Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38925655

RESUMO

AIMS: In this study, the antifungal efficacy and phytotoxicity of silica coated porous zinc oxide nanoparticle (SZNP) were analyzed as this nanocomposite was observed to be a suitable platform for slow release fungicides and has the promise to bring down the dosage of other agrochemicals as well. METHODS AND RESULTS: Loading and release kinetics of tricyclazole, a potent fungicide, were analyzed by measuring surface area (SBET) using Brunauer-Emmett-Teller (BET) isotherm and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. The antifungal efficacy of ZnO nanoparticle (ZNP) and SZNP was investigated on two phytopathogenic fungi (Alternaria solani and Aspergillus niger). The morphological changes to the fungal structure due to ZNP and SZNP treatment were studied by field emission-scanning electron microscopy. Nanoparticle mediated elevation of reactive oxygen species (ROS) in fungal samples was detected by analyzing the levels of superoxide dismutase, catalase, thiol content, lipid peroxidation, and by 2,7-dichlorofluorescin diacetate assay. The phytotoxicity of these two nanostructures was assessed in rice plants by measuring primary plant growth parameters. Further, the translocation of the nanocomposite in the same plant model system was examined by checking the presence of fluorescein isothiocyanate tagged SZNP within the plant tissue. CONCLUSIONS: ZNP had superior antifungal efficacy than SZNP and caused the generation of more ROS in the fungal samples. Even then, SZNP was preferred as an agrochemical delivery vehicle because, unlike ZNP alone, it was not toxic to plant system. Moreover, as silica in nanoform is entomotoxic in nature and nano ZnO has antifungal property, both the cargo (agrochemical) and the carrier system (silica coated porous nano zinc oxide) will have a synergistic effect in crop protection.


Assuntos
Antifúngicos , Nanocompostos , Dióxido de Silício , Óxido de Zinco , Óxido de Zinco/farmacologia , Nanocompostos/toxicidade , Dióxido de Silício/farmacologia , Dióxido de Silício/química , Antifúngicos/farmacologia , Agroquímicos/farmacologia , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/crescimento & desenvolvimento , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Oryza/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Porosidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Preparações de Ação Retardada , Espécies Reativas de Oxigênio/metabolismo
2.
Biochem J ; 479(12): 1337-1359, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35748702

RESUMO

Some of the most threatening human diseases are due to a blockage of the mitochondrial electron transport chain (ETC). In a variety of plants, fungi, and prokaryotes, there is a naturally evolved mechanism for such threats to viability, namely a bypassing of the blocked portion of the ETC by alternative enzymes of the respiratory chain. One such enzyme is the alternative oxidase (AOX). When AOX is expressed, it enables its host to survive life-threatening conditions or, as in parasites, to evade host defenses. In vertebrates, this mechanism has been lost during evolution. However, we and others have shown that transfer of AOX into the genome of the fruit fly and mouse results in a catalytically engaged AOX. This implies that not only is the AOX a promising target for combating human or agricultural pathogens but also a novel approach to elucidate disease mechanisms or, in several cases, potentially a therapeutic cure for human diseases. In this review, we highlight the varying functions of AOX in their natural hosts and upon xenotopic expression, and discuss the resulting need to develop species-specific AOX inhibitors.


Assuntos
Agroquímicos , Proteínas Mitocondriais , Agroquímicos/farmacologia , Animais , Drosophila/metabolismo , Segurança Alimentar , Humanos , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxirredutases , Preparações Farmacêuticas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
J Environ Manage ; 344: 118535, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37399620

RESUMO

Periurban agriculture in Argentina is carried out by farmers without adequate control. The indiscriminate agrochemical application for productivity improvement negatively impacts the environment. The objective of this work was to test the quality of periurban agricultural soils by performing bioassays with Eisenia andrei as an indicator. Soils belonging to two orchards with intensive production (S: strawberry/broccoli crop plot and G: tomato/pepper crop greenhouse - Moreno District, Buenos Aires, Argentina) were sampled during 2015 and 2016. As subcellular biomarkers, cholinesterases (ChE), carboxylesterases (CaE), and glutathione-S-transferases (GST) activities were analysed in E. andrei (7-day exposure). While no effect on ChE activities was observed, CaE activities were significantly reduced 18% (S-2016 soil). GST activities were increased 35% and 30% by S-2016 and G-2016, respectively. CaE decrease together with GST increase could be indicative of a negative disturbance. Concerning whole organism biomarkers, reproduction (56-day exposure), avoidance (3-day exposure), and feeding activity (bait-lamina test, 3-day exposure) were analysed. A reduced cocoons' viability (50%), hatchability (55%), accompanied by a low number of juveniles (50%) were observed in all cases. Additionally, the earthworms exhibited significant avoidance responses to S-2015, S-2016 and G-2016 whereas G-2015 soil induced migration. No significant effect on the feeding activity was registered in any case. Most of the E. andrei biomarkers tested could constitute an early warning of harmful effects produced by polluted periurban soils, even if the agrochemical treatment applied remains unknown. The results reveal the need to develop an action plan to avoid further deterioration of the productive soil.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Solo/química , Oligoquetos/fisiologia , Agricultura , Biomarcadores/análise , Agroquímicos/análise , Agroquímicos/farmacologia , Poluentes do Solo/análise
4.
J Appl Microbiol ; 133(4): 2148-2166, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35476896

RESUMO

Maize (Zea mays L.), a major crop in Argentina and a staple food around the world, is affected by the emergence and re-emergence of foliar diseases. Agrochemicals are the main control strategy nowadays; however, they can cause resistance in insects and microbial pathogens and have negative effects on the environment and human health. An emerging alternative is the use of living organisms, i.e. microbial biocontrol agents, to suppress plant pathogen populations. This is a risk-free approach when the organisms acting as biocontrol agents come from the same ecosystem as the foliar pathogens they are meant to antagonize. Some epiphytic microorganisms may form biofilm by becoming aggregated and attached to a surface, as is the case of spore-forming bacteria from the genus Bacillus. Their ability to sporulate and their tolerance to long storage periods make them a frequently used biocontrol agent. Moreover, the biofilm that they create protects them against different abiotic and biotic factors and helps them to acquire nutrients, which ensures their survival on the plants they protect. This review analyzes the interactions that the phyllosphere-inhabiting Bacillus genus establishes with its environment through biofilm, and how this lifestyle could serve to design effective biological control strategies.


Assuntos
Bacillus , Agroquímicos/farmacologia , Biofilmes , Ecossistema , Humanos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Plantas , Zea mays/microbiologia
5.
J Nanobiotechnology ; 20(1): 16, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983536

RESUMO

BACKGROUND: The annual economic loss caused by plant viruses exceeds 10 billion dollars due to the lack of ideal control measures. Quercetin is a flavonol compound that exerts a control effect on plant virus diseases, but its poor solubility and stability limit the control efficiency. Fortunately, the development of nanopesticides has led to new ideas. RESULTS: In this study, 117 nm quercetin nanoliposomes with excellent stability were prepared from biomaterials, and few surfactants and stabilizers were added to optimize the formula. Nbhsp70er-1 and Nbhsp70c-A were found to be the target genes of quercetin, through abiotic and biotic stress, and the nanoliposomes improved the inhibitory effect at the gene and protein levels by 33.6 and 42%, respectively. Finally, the results of field experiment showed that the control efficiency was 38% higher than that of the conventional quercetin formulation and higher than those of other antiviral agents. CONCLUSION: This research innovatively reports the combination of biological antiviral agents and nanotechnology to control plant virus diseases, and it significantly improved the control efficiency and reduced the use of traditional chemical pesticides.


Assuntos
Lipossomos , Nanopartículas , Doenças das Plantas , Vírus de Plantas/efeitos dos fármacos , Quercetina , Agroquímicos/química , Agroquímicos/farmacologia , Nanotecnologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Quercetina/química , Quercetina/farmacologia
6.
Pestic Biochem Physiol ; 184: 105122, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715060

RESUMO

The discovery of new scaffolds and targets for pesticides is still a huge challenge facing the sustainable development of modern agriculture. In recent years, quinazoline derivatives have achieved great progress in drug discovery and have attracted great attention. Quinazoline is a unique bicyclic scaffold with a variety of biological activities, which increases the possibilities and flexibility of structural modification, showing enormous appeal in the discovery of new pesticides. Therefore, the agricultural biological activities, structure-activity relationships (SAR), and mechanism of action of quinazoline derivatives in the past decade were reviewed systematically, with emphasis on SAR and mechanism. Then, we prospected the application of the quinazoline scaffold as a special structure in agricultural chemical discovery, hoping to provide new ideas for the rational design and mechanism of novel quinazoline agricultural chemicals in the future.


Assuntos
Praguicidas , Quinazolinas , Agroquímicos/farmacologia , Praguicidas/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia , Relação Estrutura-Atividade
7.
Bioorg Med Chem Lett ; 48: 128246, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34233221

RESUMO

To discover non-food renewable forest bioactive products as new potential pesticidal alternatives for crop protection, a series of C15-imines alkaloids were obtained by structural modification of matrine and oxymatrine. Compounds Id, Ih, Ii and IIg (>2-3 folds of their precursors) showed the most potent antifeedant activity against armyworm. Against red spider mite, compounds Ie, Il, IIb, IIc and IIg displayed 1.8-3.1 folds acaricidal activity of their precursors. Notably, compound IIg exhibiting the most pronounced pesticidal activities, can be used as a promising bio-sourced agrochemical agent. The study of stress responses showed that the nAChR subunit α5 and VGSC might be the targets of action of matrine, oxymatrine and IIg against red spider mite.


Assuntos
Agroquímicos/farmacologia , Alcaloides/farmacologia , Praguicidas/farmacologia , Quinolizinas/farmacologia , Spodoptera/efeitos dos fármacos , Tetranychidae/efeitos dos fármacos , Agroquímicos/química , Alcaloides/química , Animais , Relação Dose-Resposta a Droga , Estrutura Molecular , Praguicidas/química , Quinolizinas/química , Relação Estrutura-Atividade , Matrinas
8.
Bioorg Med Chem ; 39: 116162, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33895705

RESUMO

In this review, the synthesis of 33 agrochemicals that received an international standardization organization (ISO) name between January 2015 and December 2018 is described. The aim is to showcase the broad range and scope of reactions, reagents and intermediates used to discover and produce the latest active ingredients addressing the crop protection industry's needs.


Assuntos
Agroquímicos/síntese química , Agroquímicos/farmacologia , Agroquímicos/normas , Animais , Produtos Agrícolas , Fungicidas Industriais/síntese química , Fungicidas Industriais/normas , Herbicidas/síntese química , Herbicidas/normas , Inseticidas/síntese química , Inseticidas/normas , Internacionalidade , Nematoides/efeitos dos fármacos
9.
Nature ; 520(7548): 545-8, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25652827

RESUMO

Rising temperatures and lessening fresh water supplies are threatening agricultural productivity and have motivated efforts to improve plant water use and drought tolerance. During water deficit, plants produce elevated levels of abscisic acid (ABA), which improves water consumption and stress tolerance by controlling guard cell aperture and other protective responses. One attractive strategy for controlling water use is to develop compounds that activate ABA receptors, but agonists approved for use have yet to be developed. In principle, an engineered ABA receptor that can be activated by an existing agrochemical could achieve this goal. Here we describe a variant of the ABA receptor PYRABACTIN RESISTANCE 1 (PYR1) that possesses nanomolar sensitivity to the agrochemical mandipropamid and demonstrate its efficacy for controlling ABA responses and drought tolerance in transgenic plants. Furthermore, crystallographic studies provide a mechanistic basis for its activity and demonstrate the relative ease with which the PYR1 ligand-binding pocket can be altered to accommodate new ligands. Thus, we have successfully repurposed an agrochemical for a new application using receptor engineering. We anticipate that this strategy will be applied to other plant receptors and represents a new avenue for crop improvement.


Assuntos
Ácido Abscísico/metabolismo , Agroquímicos/farmacologia , Amidas/farmacologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Carboxílicos/farmacologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Plantas/efeitos dos fármacos , Plantas/metabolismo , Água/metabolismo , Aclimatação/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Secas , Engenharia Genética , Genótipo , Ligantes , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Modelos Moleculares , Transpiração Vegetal/efeitos dos fármacos , Plantas/genética , Plantas Geneticamente Modificadas , Estresse Fisiológico/efeitos dos fármacos , Relação Estrutura-Atividade
10.
Chem Biodivers ; 18(3): e2000928, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33555653

RESUMO

Nine new ß-resorcylic acid derivatives, (15S)-de-O-methyllasiodiplodin (1), (13S,15S)-13-hydroxy-de-O-methyllasiodiplodin (2), (14S,15S)-14-hydroxy-de-O-methyllasiodiplodin (3), (13R,14S,15S)-13,14-dihydroxy-de-O-methyllasiodiplodin (4), ethyl (S)-2,4-dihydroxy-6-(8-hydroxynonyl)benzoate (5), ethyl 2,4-dihydroxy-6-(8-hydroxyheptyl)benzoate (6), ethyl 2,4-dihydroxy-6-(4-methoxycarbonylbutyl)benzoate (7), 3-(2-ethoxycarbonyl-3,5-dihydroxyphenyl)propionic acid (8), and isobutyl (S)-2,4-dihydroxy-6-(8-hydroxynonyl)benzoate (9), together with a known ethyl 2,4-dihydroxy-6-(8-oxononyl)benzoate (10) were obtained from Lasiodiplodia theobromae GC-22. The structures of these compounds were elucidated by extensive spectroscopic analyses. Compounds 1, 3, and 6 showed growth inhibitory effects against Digitaria ciliaris. Conversely, treatment with compounds 5, 6, 7, 9, and 10 stimulated elongation activity toward the root of Lactuca sativa. These data expand the repertoire of new ß-resorcylic acid derivatives that may function as lead compounds in the synthesis of new agrochemical agents.


Assuntos
Agroquímicos/farmacologia , Ascomicetos/química , Digitaria/efeitos dos fármacos , Hidroxibenzoatos/farmacologia , Lactuca/efeitos dos fármacos , Agroquímicos/química , Agroquímicos/isolamento & purificação , Digitaria/crescimento & desenvolvimento , Hidroxibenzoatos/química , Hidroxibenzoatos/isolamento & purificação , Lactuca/crescimento & desenvolvimento , Estrutura Molecular , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Estereoisomerismo
11.
Molecules ; 26(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808719

RESUMO

Rare sugars are monosaccharides with a limited availability in the nature and almost unknown biological functions. The use of industrial enzymatic and microbial processes greatly reduced their production costs, making research on these molecules more accessible. Since then, the number of studies on their medical/clinical applications grew and rare sugars emerged as potential candidates to replace conventional sugars in human nutrition thanks to their beneficial health effects. More recently, the potential use of rare sugars in agriculture was also highlighted. However, overviews and critical evaluations on this topic are missing. This review aims to provide the current knowledge about the effects of rare sugars on the organisms of the farming ecosystem, with an emphasis on their mode of action and practical use as an innovative tool for sustainable agriculture. Some rare sugars can impact the plant growth and immune responses by affecting metabolic homeostasis and the hormonal signaling pathways. These properties could be used for the development of new herbicides, plant growth regulators and resistance inducers. Other rare sugars also showed antinutritional properties on some phytopathogens and biocidal activity against some plant pests, highlighting their promising potential for the development of new sustainable pesticides. Their low risk for human health also makes them safe and ecofriendly alternatives to agrochemicals.


Assuntos
Agroquímicos , Proteção de Cultivos , Ecossistema , Monossacarídeos , Desenvolvimento Vegetal/efeitos dos fármacos , Agroquímicos/química , Agroquímicos/farmacologia , Monossacarídeos/química , Monossacarídeos/farmacologia
12.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361731

RESUMO

Strigolactones (SLs) are a class of sesquiterpenoid plant hormones that play a role in the response of plants to various biotic and abiotic stresses. When released into the rhizosphere, they are perceived by both beneficial symbiotic mycorrhizal fungi and parasitic plants. Due to their multiple roles, SLs are potentially interesting agricultural targets. Indeed, the use of SLs as agrochemicals can favor sustainable agriculture via multiple mechanisms, including shaping root architecture, promoting ideal branching, stimulating nutrient assimilation, controlling parasitic weeds, mitigating drought and enhancing mycorrhization. Moreover, over the last few years, a number of studies have shed light onto the effects exerted by SLs on human cells and on their possible applications in medicine. For example, SLs have been demonstrated to play a key role in the control of pathways related to apoptosis and inflammation. The elucidation of the molecular mechanisms behind their action has inspired further investigations into their effects on human cells and their possible uses as anti-cancer and antimicrobial agents.


Assuntos
Antineoplásicos/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Lactonas/farmacologia , Micorrizas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Plantas/metabolismo , Sesquiterpenos/farmacologia , Adaptação Fisiológica , Agricultura/métodos , Agroquímicos/isolamento & purificação , Agroquímicos/metabolismo , Agroquímicos/farmacologia , Antibacterianos/biossíntese , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/isolamento & purificação , Compostos Heterocíclicos com 3 Anéis/metabolismo , Humanos , Inflamação/prevenção & controle , Lactonas/isolamento & purificação , Lactonas/metabolismo , Micorrizas/química , Neoplasias/tratamento farmacológico , Patentes como Assunto , Reguladores de Crescimento de Plantas/biossíntese , Reguladores de Crescimento de Plantas/isolamento & purificação , Plantas/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/metabolismo , Estresse Fisiológico , Controle de Plantas Daninhas/métodos
13.
Med Mycol ; 58(1): 47-53, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30888411

RESUMO

The chemical control of pests and weeds is employed to improve crop production and the quality of agricultural products. The intensive use of pesticides, however, may cause environmental contamination, thus altering microbial communities. Cryptococcus gattii is an environmental yeast and the causative agent of cryptococcosis in both humans and animals. Up to this day, the effects of agrochemicals on human pathogens living in nature are still widely unknown. In this work, we analyzed the susceptibility of C. gattii to nonfungicide agrochemicals (herbicides and insecticides). Microdilution and drug-combination susceptibility tests were performed for the herbicides flumioxazin (FLX), glyphosate (GLY), isoxaflutole (ISO), pendimethalin (PEND), and also for the insecticide fipronil (FIP). Moreover, these compounds were combined with the clinical antifungals amphotericin B and fluconazole. The MIC values found for the agrochemicals were the following: < 16 µg/ml, for flumioxazin; 128 to 256 µg/ml, for FIP, ISO, and PEND; and >256 µg/ml, for GLY. Synergistic and antagonistic interactions, depending on the strain and concentration tested, were also observed. All strains had undergone adaptation to increasing levels of agrochemicals, in order to select the less susceptible subpopulations. During this process, one C. gattii strain (196 L/03) tolerated high concentrations (50 to 900 µg/ml) of all pesticides assessed. Subsequently, the strain adapted to flumioxazin, isoxaflutole and pendimethalin showed a reduction in the susceptibility to agrochemicals and clinical antifungals, suggesting the occurrence of cross-resistance. Our data point to the risk of exposing C. gattii to agrochemicals existing in the environment, once it might impact the susceptibility of clinical antifungals.


Assuntos
Agroquímicos/farmacologia , Cryptococcus gattii/efeitos dos fármacos , Farmacorresistência Fúngica , Antifúngicos/farmacologia , Cryptococcus gattii/patogenicidade , Combinação de Medicamentos , Herbicidas/farmacologia , Inseticidas/farmacologia , Testes de Sensibilidade Microbiana
14.
Bioorg Med Chem ; 28(10): 115471, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32253096

RESUMO

An overview is given of the significance of multicomponent reactions in the synthesis of agrochemicals. The most important applications of multicomponent condensations, such as the Biginelli reaction, Bucherer-Bergs reaction, Hantzsch dihydropyridine synthesis, Kabachnik-Fields reaction, Mannich reaction, Passerini reaction, Petasis reaction, Strecker reaction, Ugi reaction and Willgerodt-Kindler reaction, to the synthesis of herbicidally, fungicidally and insecticidally active compounds are presented. Also the mode of action and biological activity of these multicomponent reaction products are reported.


Assuntos
Agroquímicos/farmacologia , Antifúngicos/farmacologia , Di-Hidropiridinas/farmacologia , Inseticidas/farmacologia , Agroquímicos/síntese química , Agroquímicos/química , Alternaria/efeitos dos fármacos , Animais , Antifúngicos/síntese química , Antifúngicos/química , Proteção de Cultivos , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/química , Helminthosporium/efeitos dos fármacos , Inseticidas/síntese química , Inseticidas/química , Estrutura Molecular , Spodoptera/efeitos dos fármacos
15.
Mar Drugs ; 18(2)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979232

RESUMO

Microbial co-cultivation is employed for awakening silent biosynthetic gene clusters (BGCs) to enhance chemical diversity. However, the selection of appropriate partners for co-cultivation remains a challenge. Furthermore, competitive interactions involving the suppression of BGCs or upregulation of known, functional metabolite(s) during co-cultivation efforts is also common. Herein, we performed an alternative approach for targeted selection of the best co-cultivation pair. Eight marine sediment-derived fungi were classified as strong or weak, based on their anti-phytopathogenic potency. The fungi were co-cultured systematically and analyzed for their chemical profiles and anti-phytopathogenic activity. Based on enhanced bioactivity and a significantly different metabolite profile including the appearance of a co-culture specific cluster, the co-culture of Plenodomus influorescens (strong) and Pyrenochaeta nobilis (weak) was prioritized for chemical investigation. Large-scale co-cultivation resulted in isolation of five polyketide type compounds: two 12-membered macrolides, dendrodolide E (1) and its new analog dendrodolide N (2), as well as two rare azaphilones spiciferinone (3) and its new analog 8a-hydroxy-spiciferinone (4). A well-known bis-naphtho-γ-pyrone type mycotoxin, cephalochromin (5), whose production was specifically enhanced in the co-culture, was also isolated. Chemical structures of compounds 1-5 were elucidated by NMR, HRMS and [] analyses. Compound 5 showed the strongest anti-phytopathogenic activity against Xanthomonas campestris and Phytophthora infestans with IC50 values of 0.9 and 1.7 µg/mL, respectively.


Assuntos
Agroquímicos/metabolismo , Organismos Aquáticos/metabolismo , Produtos Biológicos/metabolismo , Fungos/metabolismo , Microbiologia Industrial/métodos , Agroquímicos/química , Agroquímicos/isolamento & purificação , Agroquímicos/farmacologia , Organismos Aquáticos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Técnicas de Cocultura/métodos , Fungos/isolamento & purificação , Sedimentos Geológicos/microbiologia , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Metabolômica , Phytophthora infestans/efeitos dos fármacos , Policetídeos/isolamento & purificação , Policetídeos/metabolismo , Projetos de Pesquisa , Xanthomonas campestris/efeitos dos fármacos
16.
Molecules ; 25(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244664

RESUMO

The rise in the World's food demand in line with the increase of the global population has resulted in calls for more research on the production of sustainable food and sustainable agriculture. A natural biopolymer, chitosan, coupled with nanotechnology could offer a sustainable alternative to the use of conventional agrochemicals towards a safer agriculture industry. Here, we review the potential of chitosan-based agronanochemicals as a sustainable alternative in crop protection against pests, diseases as well as plant growth promoters. Such effort offers better alternatives: (1) the existing agricultural active ingredients can be encapsulated into chitosan nanocarriers for the formation of potent biocides against plant pathogens and pests; (2) the controlled release properties and high bioavailability of the nanoformulations help in minimizing the wastage and leaching of the agrochemicals' active ingredients; (3) the small size, in the nanometer regime, enhances the penetration on the plant cell wall and cuticle, which in turn increases the argochemical uptake; (4) the encapsulation of agrochemicals in chitosan nanocarriers shields the toxic effect of the free agrochemicals on the plant, cells and DNA, thus, minimizing the negative impacts of agrochemical active ingredients on human health and environmental wellness. In addition, this article also briefly reviews the mechanism of action of chitosan against pathogens and the elicitations of plant immunity and defense response activities of chitosan-treated plants.


Assuntos
Agroquímicos/química , Quitosana/química , Proteção de Cultivos , Produtos Agrícolas , Nanotecnologia , Agroquímicos/administração & dosagem , Agroquímicos/efeitos adversos , Agroquímicos/farmacologia , Biopolímeros , Portadores de Fármacos , Avaliação do Impacto na Saúde , Humanos , Nanoestruturas , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/farmacologia , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia
17.
J Sci Food Agric ; 100(13): 4987-4994, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32597512

RESUMO

BACKGROUND: Quinoa (Chenopodium quinoa Willd) is an Andean original pseudocereal with high nutritional value. During quinoa processing, large amounts of saponin-rich husks byproducts are obtained. Quinoa saponins, which are biologically active, could be used for various agriculture purposes. Silver nanoparticles have increasingly attracted attention for the management of crop diseases in agriculture. In this work, silver nanoparticles are synthesized by a sustainable and green method, using quinoa husk saponin extract (QE) to evaluate their potential for application in agriculture as biostimulants. RESULTS: Quinoa extract was obtained and characterized by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Sixteen saponin congeners were successfully identified and quantified. The QE obtained was used as a reducing agent for silver ions to synthesize silver nanoparticles (QEAgNPs) under mild conditions. The morphology, particle size, and stability of Ag nanoparticles were investigated by transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-visible), energy-dispersive X-ray (EDS), zeta potential, and Fourier transform infrared spectroscopy with attenuated total reflection (FTIR-ATR). Ultraviolet-visible spectroscopy measurements confirmed the formation of silver nanoparticles in the presence of QE, with estimated particle sizes in a range between 5 and 50 nm. According to the zeta potential values, highly stable nanoparticles were formed. The QE and QEAgNPs (200-1000 µg/mL) were also tested in radish seed bioassay to evaluate their phytotoxicity. The seed germination assays revealed that QEAgNPs possessed a phytostimulant effect on radish seeds in a dose-dependent manner, and no phytotoxicity was observed for both QE and QEAgNPs. CONCLUSION: Silver nanoparticles obtained by a so-called 'green' method could be considered as good candidates for application in the agricultural sector for seed treatment, or as foliar sprays and plant-growth-promoters. © 2020 Society of Chemical Industry.


Assuntos
Agroquímicos/química , Chenopodium quinoa/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Saponinas/química , Prata/química , Resíduos/análise , Agroquímicos/farmacologia , Composição de Medicamentos , Raphanus/efeitos dos fármacos , Raphanus/crescimento & desenvolvimento , Saponinas/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Rev Argent Microbiol ; 52(1): 43-49, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31178238

RESUMO

Dark septate endophytes (DSE) are a heterogeneous group of fungi, mostly belonging to the Phylum Ascomycota, that are involved in a mutualistic symbiosis with plant roots. The aim of this study is to evaluate the behavior of two strains of DSE isolated from wheat roots of two cropping areas in the province of Buenos Aires, Argentina, against some agrochemicals. Of all the isolates obtained, two strains were identified as Alternaria alternata and Cochliobolus sp. These DSE were found to be tolerant to glyphosate, carbendazim and cypermethrin when evaluated at the recommended agronomic dose (AD), 2 AD and, in some cases, 10 AD. This work contributes to the study of the biology of this group of fungi and their tolerance in the presence of xenobiotics widely used in agriculture.


Assuntos
Agroquímicos/farmacologia , Alternaria/efeitos dos fármacos , Ascomicetos/efeitos dos fármacos , Endófitos/efeitos dos fármacos , Antifúngicos/farmacologia , Argentina , Benzimidazóis/farmacologia , Carbamatos/farmacologia , Farmacorresistência Fúngica , Fungicidas Industriais/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Inseticidas/farmacologia , Raízes de Plantas/microbiologia , Piretrinas/farmacologia , Triticum , Glifosato
19.
Anal Chem ; 91(18): 11723-11730, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31424922

RESUMO

A low-cost second harmonic generation (SHG) microscope was constructed, and, for the first time, SHG microscopy was used for imaging agrochemical materials directly on the surface of common commercial crop leaves. The microscope uses a chromatically fixed (1560 nm) femtosecond fiber laser, a commercial 2D galvanometer mirror system, and a PCIe digital oscilloscope card, which together kept total instrument costs under $40 000 (USD), a significant decrease in cost and complexity from common systems (commercial and home-built) using tunable lasers and faster beam-scanning architectures. The figures of merit of the low-cost system still enabled a variety of measurements of agrochemical materials. Following confirmation of largely background-free SHG imaging of common crop leaves (soybean, maize, wheatgrass), SHG microscopy was used to image active ingredient crystallization after solution-phase deposition directly on the leaf surface, including at industrially relevant active ingredient concentrations (<0.05% w/w). Crystallization was also followed in real-time, with differences in crystallization time observed for different application procedures (spraying vs single droplet deposition). A strong dependency of active ingredient crystallization on the substrate was found, with an increased crystallization tendency observed on leaves vs on glass slides. Different crystal habits for the same active ingredient were also observed on different plant species. Finally, a model extended-release formulation was prepared, with a decrease in active ingredient crystallinity observed vs solution-phase deposition. These collective results demonstrate the need for making diagnostic measurements directly on the leaf surface and could help inform the next generation of pesticide products that ensure optimized agricultural output for a growing world population.


Assuntos
Agroquímicos/química , Folhas de Planta/química , Microscopia de Geração do Segundo Harmônico/instrumentação , Agroquímicos/farmacologia , Cristalização , Desenho de Equipamento , Vidro , Griseofulvina/química , Griseofulvina/farmacologia , Lasers , Limite de Detecção , Praguicidas/química , Praguicidas/farmacologia , Folhas de Planta/efeitos dos fármacos , Rotenona/química , Rotenona/farmacologia , Microscopia de Geração do Segundo Harmônico/economia , Glycine max , Triticum , Zea mays
20.
Plant Physiol ; 173(4): 2356-2369, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28193765

RESUMO

Abscisic acid (ABA), the most important stress-induced phytohormone, regulates seed dormancy, germination, plant senescence, and the abiotic stress response. ABA signaling is repressed by group A type 2C protein phosphatases (PP2Cs), and then ABA binds to its receptor of the ACTIN RESISTANCE1 (PYR1), PYR1-LIKE (PYL), and REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) family, which, in turn, inhibits PP2Cs and activates downstream ABA signaling. The agonist/antagonist of ABA receptors have the potential to reveal the ABA signaling machinery and to become lead compounds for agrochemicals; however, until now, no broad-spectrum antagonists of ABA receptors blocking all PYR/PYL-PP2C interactions have been identified. Here, using chemical genetics screenings, we identified ABA ANTAGONIST1 (AA1), the first broad-spectrum antagonist of ABA receptors in Arabidopsis (Arabidopsis thaliana). Physiological analyses revealed that AA1 is sufficiently active to block ABA signaling. AA1 interfered with all the PYR/PYL-HAB1 interactions, and the diminished PYR/PYL-HAB1 interactions, in turn, restored the activity of HAB1. AA1 binds to all 13 members. Molecular dockings, the non-AA1-bound PYL2 variant, and competitive binding assays demonstrated that AA1 enters into the ligand-binding pocket of PYL2. Using AA1, we tested the genetic relationships of ABA receptors with other core components of ABA signaling, demonstrating that AA1 is a powerful tool with which to sidestep this genetic redundancy of PYR/PYLs. In addition, the application of AA1 delays leaf senescence. Thus, our study developed an efficient broad-spectrum antagonist of ABA receptors and demonstrated that plant senescence can be chemically controlled through AA1, with a simple and easy-to-synthesize structure, allowing its availability and utility as a chemical probe synthesized in large quantities, indicating its potential application in agriculture.


Assuntos
Ácido Abscísico/metabolismo , Receptores de Superfície Celular/metabolismo , Ácido Abscísico/farmacologia , Agroquímicos/química , Agroquímicos/farmacologia , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plântula/genética , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Tiofenos/química , Tiofenos/farmacologia , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA