Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.842
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(7): e2206762120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745792

RESUMO

While there has been considerable success in the three-dimensional bioprinting of relatively large standalone filamentous tissues, the fabrication of solid fibers with ultrafine diameters or those cannular featuring ultrathin walls remains a particular challenge. Here, an enabling strategy for (bio)printing of solid and hollow fibers whose size ranges could be facilely adjusted across a broad spectrum, is reported, using an aqueous two-phase embedded (bio)printing approach combined with specially designed cross-linking and extrusion methods. The generation of standalone, alginate-free aqueous architectures using this aqueous two-phase strategy allowed freeform patterning of aqueous bioinks, such as those composed of gelatin methacryloyl, within the immiscible aqueous support bath of poly(ethylene oxide). Our (bio)printing strategy revealed the fabrication of standalone solid or cannular structures with diameters as small as approximately 3 or 40 µm, respectively, and wall thicknesses of hollow conduits down to as thin as <5 µm. With cellular functions also demonstrated, we anticipate the methodology to serve as a platform that may satisfy the needs for the different types of potential biomedical and other applications in the future, especially those pertaining to cannular tissues of ultrasmall diameters and ultrathin walls used toward regenerative medicine and tissue model engineering.


Assuntos
Alginatos , Bioimpressão , Alginatos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Hidrogéis/química , Gelatina/química , Bioimpressão/métodos , Impressão Tridimensional
2.
Proc Natl Acad Sci U S A ; 119(39): e2123156119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122212

RESUMO

Straightforward manufacturing pathways toward large-scale, uniformly layered composites may enable the next generation of materials with advanced optical, thermal, and mechanical properties. Reaction-diffusion systems are attractive candidates to this aim, but while layered composites theoretically could spontaneously arise from reaction-diffusion, in practice randomly oriented patches separated by defects form, yielding nonuniformly patterned materials. A propagating reaction front can prevent such nonuniform patterning, as is the case for Liesegang processes, in which diffusion drives a reaction front to produce layered precipitation patterns. However, while diffusion is crucial to control patterning, it slows down transport of reactants to the front and results in a steady increase of the band spacing as the front advances. Here, we circumvent these diffusive limitations by embedding the Liesegang process in mechanically responsive hydrogels. The coupling between a moving reaction front and hydrogel contraction induces the formation of a self-regulated transport channel that ballistically carries reactants toward the area where patterning occurs. This ensures rapid and uniform patterning. Specifically, large-scale ([Formula: see text]5-cm) uniform banding patterns are produced with tunable band distance (d = 60 to 160 µm) of silver dichromate crystals inside responsive gelatin-alginate hydrogels. The generality and applicability of our mechanoreaction-diffusion strategy are demonstrated by forming patterns of precipitates in significantly smaller microscopic banding patterns (d = 10 to 30 µm) that act as self-organized diffraction gratings. By circumventing the inherent limitations of diffusion, our strategy unlocks the potential of reaction-diffusion processes for the manufacturing of uniformly layered materials.


Assuntos
Hidrogéis , Manufaturas , Alginatos/química , Cromatos/química , Difusão , Gelatina/química , Hidrogéis/química , Prata/química
3.
Nano Lett ; 24(12): 3801-3810, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477714

RESUMO

The effectiveness of various cancer therapies for solid tumors is substantially limited by the highly hypoxic tumor microenvironment (TME). Here, a microalgae-integrated living hydrogel (ACG gel) is developed to concurrently enhance hypoxia-constrained tumor starvation therapy and immunotherapy. The ACG gel is formed in situ following intratumoral injection of a biohybrid fluid composed of alginate, Chlorella sorokiniana, and glucose oxidase, facilitated by the crossing-linking between divalent ions within tumors and alginate. The microalgae Chlorella sorokiniana embedded in ACG gel generate abundant oxygen through photosynthesis, enhancing glucose oxidase-catalyzed glucose consumption and shifting the TME from immunosuppressive to immunopermissive status, thus reducing the tumor cell energy supply and boosting antitumor immunity. In murine 4T1 tumor models, the ACG gel significantly suppresses tumor growth and effectively prevents postoperative tumor recurrence. This study, leveraging microalgae as natural oxygenerators, provides a versatile and universal strategy for the development of oxygen-dependent tumor therapies.


Assuntos
Chlorella , Microalgas , Neoplasias , Animais , Camundongos , Hidrogéis , Glucose Oxidase , Fotossíntese , Hipóxia , Oxigênio , Imunoterapia , Alginatos , Microambiente Tumoral
4.
Nano Lett ; 24(26): 7895-7902, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38913401

RESUMO

On-demand engineering of cell membrane receptors to nongenetically intervene in cellular behaviors is still a challenge. Herein, a membraneless enzyme biofuel cell-based self-powered biosensor (EBFC-SPB) was developed for autonomously and precisely releasing Zn2+ to initiate DNAzyme-based reprogramming of cell membrane receptors, which further mediates signal transduction to regulate cellular behaviors. The critical component of EBFC-SPB is a hydrogel film on a biocathode which is prepared using a Fe3+-cross-linked alginate hydrogel film loaded with Zn2+ ions. In the working mode in the presence of glucose/O2, the hydrogel is decomposed due to the reduction of Fe3+ to Fe2+, accompanied by rapid release of Zn2+ to specifically activate a Zn2+-responsive DNAzyme nanodevice on the cell surface, leading to the dimerization of homologous or nonhomologous receptors to promote or inhibit cell proliferation and migration. This EBFC-SPB platform provides a powerful "sensing-actuating-treating" tool for chemically regulating cellular behaviors, which holds great promise in precision biomedicine.


Assuntos
Técnicas Biossensoriais , Zinco , Zinco/química , Zinco/metabolismo , Receptores de Superfície Celular/metabolismo , DNA Catalítico/metabolismo , DNA Catalítico/química , Humanos , Hidrogéis/química , Proliferação de Células/efeitos dos fármacos , Fontes de Energia Bioelétrica , Alginatos/química , Movimento Celular/efeitos dos fármacos
5.
Nano Lett ; 24(19): 5894-5903, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709593

RESUMO

The combination of radiotherapy (RT) and immunotherapy shows promise in improving the clinical treatment of solid tumors; however, it faces challenges of low response rates and systemic toxicity. Herein, an implantable alginate/collagen hydrogel encapsulating C-C motif ligand 21 (CCL21)-expressing dendritic cells (CCL21-DCs@gel) was developed to potentiate the systemic antitumor effects of RT. The hydrogel functioned as a suitable reservoir for in vivo culture and proliferation of CCL21-DCs, thereby enabling sustained CCL21 release. The local CCL21 gradient induced by CCL21-DCs@gel significantly enhanced the efficacy of RT in suppressing primary tumor growth and inhibiting distant metastasis across several mouse models. Furthermore, the combination of RT with CCL21-DCs@gel provided complete prophylactic protection to mice. Mechanistic investigations revealed that CCL21-DCs@gel potentiated RT by promoting tumor lymphangiogenesis and attracting immune cell infiltration into the tumor. Collectively, these results suggest that CCL21-DCs@gel is a promising adjunct to RT for effectively eradicating tumors and preventing tumor recurrence.


Assuntos
Quimiocina CCL21 , Hidrogéis , Animais , Humanos , Camundongos , Alginatos/química , Linhagem Celular Tumoral , Colágeno/química , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Hidrogéis/química , Imunoterapia/métodos , Neoplasias/radioterapia , Neoplasias/patologia , Neoplasias/imunologia
6.
Nano Lett ; 24(29): 9017-9026, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39007530

RESUMO

The development of in situ tumor vaccines offers promising prospects for cancer treatment. Nonetheless, the generation of plenary autologous antigens in vivo and their codelivery to DC cells along with adjuvants remains a significant challenge. Herein, we developed an in situ tumor vaccine using a supramolecular nanoparticle/hydrogel composite (ANPMTO/ALCD) and a deformable nanoadjuvant (PPER848). The ANPMTO/ALCD composite consisted of ß-cyclodextrin-decorated alginate (Alg-g-CD) and MTO-encapsulated adamantane-decorated nanoparticles (ANPMTO) through supramolecular interaction, facilitating the long-term and sustained production of plenary autologous antigens, particularly under a 660 nm laser. Simultaneously, the produced autologous antigens were effectively captured by nanoadjuvant PPER848 and subsequently transported to lymph nodes and DC cells, benefiting from its optimized size and deformability. This in situ tumor vaccine can trigger a robust antitumor immune response and demonstrate significant therapeutic efficacy in inhibiting tumor growth, suppressing tumor metastasis, and preventing postoperative recurrence, offering a straightforward approach to programming in situ tumor vaccines.


Assuntos
Adjuvantes Imunológicos , Vacinas Anticâncer , Imunoterapia , Nanopartículas , Vacinas Anticâncer/química , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Animais , Camundongos , Imunoterapia/métodos , Nanopartículas/química , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/uso terapêutico , Adjuvantes Imunológicos/farmacologia , Hidrogéis/química , Humanos , Linhagem Celular Tumoral , Células Dendríticas/imunologia , beta-Ciclodextrinas/química , Neoplasias/terapia , Neoplasias/imunologia , Alginatos/química , Adamantano/química , Adamantano/uso terapêutico
7.
J Biol Chem ; 299(2): 102854, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592931

RESUMO

Carbohydrate-binding modules (CBMs) are the noncatalytic modules that assist functions of the catalytic modules in carbohydrate-active enzymes, and they are usually discrete structural domains in larger multimodular enzymes. CBMs often occur in tandem in different alginate lyases belonging to the CBM families 13, 16, and 32. However, none of the currently known CBMs in alginate lyases specifically bind to an internal alginate chain. In our investigation of the multidomain alginate lyase Dp0100 carrying several ancillary domains, we identified an alginate-binding domain denoted TM6-N4 using protein truncation analysis. The structure of this CBM domain was determined at 1.35 Å resolution. TM6-N4 exhibited an overall ß-sandwich fold architecture with two antiparallel ß-sheets. We identified an extended binding groove in the CBM using site-directed mutagenesis, docking, and surface electrostatic potential analysis. Affinity analysis revealed that residues of Lys10, Lys22, Lys25, Lys27, Lys31, Arg36, and Tyr159 located on the bottom or the wall of the shallow groove are responsible for alginate binding, and isothermal titration calorimetry analyses indicated that the binding cleft consists of six subsites for sugar recognition. This substrate binding pattern is typical for type B CBM, and it represents the first CBM domain that specifically binds internal alginate chain. Phylogenetic analysis supports that TM6-N4 constitutes the founding member of a new CBM family denoted as CBM96. Our reported structure not only facilitates the investigation of the CBM-alginate ligand recognition mechanism but also inspires the utilization of the CBM domain in biotechnical applications.


Assuntos
Alginatos , Carboidratos , Humanos , Alginatos/química , Calorimetria , Carboidratos/química , Cristalografia por Raios X , Mutagênese Sítio-Dirigida , Filogenia , Ligação Proteica
8.
J Biol Chem ; 299(11): 105314, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797696

RESUMO

Enzymatic modifications of bacterial exopolysaccharides enhance immune evasion and persistence during infection. In the Gram-negative opportunistic pathogen Pseudomonas aeruginosa, acetylation of alginate reduces opsonic killing by phagocytes and improves reactive oxygen species scavenging. Although it is well known that alginate acetylation in P. aeruginosa requires AlgI, AlgJ, AlgF, and AlgX, how these proteins coordinate polymer modification at a molecular level remains unclear. Here, we describe the structural characterization of AlgF and its protein interaction network. We characterize direct interactions between AlgF and both AlgJ and AlgX in vitro and demonstrate an association between AlgF and AlgX, as well as AlgJ and AlgI, in P. aeruginosa. We determine that AlgF does not exhibit acetylesterase activity and is unable to bind to polymannuronate in vitro. Therefore, we propose that AlgF functions to mediate protein-protein interactions between alginate acetylation enzymes, forming the periplasmic AlgJFXK (AlgJ-AlgF-AlgX-AlgK) acetylation and export complex required for robust biofilm formation.


Assuntos
Alginatos , Pseudomonas aeruginosa , Acetilação , Alginatos/química , Proteínas de Bactérias/metabolismo , Biofilmes , Periplasma/metabolismo , Processamento de Proteína Pós-Traducional , Pseudomonas aeruginosa/metabolismo
9.
J Biol Chem ; 299(7): 104849, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224964

RESUMO

In microbial biofilms, bacterial cells are encased in a self-produced matrix of polymers (e.g., exopolysaccharides) that enable surface adherence and protect against environmental stressors. For example, the wrinkly spreader phenotype of Pseudomonas fluorescens colonizes food/water sources and human tissue to form robust biofilms that can spread across surfaces. This biofilm largely consists of bacterial cellulose produced by the cellulose synthase proteins encoded by the wss (WS structural) operon, which also occurs in other species, including pathogenic Achromobacter species. Although phenotypic mutant analysis of the wssFGHI genes has previously shown that they are responsible for acetylation of bacterial cellulose, their specific roles remain unknown and distinct from the recently identified cellulose phosphoethanolamine modification found in other species. Here, we have purified the C-terminal soluble form of WssI from P. fluorescens and Achromobacter insuavis and demonstrated acetylesterase activity with chromogenic substrates. The kinetic parameters (kcat/KM values of 13 and 8.0 M-1 s-1, respectively) indicate that these enzymes are up to four times more catalytically efficient than the closest characterized homolog, AlgJ from the alginate synthase. Unlike AlgJ and its cognate alginate polymer, WssI also demonstrated acetyltransferase activity onto cellulose oligomers (e.g., cellotetraose to cellohexaose) with multiple acetyl donor substrates (p-nitrophenyl acetate, 4-methylumbelliferyl acetate, and acetyl-CoA). Finally, a high-throughput screen identified three low micromolar WssI inhibitors that may be useful for chemically interrogating cellulose acetylation and biofilm formation.


Assuntos
Acetiltransferases , Biofilmes , Humanos , Acetiltransferases/metabolismo , Celulose/metabolismo , Polímeros , Alginatos/metabolismo , Proteínas de Bactérias/metabolismo
10.
J Gen Virol ; 105(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656455

RESUMO

Porcine epidemic diarrhea (PED) is a serious disease in piglets that leads to high mortality. An effective measure that provides higher IgA levels in the intestine and milk is required to decrease losses. Porcine epidemic diarrhea virus (PEDV) was dissolved in calcium alginate (Alg) and combined with chitosan (CS) via electrostatic interactions between cationic chitosan and anionic alginate to create a porous gel (Alg-CS+PEDV). The gel was used to immunize mice orally or in combination with subcutaneous injections of inactivated PEDV vaccine. At 12 and 24 days after immunization, levels of IgA and IgG in Alg-CS+PEDV were higher than with normal PEDV oral administration. At 24 days after immunization, the concentration of IFN-γ in Alg-CS+PEDV was higher than with normal PEDV oral administration. Furthermore, oral administration combining subcutaneous immunization induced higher levels of IgG and IgA than oral administration alone. Our study provides a new method for the preparation and administration of oral vaccines to achieve enhanced mucosal immunity against PEDV.


Assuntos
Alginatos , Anticorpos Antivirais , Quitosana , Imunidade nas Mucosas , Imunoglobulina A , Imunoglobulina G , Vírus da Diarreia Epidêmica Suína , Vacinas Virais , Animais , Administração Oral , Vírus da Diarreia Epidêmica Suína/imunologia , Alginatos/administração & dosagem , Quitosana/administração & dosagem , Camundongos , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Anticorpos Antivirais/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Suínos , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Feminino , Géis/administração & dosagem , Camundongos Endogâmicos BALB C , Interferon gama/imunologia , Ácido Glucurônico/administração & dosagem , Ácidos Hexurônicos/administração & dosagem
11.
Environ Microbiol ; 26(3): e16594, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418376

RESUMO

The availability of alginate, an abundant macroalgal polysaccharide, induces compositional and functional responses among marine microbes, but these dynamics have not been characterized across the Pacific Ocean. We investigated alginate-induced compositional and functional shifts (e.g., heterotrophic production, glucose turnover, hydrolytic enzyme activities) of microbial communities in the South Subtropical, Equatorial, and Polar Frontal North Pacific in mesocosms. We observed that shifts in response to alginate were site-specific. In the South Subtropical Pacific, prokaryotic cell counts, glucose turnover, and peptidase activities changed the most with alginate addition, along with the enrichment of the widest range of particle-associated taxa (161 amplicon sequence variants; ASVs) belonging to Alteromonadaceae, Rhodobacteraceae, Phormidiaceae, and Pseudoalteromonadaceae. Some of these taxa were detected at other sites but only enriched in the South Pacific. In the Equatorial Pacific, glucose turnover and heterotrophic prokaryotic production increased most rapidly; a single Alteromonas taxon dominated (60% of the community) but remained low (<2%) elsewhere. In the North Pacific, the particle-associated community response to alginate was gradual, with a more limited range of alginate-enriched taxa (82 ASVs). Thus, alginate-related ecological and biogeochemical shifts depend on a combination of factors that include the ability to utilize alginate, environmental conditions, and microbial interactions.


Assuntos
Alginatos , Alteromonadaceae , Oceano Pacífico , Células Procarióticas , Glucose , Água do Mar/microbiologia
12.
Anal Chem ; 96(21): 8807-8813, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38714342

RESUMO

Although engineering bacterial sensors have outstanding advantages in reflecting the actual bioavailability and continuous monitoring of pollutants, the potential escape risk of engineering microorganisms and lower detection sensitivity have always been one of the biggest challenges limiting their wider application. In this study, a core-shell hydrogel bead with functionalized silica as the core and alginate-polyacrylamide as the shell have been developed not only to realize zero escape of engineered bacteria but also to maintain cell activity in harsh environments, such as extremely acidic/alkaline pH, high salt concentration, and strong pressure. Particularly, after combining the selective preconcentration toward pollutants by functionalized core and the positive feedback signal amplification of engineering bacteria, biosensors have realized two-stage signal amplification, significantly improving the detection sensitivity and reducing the detection limit. In addition, this strategy was actually applied to the detection of As(III) and As(V) coexisting in environmental samples, and the detection sensitivity was increased by 3.23 and 4.39 times compared to sensors without signal amplification strategy, respectively, and the detection limits were as low as 0.39 and 0.86 ppb, respectively.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Alginatos/química , Dióxido de Silício/química , Resinas Acrílicas/química , Limite de Detecção , Hidrogéis/química
13.
BMC Plant Biol ; 24(1): 185, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475707

RESUMO

BACKGROUND: One of the most widely recognized biostimulators of plant development; is oligoalginate, which regulates the biological processes of plants and was used in horticultural fields as a plant growth regulator. The plan of the current research was to study, however, the foliar application of un-irradiated and irradiated Na-alginate (UISA and ISA) to improve the growth, physiological activity, and other active components of the Egyptian iceberg lettuce plant. Degraded Na-alginate is equipped with exposure of sodium alginate in its solid state to gamma-rays at different dose levels (0.0, 25, 50, 75, and 100 kGy). The characterization of the oligo-alginates achieved by γ-radiation deprivation at different dose levels was performed by FTIR, XRD, TGA, SEM, and TEM. Different concentrations of irradiated sodium alginate at dose levels of 100 kGy (200, 400, 600, and 800 ppm, as well as deionized water used as a control) were sprayed with a hand sprayer every week after transplanting the iceberg lettuce seedlings in the field until the harvest stage. Morphological traits were evaluated, as well as pigments, ascorbic acid, phenols, flavonoids, soluble proteins, and antioxidant activity. RESULTS: Irradiated Na-alginate resulted in the depolymerization of Na-alginate into small molecular-weight oligosaccharides, and the best dose to use was 100 kGy. Certain chemical modifications in the general structure were observed by FTIR analysis. Two absorbed bands at 3329 cm-1 and 1599 cm-1, were recognized that are assigned to O-H and C-O stretching, respectively, and peaks achieved at 1411 cm-1 represent the COO-stretching group connected to the sodium ion. The peak obtained at 1028 cm-1 was owing to the stretching vibration of C-O. The results of TGA provided that the minimum weight reminder was in the ISA at 100 kGy (28.12%) compared to the UISA (43.39%). The images of TEM pointed out that the Na-alginate was globular in shape, with the particle distribution between 12.8 and 21.7 nm in ISA at 100 kGy. Irradiated sodium alginate caused a noteworthy enhancement in the vegetative growth traits (leaf area, stem length, head weight, and leaf number). By spraying 400 ppm, ISA showed a maximum increase in total pigments (2.209 mg/g FW), ascorbic acid (3.13 mg/g fresh weight), phenols (1.399 mg/g FW), flavonoids (0.775 mg/g FW), and antioxidant activities (82.14. %). Also, there were correlation coefficients (R values) between leaf area, stem length, head weight, and leaf number values with total pigment content, antioxidant activity, total soluble proteins, and ascorbic acid. CONCLUSIONS: The outcomes of the recent investigation demonstrated that the application of spraying irradiated Na-alginate (100 kGy) resulted in an improvement of the considered characters.


Assuntos
Antioxidantes , Fenômenos Biológicos , Antioxidantes/análise , Lactuca , Alginatos/química , Ácido Ascórbico , Flavonoides , Fenóis
14.
Small ; 20(9): e2305951, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37817356

RESUMO

Conductive microfibers play a significant role in the flexibility, stretchability, and conductivity of electronic skin (e-skin). Currently, the fabrication of conductive microfibers suffers from either time-consuming and complex operations or is limited in complex fabrication environments. Thus, it presents a one-step method to prepare conductive hydrogel microfibers based on microfluidics for the construction of ultrastretchable e-skin. The microfibers are achieved with conductive MXene cores and hydrogel shells, which are solidified with the covalent cross-linking between sodium alginate and calcium chloride, and mechanically enhanced by the complexation reaction of poly(vinyl alcohol) and sodium hydroxide. The microfiber conductivities are tailorable by adjusting the flow rate and concentration of core and shell fluids, which is essential to more practical applications in complex scenarios. More importantly, patterned e-skin based on conductive hydrogel microfibers can be constructed by combining microfluidics with 3D printing technology. Because of the great advantages in mechanical and electrical performance of the microfibers, the achieved e-skin shows impressive stretching and sensitivity, which also demonstrate attractive application values in motion monitoring and gesture recognition. These characteristics indicate that the ultrastretchable e-skin based on conductive hydrogel microfibers has great potential for applications in health monitoring, wearable devices, and smart medicine.


Assuntos
Hidrogéis , Pele , Condutividade Elétrica , Eletricidade , Alginatos
15.
Small ; 20(26): e2310283, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38227378

RESUMO

Conventional hydrogel microcapsules often suffer from inadequate mechanical stability, hindering their use. Here, water-cored double-network (DN) hydrogel shells are designed, formed by polyacrylamide and calcium alginate networks using triple-emulsion templates. These DN hydrogel shells offer robust mechanical stability, optical transparency, and a precisely-defined cut-off threshold. The feasibility of this platform is demonstrated through the development of a fluorometric glucose sensor. Glucose oxidase is enclosed within the water core, while a pH-responsive fluorescent dye is incorporated into the DN shells. Glucose diffuses into the core through the DN shells, where the glucose oxidase converts glucose into gluconic acid, leading to pH reduction and a subsequent decrease in fluorescence intensity of DN shells. Additionally, the pH-sensitive colorant dissolved in the medium enables visual pH assessment. Thus, glucose levels can be determined using both fluorometric and colorimetric methods. Notably, the DN shells exhibit exceptional stability, enduring intense mechanical stress and cycles of drying and rehydration without leakage. Moreover, the DN shells act as effective barriers, safeguarding glucose oxidase against proteolysis by large disruptive proteins, like pancreatin. This versatile DN shell platform extends beyond glucose oxidase encapsulation, serving as a foundation for various capsule sensors utilizing enzymes and heterogeneous catalysts.


Assuntos
Glucose Oxidase , Glucose , Hidrogéis , Glucose/análise , Glucose/química , Hidrogéis/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Concentração de Íons de Hidrogênio , Técnicas Biossensoriais/métodos , Alginatos/química , Resinas Acrílicas/química
16.
Appl Environ Microbiol ; 90(5): e0004624, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38563787

RESUMO

Dietary fiber metabolism by gut microorganisms plays important roles in host physiology and health. Alginate, the major dietary fiber of daily diet seaweeds, is drawing more attention because of multiple biological activities. To advance the understanding of alginate assimilation mechanism in the gut, we show the presence of unsaturated alginate oligosaccharides (uAOS)-specific alginate utilization loci (AUL) in human gut microbiome. As a representative example, a working model of the AUL from the gut microorganism Bacteroides clarus was reconstructed from biochemistry and transcriptome data. The fermentation of resulting monosaccharides through Entner-Doudoroff pathway tunes the metabolism of short-chain fatty acids and amino acids. Furthermore, we show that uAOS feeding protects the mice against dextran sulfate sodium-induced acute colitis probably by remodeling gut microbiota and metabolome. IMPORTANCE: Alginate has been included in traditional Chinese medicine and daily diet for centuries. Recently discovered biological activities suggested that alginate-derived alginate oligosaccharides (AOS) might be an active ingredient in traditional Chinese medicine, but how these AOS are metabolized in the gut and how it affects health need more information. The study on the working mechanism of alginate utilization loci (AUL) by the gut microorganism uncovers the role of unsaturated alginate oligosaccharides (uAOS) assimilation in tuning short-chain fatty acids and amino acids metabolism and demonstrates that uAOS metabolism by gut microorganisms results in a variation of cell metabolites, which potentially contributes to the physiology and health of gut.


Assuntos
Alginatos , Microbioma Gastrointestinal , Oligossacarídeos , Alginatos/metabolismo , Oligossacarídeos/metabolismo , Camundongos , Animais , Humanos , Colite/microbiologia , Colite/induzido quimicamente , Camundongos Endogâmicos C57BL , Ácidos Graxos Voláteis/metabolismo , Inflamação/metabolismo , Sulfato de Dextrana , Fibras na Dieta/metabolismo
17.
Appl Environ Microbiol ; 90(2): e0202523, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38259074

RESUMO

Marine bacteria play important roles in the degradation and cycling of algal polysaccharides. However, the dynamics of epiphytic bacterial communities and their roles in algal polysaccharide degradation during kelp decay are still unclear. Here, we performed metagenomic analyses to investigate the identities and predicted metabolic abilities of epiphytic bacterial communities during the early and late decay stages of the kelp Saccharina japonica. During kelp decay, the dominant epiphytic bacterial communities shifted from Gammaproteobacteria to Verrucomicrobia and Bacteroidetes. In the early decay stage of S. japonica, epiphytic bacteria primarily targeted kelp-derived labile alginate for degradation, among which the gammaproteobacterial Vibrionaceae (particularly Vibrio) and Psychromonadaceae (particularly Psychromonas), abundant in alginate lyases belonging to the polysaccharide lyase (PL) families PL6, PL7, and PL17, were key alginate degraders. More complex fucoidan was preferred to be degraded in the late decay stage of S. japonica by epiphytic bacteria, predominantly from Verrucomicrobia (particularly Lentimonas), Pirellulaceae of Planctomycetes (particularly Rhodopirellula), Pontiellaceae of Kiritimatiellota, and Flavobacteriaceae of Bacteroidetes, which depended on using glycoside hydrolases (GHs) from the GH29, GH95, and GH141 families and sulfatases from the S1_15, S1_16, S1_17, and S1_25 families to depolymerize fucoidan. The pathways for algal polysaccharide degradation in dominant epiphytic bacterial groups were reconstructed based on analyses of metagenome-assembled genomes. This study sheds light on the roles of different epiphytic bacteria in the degradation of brown algal polysaccharides.IMPORTANCEKelps are important primary producers in coastal marine ecosystems. Polysaccharides, as major components of brown algal biomass, constitute a large fraction of organic carbon in the ocean. However, knowledge of the identities and pathways of epiphytic bacteria involved in the degradation process of brown algal polysaccharides during kelp decay is still elusive. Here, based on metagenomic analyses, the succession of epiphytic bacterial communities and their metabolic potential were investigated during the early and late decay stages of Saccharina japonica. Our study revealed a transition in algal polysaccharide-degrading bacteria during kelp decay, shifting from alginate-degrading Gammaproteobacteria to fucoidan-degrading Verrucomicrobia, Planctomycetes, Kiritimatiellota, and Bacteroidetes. A model for the dynamic degradation of algal cell wall polysaccharides, a complex organic carbon, by epiphytic microbiota during kelp decay was proposed. This study deepens our understanding of the role of epiphytic bacteria in marine algal carbon cycling as well as pathogen control in algal culture.


Assuntos
Algas Comestíveis , Flavobacteriaceae , Kelp , Laminaria , Microbiota , Phaeophyceae , Humanos , Metagenoma , Kelp/metabolismo , Polissacarídeos/metabolismo , Alginatos/metabolismo , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Carbono/metabolismo
18.
Exp Dermatol ; 33(5): e15098, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770557

RESUMO

Healing of complex wounds requires dressings that must, at least, not hinder and should ideally promote the activity of key healing cells, in particular fibroblasts. This in vitro study assessed the effects of three wound-dressings (a pure Ca2+ alginate: Algostéril®, a Ca2+ alginate + carboxymethylcellulose: Biatain alginate® and a polyacrylate impregnated with lipido-colloid matrix: UrgoClean®) on dermal fibroblast activity. The results showed the pure calcium alginate to be non-cytotoxic, whereas the other wound-dressings showed moderate to strong cytotoxicity. The two alginates stimulated fibroblast migration and proliferation, whereas the polyacrylate altered migration and had no effect on proliferation. The pure Ca2+ alginate significantly increased the TGF-ß-induced fibroblast activation, which is essential to healing. This activation was confirmed by a significant increase in Vascular endothelial growth factor (VEGF) secretion and a higher collagen production. The other dressings reduced these fibroblast activities. The pure Ca2+ alginate was also able to counteract the inhibitory effect of NK cell supernatants on fibroblast migration. These in vitro results demonstrate that tested wound-dressings are not equivalent for fibroblast activation. Only Algostéril was found to promote all the fibroblast activities tested, which could contribute to its healing efficacy demonstrated in the clinic.


Assuntos
Alginatos , Movimento Celular , Proliferação de Células , Fibroblastos , Fator A de Crescimento do Endotélio Vascular , Cicatrização , Fibroblastos/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Humanos , Alginatos/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Colágeno/metabolismo , Bandagens , Fator de Crescimento Transformador beta/metabolismo , Carboximetilcelulose Sódica , Células Cultivadas , Células Matadoras Naturais/efeitos dos fármacos , Resinas Acrílicas , Ácidos Hexurônicos , Ácido Glucurônico , Pele
19.
Biopolymers ; 115(4): e23583, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38661371

RESUMO

Hydrogels from natural polysaccharides are of great interest for tissue engineering. This study aims (1) to prepare hydroxyapatite-loaded macroporous calcium alginate hydrogels by novel one-step technique using internal gelation in water-frozen solutions; (2) to evaluate their physicochemical properties; (3) to estimate their ability to support cell growth and proliferation in vitro. The structure of the hydrogel samples in a swollen state was studied by confocal laser scanning microscopy and was shown to represent a system of interconnected macropores with sizes of tens micron. The swelling behavior of the hydrogels, their mechanical properties (Young's moduli) in function of a hydroxyapatite content (5-30 mass%) were studied. All hydrogel samples loaded with hydroxyapatite were found to support growth and proliferation of mouse fibroblasts (L929) at long-term cultivation for 7 days. The obtained macroporous composite Ca-Alg-HA hydrogels could be promising for tissue engineering.


Assuntos
Alginatos , Durapatita , Hidrogéis , Alginatos/química , Hidrogéis/química , Hidrogéis/síntese química , Durapatita/química , Camundongos , Animais , Porosidade , Fibroblastos/efeitos dos fármacos , Fibroblastos/citologia , Engenharia Tecidual/métodos , Proliferação de Células/efeitos dos fármacos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Linhagem Celular , Materiais Biocompatíveis/química
20.
Biomed Microdevices ; 26(3): 29, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888669

RESUMO

Subcutaneous delivery of cell therapy is an appealing minimally-invasive strategy for the treatment of various diseases. However, the subdermal site is poorly vascularized making it inadequate for supporting engraftment, viability, and function of exogenous cells. In this study, we developed a 3D bioprinted scaffold composed of alginate/gelatin (Alg/Gel) embedded with mesenchymal stem cells (MSCs) to enhance vascularization and tissue ingrowth in a subcutaneous microenvironment. We identified bio-ink crosslinking conditions that optimally recapitulated the mechanical properties of subcutaneous tissue. We achieved controlled degradation of the Alg/Gel scaffold synchronous with host tissue ingrowth and remodeling. Further, in a rat model, the Alg/Gel scaffold was superior to MSC-embedded Pluronic hydrogel in supporting tissue development and vascularization of a subcutaneous site. While the scaffold alone promoted vascular tissue formation, the inclusion of MSCs in the bio-ink further enhanced angiogenesis. Our findings highlight the use of simple cell-laden degradable bioprinted structures to generate a supportive microenvironment for cell delivery.


Assuntos
Alginatos , Bioimpressão , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Impressão Tridimensional , Alicerces Teciduais , Células-Tronco Mesenquimais/citologia , Animais , Alicerces Teciduais/química , Alginatos/química , Ratos , Gelatina/química , Transplante de Células-Tronco Mesenquimais , Terapia Baseada em Transplante de Células e Tecidos , Tela Subcutânea , Ratos Sprague-Dawley , Hidrogéis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA