findings reveal a chromatin regulation pathway by TET2 through retrotransposon RNA m5C oxidation and identify the downstream MBD6 protein as a feasible target for developing therapies specific against TET2 mutant malignancies.


Assuntos
5-Metilcitosina , Cromatina , Proteínas de Ligação a DNA , Dioxigenases , Histonas , Oxirredução , Proteínas Proto-Oncogênicas , Ubiquitinação , Dioxigenases/metabolismo , Animais , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/deficiência , Cromatina/metabolismo , Humanos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/deficiência , Histonas/metabolismo , 5-Metilcitosina/metabolismo , Leucemia/metabolismo , Leucemia/genética , Leucemia/patologia , Retroelementos/genética , Hematopoese , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , RNA/metabolismo , RNA/genética , Feminino , Proliferação de Células , Mutação , Masculino
7.
Mol Cell ; 82(5): 1053-1065.e8, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245449

RESUMO

Enzymatic methylation of cytosine to 5-methylcytosine in DNA is a fundamental epigenetic mechanism involved in mammalian development and disease. DNA methylation is brought about by collective action of three AdoMet-dependent DNA methyltransferases, whose catalytic interactions and temporal interplay are poorly understood. We used structure-guided engineering of the Dnmt1 methyltransferase to enable catalytic transfer of azide tags onto DNA from a synthetic cofactor analog, Ado-6-azide, in vitro. We then CRISPR-edited the Dnmt1 locus in mouse embryonic stem cells to install the engineered codon, which, following pulse internalization of the Ado-6-azide cofactor by electroporation, permitted selective azide tagging of Dnmt1-specific genomic targets in cellulo. The deposited covalent tags were exploited as "click" handles for reading adjoining sequences and precise genomic mapping of the methylation sites. The proposed approach, Dnmt-TOP-seq, enables high-resolution temporal tracking of the Dnmt1 catalysis in mammalian cells, paving the way to selective studies of other methylation pathways in eukaryotic systems.


Assuntos
Azidas , DNA (Citosina-5-)-Metiltransferases , 5-Metilcitosina , Animais , Azidas/metabolismo , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/genética , Mamíferos/metabolismo , Camundongos
8.
Annu Rev Biochem ; 83: 585-614, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24905787

RESUMO

The importance of eukaryotic DNA methylation [5-methylcytosine (5mC)] in transcriptional regulation and development was first suggested almost 40 years ago. However, the molecular mechanism underlying the dynamic nature of this epigenetic mark was not understood until recently, following the discovery that the TET proteins, a family of AlkB-like Fe(II)/α-ketoglutarate-dependent dioxygenases, can oxidize 5mC to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Since then, several mechanisms that are responsible for processing oxidized 5mC derivatives to achieve DNA demethylation have emerged. Our biochemical understanding of the DNA demethylation process has prompted new investigations into the biological functions of DNA demethylation. Characterization of two additional AlkB family proteins, FTO and ALKBH5, showed that they possess demethylase activity toward N(6)-methyladenosine (m(6)A) in RNA, indicating that members of this subfamily of dioxygenases have a general function in demethylating nucleic acids. In this review, we discuss recent advances in this emerging field, focusing on the mechanism and function of TET-mediated DNA demethylation.


Assuntos
Metilação de DNA , DNA/química , Regulação da Expressão Gênica , Oxigênio/química , RNA/química , 5-Metilcitosina/química , Animais , Citosina/análogos & derivados , Citosina/química , Escherichia coli/metabolismo , Genoma , Células Germinativas/citologia , Células HEK293 , Humanos , Metilação , Camundongos , Neoplasias/genética , Células-Tronco/citologia , Transcriptoma
9.
Nat Rev Mol Cell Biol ; 18(1): 31-42, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27808276

RESUMO

The recent discovery of reversible mRNA methylation has opened a new realm of post-transcriptional gene regulation in eukaryotes. The identification and functional characterization of proteins that specifically recognize RNA N6-methyladenosine (m6A) unveiled it as a modification that cells utilize to accelerate mRNA metabolism and translation. N6-adenosine methylation directs mRNAs to distinct fates by grouping them for differential processing, translation and decay in processes such as cell differentiation, embryonic development and stress responses. Other mRNA modifications, including N1-methyladenosine (m1A), 5-methylcytosine (m5C) and pseudouridine, together with m6A form the epitranscriptome and collectively code a new layer of information that controls protein synthesis.


Assuntos
Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , 5-Metilcitosina/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Ciclo Celular/genética , Diferenciação Celular/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica , Humanos , Metilação , Conformação de Ácido Nucleico , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/genética
10.
Nat Rev Mol Cell Biol ; 23(5): 306, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35217851
11.
Cell ; 156(1-2): 45-68, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24439369

RESUMO

Methylation of cytosines in the mammalian genome represents a key epigenetic modification and is dynamically regulated during development. Compelling evidence now suggests that dynamic regulation of DNA methylation is mainly achieved through a cyclic enzymatic cascade comprised of cytosine methylation, iterative oxidation of methyl group by TET dioxygenases, and restoration of unmodified cytosines by either replication-dependent dilution or DNA glycosylase-initiated base excision repair. In this review, we discuss the mechanism and function of DNA demethylation in mammalian genomes, focusing particularly on how developmental modulation of the cytosine-modifying pathway is coupled to active reversal of DNA methylation in diverse biological processes.


Assuntos
Metilação de DNA , Oxirredutases N-Desmetilantes/metabolismo , 5-Metilcitosina/metabolismo , Animais , Genoma , Humanos , Regiões Promotoras Genéticas
12.
Cell ; 157(4): 979-991, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24813617

RESUMO

The reprogramming of parental methylomes is essential for embryonic development. In mammals, paternal 5-methylcytosines (5mCs) have been proposed to be actively converted to oxidized bases. These paternal oxidized bases and maternal 5mCs are believed to be passively diluted by cell divisions. By generating single-base resolution, allele-specific DNA methylomes from mouse gametes, early embryos, and primordial germ cell (PGC), as well as single-base-resolution maps of oxidized cytosine bases for early embryos, we report the existence of 5hmC and 5fC in both maternal and paternal genomes and find that 5mC or its oxidized derivatives, at the majority of demethylated CpGs, are converted to unmodified cytosines independent of passive dilution from gametes to four-cell embryos. Therefore, we conclude that paternal methylome and at least a significant proportion of maternal methylome go through active demethylation during embryonic development. Additionally, all the known imprinting control regions (ICRs) were classified into germ-line or somatic ICRs.


Assuntos
Metilação de DNA , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , 5-Metilcitosina/metabolismo , Animais , Ilhas de CpG , Citosina/análogos & derivados , Citosina/metabolismo , Embrião de Mamíferos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Regiões Promotoras Genéticas
13.
Mol Cell ; 81(14): 2960-2974.e7, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34111398

RESUMO

The transition of oxidized 5-methylcytosine (5mC) intermediates into the base excision repair (BER) pipeline to complete DNA demethylation remains enigmatic. We report here that UHRF2, the only paralog of UHRF1 in mammals that fails to rescue Uhrf1-/- phenotype, is physically and functionally associated with BER complex. We show that UHRF2 is allosterically activated by 5-hydroxymethylcytosine (5hmC) and acts as a ubiquitin E3 ligase to catalyze K33-linked polyubiquitination of XRCC1. This nonproteolytic action stimulates XRCC1's interaction with the ubiquitin binding domain-bearing RAD23B, leading to the incorporation of TDG into BER complex. Integrative epigenomic analysis in mouse embryonic stem cells reveals that Uhrf2-fostered TDG-RAD23B-BER complex is functionally linked to the completion of DNA demethylation at active promoters and that Uhrf2 ablation impedes DNA demethylation on latent enhancers that undergo poised-to-active transition during neuronal commitment. Together, these observations highlight an essentiality of 5hmC-switched UHRF2 E3 ligase activity in commissioning the accomplishment of active DNA demethylation.


Assuntos
5-Metilcitosina/análogos & derivados , Regulação Alostérica/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , 5-Metilcitosina/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Desmetilação do DNA , Metilação de DNA/genética , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética
14.
Mol Cell ; 81(4): 859-869.e8, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352108

RESUMO

Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming. Here, we describe the first application of biochemically engineered TET mutants that unlink 5mC oxidation steps, examining their effects on somatic cell reprogramming. We show that only TET enzymes proficient for oxidation to 5fC/5caC can rescue the reprogramming potential of Tet2-deficient mouse embryonic fibroblasts. This effect correlated with rapid DNA demethylation at reprogramming enhancers and increased chromatin accessibility later in reprogramming. These experiments demonstrate that DNA demethylation through 5fC/5caC has roles distinct from 5hmC in somatic reprogramming to pluripotency.


Assuntos
5-Metilcitosina/metabolismo , Reprogramação Celular , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/metabolismo , Elementos Facilitadores Genéticos , Epigênese Genética , Fibroblastos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Dioxigenases , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Mutação , Células NIH 3T3 , Proteínas Proto-Oncogênicas/genética
15.
Cell ; 153(3): 678-91, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23602153

RESUMO

TET proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC are excised by mammalian DNA glycosylase TDG, implicating 5mC oxidation in DNA demethylation. Here, we show that the genomic locations of 5fC can be determined by coupling chemical reduction with biotin tagging. Genome-wide mapping of 5fC in mouse embryonic stem cells (mESCs) reveals that 5fC preferentially occurs at poised enhancers among other gene regulatory elements. Application to Tdg null mESCs further suggests that 5fC production coordinates with p300 in remodeling epigenetic states of enhancers. This process, which is not influenced by 5hmC, appears to be associated with further oxidation of 5hmC and commitment to demethylation through 5fC. Finally, we resolved 5fC at base resolution by hydroxylamine-based protection from bisulfite-mediated deamination, thereby confirming sites of 5fC accumulation. Our results reveal roles of active 5mC/5hmC oxidation and TDG-mediated demethylation in epigenetic tuning at regulatory elements.


Assuntos
Citosina/análogos & derivados , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Técnicas Genéticas , Estudo de Associação Genômica Ampla , 5-Metilcitosina/metabolismo , Animais , Citosina/metabolismo , Camundongos , Elementos Reguladores de Transcrição , Fatores de Transcrição de p300-CBP/metabolismo
16.
Cell ; 153(3): 692-706, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23602152

RESUMO

TET dioxygenases successively oxidize 5-methylcytosine (5mC) in mammalian genomes to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC/5caC can be excised and repaired to regenerate unmodified cytosines by thymine-DNA glycosylase (TDG) and base excision repair (BER) pathway, but it is unclear to what extent and at which part of the genome this active demethylation process takes place. Here, we have generated genome-wide distribution maps of 5hmC/5fC/5caC using modification-specific antibodies in wild-type and Tdg-deficient mouse embryonic stem cells (ESCs). In wild-type mouse ESCs, 5fC/5caC accumulates to detectable levels at major satellite repeats but not at nonrepetitive loci. In contrast, Tdg depletion in mouse ESCs causes marked accumulation of 5fC and 5caC at a large number of proximal and distal gene regulatory elements. Thus, these results reveal the genome-wide view of iterative 5mC oxidation dynamics and indicate that TET/TDG-dependent active DNA demethylation process occurs extensively in the mammalian genome.


Assuntos
5-Metilcitosina/metabolismo , Epigênese Genética , Técnicas Genéticas , Estudo de Associação Genômica Ampla , Animais , Citosina/análogos & derivados , Citosina/metabolismo , Metilação de DNA , Reparo do DNA , Dioxigenases/metabolismo , Células-Tronco Embrionárias , Heterocromatina/química , Heterocromatina/metabolismo , Camundongos , Oxirredução , Elementos Reguladores de Transcrição , Timina DNA Glicosilase/metabolismo
17.
Cell ; 155(7): 1448-50, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24360270

RESUMO

TET-mediated 5-methyl cytosine (5mC) oxidation acts in epigenetic regulation, stem cell development, and cancer. Hu et al. now determine the crystal structure of the TET2 catalytic domain bound to DNA, shedding light on 5mC-DNA substrate recognition and the catalytic mechanism of 5mC oxidation.


Assuntos
5-Metilcitosina/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/química , DNA/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Dioxigenases , Humanos
18.
Cell ; 152(5): 1146-59, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23434322

RESUMO

Tet proteins oxidize 5-methylcytosine (mC) to generate 5-hydroxymethyl (hmC), 5-formyl (fC), and 5-carboxylcytosine (caC). The exact function of these oxidative cytosine bases remains elusive. We applied quantitative mass-spectrometry-based proteomics to identify readers for mC and hmC in mouse embryonic stem cells (mESC), neuronal progenitor cells (NPC), and adult mouse brain tissue. Readers for these modifications are only partially overlapping, and some readers, such as Rfx proteins, display strong specificity. Interactions are dynamic during differentiation, as for example evidenced by the mESC-specific binding of Klf4 to mC and the NPC-specific binding of Uhrf2 to hmC, suggesting specific biological roles for mC and hmC. Oxidized derivatives of mC recruit distinct transcription regulators as well as a large number of DNA repair proteins in mouse ES cells, implicating the DNA damage response as a major player in active DNA demethylation.


Assuntos
5-Metilcitosina/análise , Citosina/análogos & derivados , Metilação de DNA , 5-Metilcitosina/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Citosina/análise , Citosina/metabolismo , DNA Glicosilases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Fator 4 Semelhante a Kruppel , Espectrometria de Massas , Camundongos , Oxirredução , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição de Fator Regulador X , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
19.
Cell ; 154(2): 311-324, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23830207

RESUMO

Tumor cells metastasize to distant organs through genetic and epigenetic alterations, including changes in microRNA (miR) expression. Here we find miR-22 triggers epithelial-mesenchymal transition (EMT), enhances invasiveness and promotes metastasis in mouse xenografts. In a conditional mammary gland-specific transgenic (TG) mouse model, we show that miR-22 enhances mammary gland side-branching, expands the stem cell compartment, and promotes tumor development. Critically, miR-22 promotes aggressive metastatic disease in MMTV-miR-22 TG mice, as well as compound MMTV-neu or -PyVT-miR-22 TG mice. We demonstrate that miR-22 exerts its metastatic potential by silencing antimetastatic miR-200 through direct targeting of the TET (Ten eleven translocation) family of methylcytosine dioxygenases, thereby inhibiting demethylation of the mir-200 promoter. Finally, we show that miR-22 overexpression correlates with poor clinical outcomes and silencing of the TET-miR-200 axis in patients. Taken together, our findings implicate miR-22 as a crucial epigenetic modifier and promoter of EMT and breast cancer stemness toward metastasis.


Assuntos
Neoplasias da Mama/patologia , Montagem e Desmontagem da Cromatina , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Metástase Neoplásica , Células-Tronco Neoplásicas/metabolismo , 5-Metilcitosina/análogos & derivados , Animais , Neoplasias da Mama/metabolismo , Citosina/análogos & derivados , Citosina/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Transplante de Neoplasias , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Transplante Heterólogo
20.
Cell ; 153(4): 773-84, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23663777

RESUMO

5-methylcytosine is a major epigenetic modification that is sometimes called "the fifth nucleotide." However, our knowledge of how offspring inherit the DNA methylome from parents is limited. We generated nine single-base resolution DNA methylomes, including zebrafish gametes and early embryos. The oocyte methylome is significantly hypomethylated compared to sperm. Strikingly, the paternal DNA methylation pattern is maintained throughout early embryogenesis. The maternal DNA methylation pattern is maintained until the 16-cell stage. Then, the oocyte methylome is gradually discarded through cell division and is progressively reprogrammed to a pattern similar to that of the sperm methylome. The passive demethylation rate and the de novo methylation rate are similar in the maternal DNA. By the midblastula stage, the embryo's methylome is virtually identical to the sperm methylome. Moreover, inheritance of the sperm methylome facilitates the epigenetic regulation of embryogenesis. Therefore, besides DNA sequences, sperm DNA methylome is also inherited in zebrafish early embryos.


Assuntos
Metilação de DNA , Embrião não Mamífero/metabolismo , Oócitos/metabolismo , Espermatozoides/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , 5-Metilcitosina/análise , Animais , Epigênese Genética , Feminino , Células Germinativas/metabolismo , Masculino , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA