Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 146(11)2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31110027

RESUMO

Intestine function relies on the strong polarity of intestinal epithelial cells and the array of microvilli forming a brush border at their luminal pole. Combining a genetic RNA interference (RNAi) screen with in vivo super-resolution imaging in the Caenorhabditiselegans intestine, we found that the V0 sector of the vacuolar ATPase (V0-ATPase) controls a late apical trafficking step, involving Ras-related protein 11 (RAB-11)+ endosomes and the N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) synaptosome-associated protein 29 (SNAP-29), and is necessary to maintain the polarized localization of both apical polarity modules and brush border proteins. We show that the V0-ATPase pathway also genetically interacts with glycosphingolipids and clathrin in enterocyte polarity maintenance. Finally, we demonstrate that silencing of the V0-ATPase fully recapitulates the severe structural, polarity and trafficking defects observed in enterocytes from individuals with microvillus inclusion disease (MVID) and use this new in vivo MVID model to follow the dynamics of microvillus inclusions. Thus, we describe a new function for V0-ATPase in apical trafficking and epithelial polarity maintenance and the promising use of the C. elegans intestine as an in vivo model to better understand the molecular mechanisms of rare genetic enteropathies.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Polaridade Celular/genética , Enterócitos/fisiologia , Mucosa Intestinal/fisiologia , ATPases Translocadoras de Prótons/fisiologia , ATPases Vacuolares Próton-Translocadoras/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Absorção Intestinal/genética , Mucosa Intestinal/metabolismo , Transporte Proteico/genética , Transdução de Sinais
2.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216480

RESUMO

An asymmetry in cytosolic pH between mother and daughter cells was reported to underlie cellular aging in the budding yeast Saccharomyces cerevisiae; however, the underlying mechanism remains unknown. Preferential accumulation of Pma1p, which pumps cytoplasmic protons out of cells, at the plasma membrane of mother cells, but not of their newly-formed daughter cells, is believed to be responsible for the pH increase in mother cells by reducing the level of cytoplasmic protons. This, in turn, decreases the acidity of vacuoles, which is well correlated with aging of yeast cells. In this study, to identify genes that regulate the preferential accumulation of Pma1p in mother cells, we performed a genome-wide screen using a collection of single gene deletion yeast strains. A subset of genes involved in the endocytic pathway, such as VPS8, VPS9, and VPS21, was important for Pma1p accumulation. Unexpectedly, however, there was little correlation between deletion of each of these genes and the replicative lifespan of yeast, suggesting that Pma1p accumulation in mother cells is not the key determinant that underlies aging of mother cells.


Assuntos
Divisão Celular , Senescência Celular , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Translocadoras de Prótons/fisiologia , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia
3.
Nucleic Acids Res ; 47(13): 7063-7077, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31127277

RESUMO

Post-transcriptional regulons coordinate the expression of groups of genes in eukaryotic cells, yet relatively few have been characterized. Parasitic trypanosomatids are particularly good models for studies on such mechanisms because they exhibit almost exclusive polycistronic, and unregulated, transcription. Here, we identify the Trypanosoma brucei ZC3H39/40 RNA-binding proteins as regulators of the respiratome; the mitochondrial electron transport chain (complexes I-IV) and the FoF1-ATP synthase (complex V). A high-throughput RNAi screen initially implicated both ZC3H proteins in variant surface glycoprotein (VSG) gene silencing. This link was confirmed and both proteins were shown to form a cytoplasmic ZC3H39/40 complex. Transcriptome and mRNA-interactome analyses indicated that the impact on VSG silencing was indirect, while the ZC3H39/40 complex specifically bound and stabilized transcripts encoding respiratome-complexes. Quantitative proteomic analyses revealed specific positive control of >20 components from complexes I, II and V. Our findings establish a link between the mitochondrial respiratome and VSG gene silencing in bloodstream form T. brucei. They also reveal a major respiratome regulon controlled by the conserved trypanosomatid ZC3H39/40 RNA-binding proteins.


Assuntos
Respiração Celular/fisiologia , Regulação da Expressão Gênica/genética , Proteínas de Protozoários/fisiologia , Proteínas de Ligação a RNA/fisiologia , Regulon/fisiologia , Trypanosoma brucei brucei/fisiologia , Adaptação Fisiológica , Sequência de Aminoácidos , Transporte de Elétrons/fisiologia , Inativação Gênica , Humanos , Mitocôndrias/metabolismo , Parasitemia/parasitologia , Mapeamento de Interação de Proteínas , Proteômica/métodos , ATPases Translocadoras de Prótons/fisiologia , Interferência de RNA , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transcriptoma , Trypanosoma brucei brucei/isolamento & purificação , Tripanossomíase Africana/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/biossíntese , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
4.
Biochem Soc Trans ; 48(3): 881-889, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32453378

RESUMO

Plant membrane transport, like transport across all eukaryotic membranes, is highly non-linear and leads to interactions with characteristics so complex that they defy intuitive understanding. The physiological behaviour of stomatal guard cells is a case in point in which, for example, mutations expected to influence stomatal closing have profound effects on stomatal opening and manipulating transport across the vacuolar membrane affects the plasma membrane. Quantitative mathematical modelling is an essential tool in these circumstances, both to integrate the knowledge of each transport process and to understand the consequences of their manipulation in vivo. Here, we outline the OnGuard modelling environment and its use as a guide to predicting the emergent properties arising from the interactions between non-linear transport processes. We summarise some of the recent insights arising from OnGuard, demonstrate its utility in interpreting stomatal behaviour, and suggest ways in which the OnGuard environment may facilitate 'reverse-engineering' of stomata to improve water use efficiency and carbon assimilation.


Assuntos
Arabidopsis/fisiologia , Membrana Celular/fisiologia , Estômatos de Plantas/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Transporte Biológico , Carbono/metabolismo , Engenharia Genética , Cinética , Modelos Teóricos , Mutação , Osmose , Folhas de Planta/fisiologia , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/fisiologia , Vacúolos/fisiologia , Água/fisiologia
5.
Plant Cell Environ ; 43(4): 1069-1083, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31899547

RESUMO

Most land plants can form symbiosis with arbuscular mycorrhizal (AM) fungi to enhance uptake of mineral nutrients, particularly phosphate (Pi) and nitrogen (N), from the soil. It is established that transport of Pi from interfacial apoplast into plant cells depends on the H+ gradient generated by the H+ -ATPase located on the periarbuscular membrane (PAM); however, little evidence regarding the potential link between mycorrhizal N transport and H+ -ATPase activity is available to date. Here, we report that a PAM-localized tomato H+ -ATPase, SlHA8, is indispensable for arbuscule development and mycorrhizal P and N uptake. Knockout of SlHA8 resulted in truncated arbuscule morphology, reduced shoot P and N accumulation, and decreased H+ -ATPase activity and acidification of apoplastic spaces in arbusculated cells. Overexpression of SlHA8 in tomato promoted both P and N uptake, and increased total colonization level, but did not affect arbuscule morphology. Heterogeneous expression of SlHA8 in the rice osha1 mutant could fully complement its defects in arbuscule development and mycorrhizal P and N uptake. Our results propose a pivotal role of the SlHA8 in energizing both the symbiotic P and N transport, and highlight the evolutionary conservation of the AM-specific H+ -ATPase orthologs in maintaining AM symbiosis across different mycorrhizal plant species.


Assuntos
Hifas/genética , Micorrizas/enzimologia , Nitrogênio/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Simbiose , Membrana Celular/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Micorrizas/metabolismo , Micorrizas/fisiologia , Oryza/metabolismo , Oryza/microbiologia , Oryza/fisiologia , Proteínas de Plantas/fisiologia , ATPases Translocadoras de Prótons/fisiologia
6.
Hum Mol Genet ; 26(9): 1656-1669, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334751

RESUMO

ATP13A2 (also called PARK9), is a transmembrane endo-/lysosomal-associated P5 type transport ATPase. Loss-of-function mutations in ATP13A2 result in the Kufor-Rakeb Syndrome (KRS), a form of autosomal Parkinson's disease (PD). In spite of a growing interest in ATP13A2, very little is known about its physiological role in stressed cells. Recent studies suggest that the N-terminal domain of ATP13A2 may hold key regulatory functions, but their nature remains incompletely understood. To this end, we generated a set of melanoma and neuroblastoma cell lines stably overexpressing wild-type (WT), catalytically inactive (D508N) and N-terminal mutants, or shRNA against ATP13A2. We found that under proteotoxic stress conditions, evoked by the proteasome inhibitor Bortezomib, endo-/lysosomal associated full-length ATP13A2 WT, catalytically-inactive or N-terminal fragment mutants, reduced the intracellular accumulation of ubiquitin-conjugated (Ub) proteins, independent of autophagic degradation. In contrast, ATP13A2 silencing increased the intracellular accumulation of Ub-proteins, a pattern also observed in patient-derived fibroblasts harbouring ATP13A2 loss-of function mutations. In treated cells, ATP13A2 evoked endocytic vesicle relocation and increased cargo export through nanovesicles. Expression of an ATP13A2 mutant abrogating PI(3,5)P2 binding or chemical inhibition of the PI(3,5)P2-generating enzyme PIKfyve, compromised vesicular trafficking/nanovesicles export and rescued intracellular accumulation of Ub-proteins in response to proteasomal inhibition. Hence, our study unravels a novel activity-independent scaffolding role of ATP13A2 in trafficking/export of intracellular cargo in response to proteotoxic stress.


Assuntos
ATPases Translocadoras de Prótons/fisiologia , Autofagia , Linhagem Celular Tumoral , Endossomos/metabolismo , Humanos , Lisossomos/metabolismo , Mutação , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transporte Proteico , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Estresse Fisiológico
7.
Photosynth Res ; 138(2): 207-218, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30056561

RESUMO

In chloroplast, proton motive force (pmf) is critical for ATP synthesis and photoprotection. To prevent photoinhibition of photosynthetic apparatus, proton gradient (ΔpH) across the thylakoid membranes needs to be built up to minimize the production of reactive oxygen species (ROS) in thylakoid membranes. However, the regulation of thylakoid pmf in immature leaves is little known. In this study, we compared photosynthetic electron sinks, P700 redox state, non-photochemical quenching (NPQ), and electrochromic shift (ECS) signal in immature and mature leaves of a cultivar of Camellia. The immature leaves displayed lower linear electron flow and cyclic electron flow, but higher levels of NPQ and P700 oxidation ratio under high light. Meanwhile, we found that pmf and ΔpH were higher in the immature leaves. Furthermore, the immature leaves showed significantly lower thylakoid proton conductivity than mature leaves. These results strongly indicated that immature leaves can build up enough ΔpH by modulating proton efflux from the lumenal side to the stromal side of thylakoid membranes, which is essential to prevent photoinhibition via thermal energy dissipation and photosynthetic control of electron transfer. This study highlights that the activity of chloroplast ATP synthase is a key safety valve for photoprotection in immature leaves.


Assuntos
Camellia/fisiologia , Folhas de Planta , Força Próton-Motriz/fisiologia , Tilacoides , Camellia/classificação , Clorofila/fisiologia , Fluorescência , Fenótipo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Folhas de Planta/fisiologia , Transpiração Vegetal , ATPases Translocadoras de Prótons/fisiologia , Tilacoides/fisiologia
8.
Plant Cell ; 27(6): 1718-29, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26071421

RESUMO

Phytosulfokine (PSK) is perceived by the leucine-rich repeat receptor kinase PSKR1 and promotes growth in Arabidopsis thaliana. PSKR1 is coexpressed with the CYCLIC NUCLEOTIDE-GATED CHANNEL gene CNGC17. PSK promotes protoplast expansion in the wild type but not in cngc17. Protoplast expansion is likewise promoted by cGMP in a CNGC17-dependent manner. Furthermore, PSKR1-deficient protoplasts do not expand in response to PSK but are still responsive to cGMP, suggesting that cGMP acts downstream of PSKR1. Mutating the guanylate cyclase center of PSKR1 impairs seedling growth, supporting a role for PSKR1 signaling via cGMP in planta. While PSKR1 does not interact directly with CNGC17, it interacts with the plasma membrane-localized H(+)-ATPases AHA1 and AHA2 and with the BRI-associated receptor kinase 1 (BAK1). CNGC17 likewise interacts with AHA1, AHA2, and BAK1, suggesting that PSKR1, BAK1, CNGC17, and AHA assemble in a functional complex. Roots of deetiolated bak1-3 and bak1-4 seedlings were unresponsive to PSK, and bak1-3 and bak1-4 protoplasts expanded less in response to PSK but were fully responsive to cGMP, indicating that BAK1 acts in the PSK signal pathway upstream of cGMP. We hypothesize that CNGC17 and AHAs form a functional cation-translocating unit that is activated by PSKR1/BAK1 and possibly other BAK1/RLK complexes.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Hormônios Peptídicos/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , ATPases Translocadoras de Prótons/fisiologia , Arabidopsis/fisiologia , Membrana Celular/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Receptores de Superfície Celular/fisiologia , Plântula/crescimento & desenvolvimento
9.
PLoS Pathog ; 11(2): e1004660, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25714685

RESUMO

In the infectious stage of Trypanosoma brucei, an important parasite of humans and livestock, the mitochondrial (mt) membrane potential (Δψm) is uniquely maintained by the ATP hydrolytic activity and subsequent proton pumping of the essential FoF1-ATPase. Intriguingly, this multiprotein complex contains several trypanosome-specific subunits of unknown function. Here, we demonstrate that one of the largest novel subunits, ATPaseTb2, is membrane-bound and localizes with monomeric and multimeric assemblies of the FoF1-ATPase. Moreover, RNAi silencing of ATPaseTb2 quickly leads to a significant decrease of the Δψm that manifests as a decreased growth phenotype, indicating that the FoF1-ATPase is impaired. To further explore the function of this protein, we employed a trypanosoma strain that lacks mtDNA (dyskinetoplastic, Dk) and thus subunit a, an essential component of the proton pore in the membrane Fo-moiety. These Dk cells generate the Δψm by combining the hydrolytic activity of the matrix-facing F1-ATPase and the electrogenic exchange of ATP4- for ADP3- by the ATP/ADP carrier (AAC). Surprisingly, in addition to the expected presence of F1-ATPase, the monomeric and multimeric FoF1-ATPase complexes were identified. In fact, the immunoprecipitation of a F1-ATPase subunit demonstrated that ATPaseTb2 was a component of these complexes. Furthermore, RNAi studies established that the membrane-bound ATPaseTb2 subunit is essential for maintaining normal growth and the Δψm of Dk cells. Thus, even in the absence of subunit a, a portion of the FoF1-ATPase is assembled in Dk cells.


Assuntos
ATPases Translocadoras de Prótons/fisiologia , Trypanosoma brucei brucei , Tripanossomíase Africana/sangue , Tripanossomíase Africana/parasitologia , Animais , Bovinos , Células Cultivadas , DNA Mitocondrial/genética , Humanos , Proteínas de Membrana/fisiologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Organismos Geneticamente Modificados , Subunidades Proteicas/fisiologia , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/patogenicidade , Trypanosoma brucei brucei/ultraestrutura
10.
J Am Soc Nephrol ; 27(11): 3320-3330, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27044666

RESUMO

ATPase H+-transporting lysosomal accessory protein 2 (Atp6ap2), also known as the (pro)renin receptor, is a type 1 transmembrane protein and an accessory subunit of the vacuolar H+-ATPase (V-ATPase) that may also function within the renin-angiotensin system. However, the contribution of Atp6ap2 to renin-angiotensin-dependent functions remains unconfirmed. Using mice with an inducible conditional deletion of Atp6ap2 in mouse renal epithelial cells, we found that decreased V-ATPase expression and activity in the intercalated cells of the collecting duct impaired acid-base regulation by the kidney. In addition, these mice suffered from marked polyuria resistant to desmopressin administration. Immunoblotting revealed downregulation of the medullary Na+-K+-2Cl- cotransporter NKCC2 in these mice compared with wild-type mice, an effect accompanied by a hypotonic medullary interstitium and impaired countercurrent multiplication. This phenotype correlated with strong autophagic defects in epithelial cells of medullary tubules. Notably, cells with high accumulation of the autophagosomal substrate p62 displayed the strongest reduction of NKCC2 expression. Finally, nephron-specific Atp6ap2 depletion did not affect angiotensin II production, angiotensin II-dependent BP regulation, or sodium handling in the kidney. Taken together, our results show that nephron-specific deletion of Atp6ap2 does not affect the renin-angiotensin system but causes a combination of renal concentration defects and distal renal tubular acidosis as a result of impaired V-ATPase activity.


Assuntos
Rim/enzimologia , ATPases Translocadoras de Prótons/fisiologia , Receptores de Superfície Celular/fisiologia , Sistema Renina-Angiotensina/fisiologia , ATPases Vacuolares Próton-Translocadoras/fisiologia , Animais , Feminino , Masculino , Camundongos
11.
J Neurosci ; 35(12): 4983-98, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25810528

RESUMO

In the mammalian hippocampus, canonical Wnt signals provided by the microenvironment regulate the differentiation of adult neural stem cells (NSCs) toward the neuronal lineage. Wnts are part of a complex and diverse set of signaling pathways and the role of Wnt/Planar cell polarity (PCP) signaling in adult neurogenesis remains unknown. Using in vitro assays on differentiating adult NSCs, we identified a transition of Wnt signaling responsiveness from Wnt/ß-catenin to Wnt/PCP signaling. In mice, retroviral knockdown strategies against ATP6AP2, a recently discovered core protein involved in both signaling pathways, revealed that its dual role is critical for granule cell fate and morphogenesis. We were able to confirm its dual role in neurogenic Wnt signaling in vitro for both canonical Wnt signaling in proliferating adult NSCs and non-canonical Wnt signaling in differentiating neuroblasts. Although LRP6 appeared to be critical for granule cell fate determination, in vivo knockdown of PCP core proteins FZD3 and CELSR1-3 revealed severe maturational defects without changing the identity of newborn granule cells. Furthermore, we found that CELSR1-3 control distinctive aspects of PCP-mediated granule cell morphogenesis with CELSR1 regulating the direction of dendrite initiation sites and CELSR2/3 controlling radial migration and dendritic patterning. The data presented here characterize distinctive roles for Wnt/ß-catenin signaling in granule cell fate determination and for Wnt/PCP signaling in controlling the morphological maturation of differentiating neuroblasts.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipocampo/citologia , Neurogênese/fisiologia , ATPases Translocadoras de Prótons/fisiologia , Receptores de Superfície Celular/fisiologia , Animais , Caderinas/genética , Caderinas/fisiologia , Diferenciação Celular/fisiologia , Polaridade Celular/fisiologia , Células Cultivadas , Feminino , Receptores Frizzled/genética , Receptores Frizzled/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Silenciamento de Genes , Hipocampo/crescimento & desenvolvimento , Camundongos , Células-Tronco Neurais/fisiologia , Neurogênese/genética , ATPases Translocadoras de Prótons/genética , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/fisiologia , Regulação para Cima , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , beta Catenina/fisiologia
12.
Dev Biol ; 407(1): 115-30, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26254189

RESUMO

Asymmetric fluid flows generated by motile cilia in a transient 'organ of asymmetry' are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H(+)-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer's vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures-neuromasts and olfactory placodes-suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry.


Assuntos
Padronização Corporal , Proliferação de Células , Cílios/fisiologia , ATPases Translocadoras de Prótons/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Concentração de Íons de Hidrogênio
13.
Biochim Biophys Acta ; 1847(9): 931-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25481109

RESUMO

In addition to ∆pH formed across the thylakoid membrane, membrane potential contributes to proton motive force (pmf) in chloroplasts. However, the regulation of photosynthetic electron transport is mediated solely by ∆pH. To assess the contribution of two cyclic electron transport pathways around photosystem I (one depending on PGR5/PGRL1 and one on NDH) to pmf formation, electrochromic shift (ECS) was analyzed in the Arabidopsis pgr5 mutant, NDH-defective mutants (ndhs and crr4-2), and their double mutants (ndhs pgr5 and crr4-2 pgr5). In pgr5, the size of the pmf, as represented by ECSt, was reduced by 30% to 47% compared with that in the wild type (WT). A gH+ parameter, which is considered to represent the activity of ATP synthase, was enhanced at high light intensities. However, gH+ recovered to its low-light levels after 20 min in the dark, implying that the elevation in gH+ is due to the disturbed regulation of ATP synthase rather than to photodamage. After long dark adaptation more than 2 h, gH+ was higher in pgr5 than in the WT. During induction of photosynthesis, gH+ was more rapidly elevated in pgr5 than that in the WT. Both results suggest that ATP synthase is not fully inactivated in the dark in pgr5. In the NDH-deficient mutants, ECSt was slightly but significantly lower than in the WT, whereas gH+ was not affected. In the double mutants, ECSt was even lower than in pgr5. These results suggest that both PGR5/PGRL1- and NDH-dependent pathways contribute to pmf formation, although to different extents. This article is part of a Special Issue entitled: Chloroplast Biogenesis.


Assuntos
Cloroplastos/fisiologia , Complexo de Proteína do Fotossistema I/fisiologia , Força Próton-Motriz , Proteínas de Arabidopsis/fisiologia , Transporte de Elétrons , Luz , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , ATPases Translocadoras de Prótons/fisiologia
14.
J Neurosci ; 34(46): 15281-7, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25392495

RESUMO

Kufor-Rakeb syndrome (KRS) is caused by loss-of-function mutations in ATP13A2 (PARK9) and characterized by juvenile-onset parkinsonism, pyramidal signs, and cognitive decline. Previous studies suggested that PARK9 deficiency causes lysosomal dysfunction and α-synuclein (α-syn) accumulation, whereas PARK9 overexpression suppresses toxicity of α-syn. However, the precise mechanism of PARK9 effect on lysosomes and α-syn has been unknown. Here, we found that overexpressed PARK9 localized to multivesicular bodies (MVBs) in the human H4 cell line. The results from patient fibroblasts showed that loss of PARK9 function leads to decreased number of the intraluminal vesicles in MVBs and diminished release of exosomes into culture media. By contrast, overexpression of PARK9 results in increased release of exosomes in H4 cells and mouse primary cortical neurons. Moreover, loss of PARK9 function resulted in decreased secretion of α-syn into extracellular space, whereas overexpressed PARK9 promotes secretion of α-syn, at least in part via exosomes. Finally, we found that PARK9 regulates exosome biogenesis through functional interaction with the endosomal sorting complex required for transport machinery. Together, these data suggest the involvement of PARK9 in the biogenesis of exosomes and α-syn secretion and raise a possibility that disruption of these pathways in patients with KRS contributes to the disease pathogenesis.


Assuntos
Exossomos/metabolismo , ATPases Translocadoras de Prótons/fisiologia , alfa-Sinucleína/metabolismo , Animais , Linhagem Celular , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Humanos , Masculino , Camundongos , Mutação , Neurônios/metabolismo , Neurônios/fisiologia , Transtornos Parkinsonianos/genética , Cultura Primária de Células , ATPases Translocadoras de Prótons/genética
15.
Am J Physiol Renal Physiol ; 309(1): F48-56, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25995108

RESUMO

The prorenin receptor (PRR), a recently discovered component of the renin-angiotensin system, is expressed in the nephron in general and the collecting duct in particular. However, the physiological significance of nephron PRR remains unclear, partly due to developmental abnormalities associated with global or renal-specific PRR gene knockout (KO). Therefore, we developed mice with inducible nephron-wide PRR deletion using Pax8-reverse tetracycline transactivator and LC-1 transgenes and loxP flanked PRR alleles such that ablation of PRR occurs in adulthood, after induction with doxycycline. Nephron-specific PRR KO mice have normal survival to ∼1 yr of age and no renal histological defects. Compared with control mice, PRR KO mice had 65% lower medullary PRR mRNA and protein levels and markedly diminished renal PRR immunofluorescence. During both normal water intake and mild water restriction, PRR KO mice had significantly lower urine osmolality, higher water intake, and higher urine volume compared with control mice. No differences were seen in urine vasopressin excretion, urine Na(+) and K(+) excretion, plasma Na(+), or plasma osmolality between the two groups. However, PRR KO mice had reduced medullary aquaporin-2 levels and arginine vasopressin-stimulated cAMP accumulation in the isolated renal medulla compared with control mice. Taken together, these results suggest nephron PRR can potentially modulate renal water excretion.


Assuntos
Rim/fisiologia , ATPases Translocadoras de Prótons/fisiologia , Receptores de Superfície Celular/fisiologia , Urina , Água/fisiologia , Animais , Feminino , Rim/patologia , Masculino , Camundongos Knockout , Receptor de Pró-Renina
16.
Proc Natl Acad Sci U S A ; 109(34): 13775-80, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22872862

RESUMO

Autosomal recessive distal renal tubular acidosis (dRTA) is a severe disorder of acid-base homeostasis, often accompanied by sensorineural deafness. We and others have previously shown that mutations in the tissue-restricted a4 and B1 subunits of the H(+)-ATPase underlie this syndrome. Here, we describe an Atp6v0a4 knockout mouse, which lacks the a4 subunit. Using ß-galactosidase as a reporter for the null gene, developmental a4 expression was detected in developing bone, nose, eye, and skin, in addition to that expected in kidney and inner ear. By the time of weaning, Atp6v0a4(-/-) mice demonstrated severe metabolic acidosis, hypokalemia, and early nephrocalcinosis. Null mice were hypocitraturic, but hypercalciuria was absent. They were severely hearing-impaired, as shown by elevated auditory brainstem response thresholds and absent endocochlear potential. They died rapidly unless alkalinized. If they survived weaning with alkali supplementation, treatment could later be withdrawn, but -/- animals remained acidotic with alkaline urine. They also had an impaired sense of smell. Heterozygous animals were biochemically normal until acid-challenged, when they became more acidotic than +/+ animals. This mouse model recapitulates the loss of H(+)-ATPase function seen in human disease and can provide additional insights into dRTA and the physiology of the a4 subunit.


Assuntos
Acidose Tubular Renal/genética , Acidose Tubular Renal/fisiopatologia , Perda Auditiva/genética , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/fisiologia , Animais , Modelos Animais de Doenças , Orelha Interna/fisiopatologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Heterozigoto , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Knockout , Nefrocalcinose/genética , Fenótipo , Bombas de Próton , ATPases Vacuolares Próton-Translocadoras
17.
J Biol Chem ; 288(14): 9610-9618, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23420846

RESUMO

The minimal proton pumping machinery of the Arabidopsis thaliana P-type plasma membrane H(+)-ATPase isoform 2 (AHA2) consists of an aspartate residue serving as key proton donor/acceptor (Asp-684) and an arginine residue controlling the pKa of the aspartate. However, other important aspects of the proton transport mechanism such as gating, and the ability to occlude protons, are still unclear. An asparagine residue (Asn-106) in transmembrane segment 2 of AHA2 is conserved in all P-type plasma membrane H(+)-ATPases. In the crystal structure of the plant plasma membrane H(+)-ATPase, this residue is located in the putative ligand entrance pathway, in close proximity to the central proton donor/acceptor Asp-684. Substitution of Asn-106 resulted in mutant enzymes with significantly reduced ability to transport protons against a membrane potential. Sensitivity toward orthovanadate was increased when Asn-106 was substituted with an aspartate residue, but decreased in mutants with alanine, lysine, glutamine, or threonine replacement of Asn-106. The apparent proton affinity was decreased for all mutants, most likely due to a perturbation of the local environment of Asp-684. Altogether, our results demonstrate that Asn-106 is important for closure of the proton entrance pathway prior to proton translocation across the membrane.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Asparagina/química , Bombas de Próton/fisiologia , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/fisiologia , Adenosina Trifosfatases/química , Arginina/química , Asparagina/genética , Transporte Biológico , Membrana Celular/enzimologia , Cristalografia por Raios X/métodos , Citosol/metabolismo , DNA/genética , Eletroquímica/métodos , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Concentração de Íons de Hidrogênio , Potenciais da Membrana , Modelos Moleculares , Mutação , Regiões Promotoras Genéticas , Conformação Proteica , Prótons , Saccharomyces cerevisiae/genética
18.
Biochim Biophys Acta ; 1817(2): 370-80, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22050934

RESUMO

A mutant of Corynebacterium glutamicum ATCC 13032 with a deletion of the atpBEFHAGDC genes encoding F(1)F(O)-ATP synthase was characterized. Whereas no growth was observed with acetate as sole carbon source, the ΔF(1)F(O) mutant reached 47% of the growth rate and 65% of the biomass of the wild type during shake-flask cultivation in glucose minimal medium. Initially, the mutant strain showed a strongly increased glucose uptake rate accompanied by a high oxygen consumption rate and pyruvate secretion into the medium. When oxygen became limiting, the glucose consumption rate was reduced below that of the wild type and pyruvate was consumed again. The ΔF(1)F(O) mutant had increased levels of b- and d-type cytochromes and a significantly increased proton motive force. Transcription of genes involved in central carbon metabolism was essentially unchanged, whereas genes for cytochrome bd oxidase, pyruvate:quinone oxidoreductase, oxidative stress response, and others showed increased mRNA levels. On the other hand, genes for amino acid biosynthesis and ribosomal proteins as well as many genes involved in transport displayed decreased mRNA levels. Several of the transcriptional changes were reflected at the protein level, but there were also discrepancies between the mRNA and protein levels suggesting some kind of posttranscriptional regulation. The results prove for the first time that F(1)F(O)-ATP synthase and oxidative phosphorylation are in general not essential for growth of C. glutamicum.


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/fisiologia , Regulação Bacteriana da Expressão Gênica , Fosforilação Oxidativa , ATPases Translocadoras de Prótons/genética , Ácidos/metabolismo , Corynebacterium glutamicum/crescimento & desenvolvimento , Corynebacterium glutamicum/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/genética , Transporte de Elétrons/fisiologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Glicogênio/metabolismo , Organismos Geneticamente Modificados , Consumo de Oxigênio/genética , Consumo de Oxigênio/fisiologia , Proteoma/análise , Proteoma/metabolismo , ATPases Translocadoras de Prótons/fisiologia , Deleção de Sequência
19.
EMBO J ; 28(18): 2689-96, 2009 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-19644443

RESUMO

Synthesis of adenosine triphosphate ATP, the 'biological energy currency', is accomplished by F(o)F(1)-ATP synthase. In the plasma membrane of Escherichia coli, proton-driven rotation of a ring of 10 c subunits in the F(o) motor powers catalysis in the F(1) motor. Although F(1) uses 120 degrees stepping during ATP synthesis, models of F(o) predict either an incremental rotation of c subunits in 36 degrees steps or larger step sizes comprising several fast substeps. Using single-molecule fluorescence resonance energy transfer, we provide the first experimental determination of a 36 degrees sequential stepping mode of the c-ring during ATP synthesis.


Assuntos
ATPases Translocadoras de Prótons/fisiologia , Trifosfato de Adenosina/metabolismo , Biofísica/métodos , Catálise , Escherichia coli/enzimologia , Transferência Ressonante de Energia de Fluorescência/métodos , Bicamadas Lipídicas/química , Modelos Biológicos , Método de Monte Carlo , Mutação , Fótons , Plasmídeos/metabolismo , Conformação Proteica , ATPases Translocadoras de Prótons/metabolismo , Prótons , Rotação
20.
New Phytol ; 197(4): 1117-1129, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23176077

RESUMO

Transient apoplastic alkalinization has been discussed as a general stress factor, and is thought to represent a root-to-shoot signal that transmits information regarding an ongoing NaCl stress event from the site of the trigger to the distant plant tissue. Surprisingly, despite this importance, a number of gaps exist in our knowledge of NaCl-induced apoplastic pH alkalinization. This study was designed in order to shed light onto the mechanisms responsible for the initiation and transiency of leaf apoplastic alkalinization under conditions of NaCl stress as supplied to roots. An H(+)-sensitive fluorescence probe, in combination with ratiometric microscopy imaging, was used for in planta live recording of leaf apoplastic pH. The use of a nonionic solute demonstrated that the alkalinization is induced in response to ionic, and not osmotic, components of NaCl stress. Tests with Cl(-)- or Na(+)-accompanying counter-ions strengthened the idea that the stress factor itself, namely Cl(-), is transferred from root to shoot and elicits the pH alterations. Investigations with a plasma membrane ATPase inhibitor suggest that ATPase activity influences the course of the alkalinization by having a shaping re-acidifying effect on the alkalinization.


Assuntos
Cloreto de Sódio/farmacologia , Vicia faba/metabolismo , Adaptação Fisiológica , Álcalis/química , Concentração de Íons de Hidrogênio , Folhas de Planta/química , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/fisiologia , Estresse Fisiológico , Fatores de Tempo , Vicia faba/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA