Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Appl Biochem ; 69(5): 2195-2204, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34731907

RESUMO

The pncA gene encodes pyrazinamidase enzyme which converts drug pyrazinamide to active form pyrazinoic acid, but mutations in this gene can prevent enzyme activity which leads to pyrazinamide resistance. The cross-sectional study was carried out during 2016-2017 for 12 months. The purpose of the study was to detect mutation at codon 12 and codon 85 in the pncA gene in local multidrug-resistant tuberculosis (MDR-TB) patients by developing a simple molecular test so that disease could be detected timely in the local population. DNA extracted from sputum-cultured samples from MDR-TB patients and subjected to semi-multiplex allele-specific PCR by using self-designed primers against the pncA gene. Among 75 samples, 53 samples were subjected to molecular analysis based on purified DNA quantity and quality. The primers produced 250 and 480 bp fragments, indicating the mutations at codon 12 (aspartate to alanine) and codon 85 (leucine to proline) respectively. MDR-TB was more common in the age group 21-40 years. Fifty-seven percent of samples (n = 30) were found positive for pncA mutations, whereas 43% of samples (n = 23) showed negative results. Thirteen percent of samples (n = 4) had mutations at codon 12 in which aspartate was converted to alanine, and they produced an amplified product of 480 bp. Eighty-seven percent of samples (n = 26) had mutations at codon 85 in which leucine was converted to proline and amplified product size was 250 bp. The mutations were simple nucleotide substitutions. The prevalence of mutations in which leucine was substituted by proline was higher than the mutations in which aspartate was substituted by alanine. A high prevalence of substitution mutation (CTG → CCG; leucine to proline) was detected in MDR-TB cases. Earlier detection of MDR-TB via an effective molecular diagnostic method can control the MDR tuberculosis spread in the population.


Assuntos
Amidoidrolases , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Adulto , Humanos , Adulto Jovem , Alanina , Amidoidrolases/genética , Amidoidrolases/farmacologia , Antituberculosos/farmacologia , Ácido Aspártico/genética , Ácido Aspártico/farmacologia , Proteínas de Bactérias/genética , Códon , Estudos Transversais , Leucina/genética , Leucina/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Prolina , Pirazinamida/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
2.
J Pharmacol Exp Ther ; 376(2): 181-189, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33214214

RESUMO

Multiple clinical and preclinical studies have demonstrated that plasma levels of asymmetric dimethylarginine (ADMA) are strongly associated with hypertension, diabetes, and cardiovascular and renal disease. Genetic studies in rodents have provided evidence that ADMA metabolizing dimethylarginine dimethylaminohydrolase (DDAH)-1 plays a role in hypertension and cardiovascular disease. However, it remains to be established whether ADMA is a bystander, biomarker, or sufficient contributor to the pathogenesis of hypertension and cardiovascular and renal disease. The goal of the present investigation was to develop a pharmacological molecule to specifically lower ADMA and determine the physiologic consequences of ADMA lowering in animal models. Further, we sought to determine whether ADMA lowering will produce therapeutic benefits in vascular disease in which high ADMA levels are produced. A novel long-acting recombinant DDAH (M-DDAH) was produced by post-translational modification, which effectively lowered ADMA in vitro and in vivo. Treatment with M-DDAH improved endothelial function as measured by increase in cGMP and in vitro angiogenesis. In a rat model of hypertension, M-DDAH significantly reduced blood pressure (vehicle: 187 ± 19 mm Hg vs. M-DDAH: 157 ± 23 mm Hg; P < 0.05). Similarly, in a rat model of ischemia-reperfusion injury, M-DDAH significantly improved renal function as measured by reduction in serum creatinine (vehicle: 3.14 ± 0.74 mg/dl vs. M-DDAH: 1.1 ± 0.75 mg/dl; P < 0.01), inflammation, and injured tubules (vehicle: 73.1 ± 11.1% vs. M-DDAH: 22.1 ± 18.4%; P < 0.001). These pharmacological studies have provided direct evidence for a pathologic role of ADMA and the therapeutic benefits of ADMA lowering in preclinical models of endothelial dysfunction, hypertension, and ischemia-reperfusion injury. SIGNIFICANCE STATEMENT: High levels of ADMA occur in patients with cardiovascular and renal disease. A novel modified dimethylarginine dimethylaminohydrolase by PEGylation effectively lowers ADMA, improves endothelial function, reduces blood pressure and protects from ischemia-reperfusion renal injury.


Assuntos
Amidoidrolases/farmacologia , Anti-Hipertensivos/farmacologia , Arginina/análogos & derivados , Hipertensão/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Amidoidrolases/uso terapêutico , Animais , Anti-Hipertensivos/uso terapêutico , Arginina/metabolismo , Pressão Sanguínea , GMP Cíclico/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Rim/irrigação sanguínea , Masculino , Ratos , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
3.
Mar Drugs ; 19(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401388

RESUMO

Although Psychrobacter strain M9-54-1 had been previously isolated from the microbiota of holothurians and shown to degrade quorum sensing (QS) signal molecules C6 and C10-homoserine lactone (HSL), little was known about the gene responsible for this activity. In this study, we determined the whole genome sequence of this strain and found that the full 16S rRNA sequence shares 99.78-99.66% identity with Psychrobacter pulmonis CECT 5989T and P. faecalis ISO-46T. M9-54-1, evaluated using the agar well diffusion assay method, showed high quorum quenching (QQ) activity against a wide range of synthetic N-acylhomoserine lactone (AHLs) at 4, 15, and 28 °C. High-performance liquid chromatography-mass-spectrometry (HPLC-MS) confirmed that QQ activity was due to an AHL-acylase. The gene encoding for QQ activity in strain M9-54-1 was identified from its genome sequence whose gene product was named AhaP. Purified AhaP degraded substituted and unsubstituted AHLs from C4- to C14-HSL. Furthermore, heterologous expression of ahaP in the opportunistic pathogen Pseudomonas aeruginosa PAO1 reduced the expression of the QS-controlled gene lecA, encoding for a cytotoxic galactophilic lectin and swarming motility protein. Strain M9-54-1 also reduced brine shrimp mortality caused by Vibrio coralliilyticus VibC-Oc-193, showing potential as a biocontrol agent in aquaculture.


Assuntos
Amidoidrolases/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Psychrobacter/química , Percepção de Quorum/efeitos dos fármacos , Vibrio/efeitos dos fármacos , Vibrio/patogenicidade , Virulência/efeitos dos fármacos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Acil-Butirolactonas/metabolismo , Animais , Artemia , Genoma Bacteriano/genética , Estrutura Molecular , Psychrobacter/genética , RNA Ribossômico 16S
4.
Bioorg Chem ; 101: 104034, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32599361

RESUMO

In experimental animals, inhibition of fatty acid amide hydrolase (FAAH) reduces the gastrointestinal damage produced by non-steroidal anti-inflammatory agents that act by inhibition of cyclooxygenase (COX). This suggests that compounds able to inhibit both enzymes may be potentially useful therapeutic agents. In the present study, we have investigated eight novel amide analogues of carprofen, ketoprofen and fenoprofen as potential FAAH/COX dual action inhibitors. Carpro-AM1 (2-(6-Chloro-9H-carbazol-2-yl)-N-(3-methylpyridin-2-yl)propenamide) and Carpro-AM6 (2-(6-Chloro-9H-carbazol-2-yl)-N-(3-chloropyridin-2-yl)propenamide) were found to be fully reversible inhibitors of the hydrolysis of 0.5 µM [3H]anandamide in rat brain homogenates with IC50 values of 94 and 23 nM, respectively, i.e. 2-3 orders of magnitude more potent than carprofen in this respect. Both compounds inhibited the cyclooxygenation of arachidonic acid by ovine COX-1, and were more potent inhibitors of human recombinant COX-2 when 2-arachidonoylglycerol was used as substrate than when arachidonic acid was used. It is concluded that Carpro-AM1 and Carpro-AM6 are dual-acting FAAH/substrate-selective COX inhibitors.


Assuntos
Amidoidrolases/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Carbazóis/uso terapêutico , Inibidores de Ciclo-Oxigenase/uso terapêutico , Amidoidrolases/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Carbazóis/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Humanos , Camundongos
5.
Gut ; 68(10): 1791-1800, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30816855

RESUMO

OBJECTIVE: Faecal microbiota transplant (FMT) effectively treats recurrent Clostridioides difficile infection (rCDI), but its mechanisms of action remain poorly defined. Certain bile acids affect C. difficile germination or vegetative growth. We hypothesised that loss of gut microbiota-derived bile salt hydrolases (BSHs) predisposes to CDI by perturbing gut bile metabolism, and that BSH restitution is a key mediator of FMT's efficacy in treating the condition. DESIGN: Using stool collected from patients and donors pre-FMT/post-FMT for rCDI, we performed 16S rRNA gene sequencing, ultra performance liquid chromatography mass spectrometry (UPLC-MS) bile acid profiling, BSH activity measurement, and qPCR of bsh/baiCD genes involved in bile metabolism. Human data were validated in C. difficile batch cultures and a C57BL/6 mouse model of rCDI. RESULTS: From metataxonomics, pre-FMT stool demonstrated a reduced proportion of BSH-producing bacterial species compared with donors/post-FMT. Pre-FMT stool was enriched in taurocholic acid (TCA, a potent C. difficile germinant); TCA levels negatively correlated with key bacterial genera containing BSH-producing organisms. Post-FMT samples demonstrated recovered BSH activity and bsh/baiCD gene copy number compared with pretreatment (p<0.05). In batch cultures, supernatant from engineered bsh-expressing E. coli and naturally BSH-producing organisms (Bacteroides ovatus, Collinsella aerofaciens, Bacteroides vulgatus and Blautia obeum) reduced TCA-mediated C. difficile germination relative to culture supernatant of wild-type (BSH-negative) E. coli. C. difficile total viable counts were ~70% reduced in an rCDI mouse model after administration of E. coli expressing highly active BSH relative to mice administered BSH-negative E. coli (p<0.05). CONCLUSION: Restoration of gut BSH functionality contributes to the efficacy of FMT in treating rCDI.


Assuntos
Amidoidrolases/farmacologia , Clostridioides difficile/genética , Infecções por Clostridium/terapia , DNA Bacteriano/genética , Transplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal/fisiologia , Animais , Infecções por Clostridium/microbiologia , Modelos Animais de Doenças , Feminino , Ácido Glicocólico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Recidiva , Espectrometria de Massas em Tandem
6.
Prep Biochem Biotechnol ; 49(2): 151-157, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30712466

RESUMO

Acylase AiiO is a novel quorum quenching enzyme with a broad substrate spectrum of acyl-homoserine lactones (AHLs) and has promising prospects in pathogen control. In this work, acylase AiiO production by a recombinant E. coli strain and its characterization were investigated; the acylase powder was further prepared and evaluated for effectiveness. A strategy of auto-induction combined with temperature regulation was developed to improve AiiO production. For the soluble AiiO protein in the cells, maximum production of 214.3 ± 9.4 mg/L was obtained in the fermenter. The purified acylase displayed an obvious AHL-degrading specific activity of 19.2 ± 0.56 U/mg. Sucrose, as the protective agent, maintained good stability of the acylase powder, in which the acylase remained 89.6 and 71.9% of its initial specific activity after storage at 4 °C for 3 and 6 months, respectively. The acylase powder could prominently decrease the expression levels of virulence-related factors of Pseudomonas aeruginosa. Based on the high-yield production and effective powder preparation, the quorum quenching acylase AiiO has the potential to be used in the clinical treatments of pathogenic infections.


Assuntos
Acil-Butirolactonas/metabolismo , Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Ochrobactrum/metabolismo , Amidoidrolases/genética , Amidoidrolases/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Humanos , Ochrobactrum/genética , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
7.
Am J Physiol Renal Physiol ; 315(4): F967-F976, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29846106

RESUMO

The kidneys contribute to the control of body fluid and electrolytes and the long-term regulation of blood pressure through various systems, including the endocannabinoid system. Previously, we showed that inhibition of the two major endocannabinoid-hydrolyzing enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase, in the renal medulla increased the rate of urine excretion (UV) and salt excretion without affecting mean arterial pressure (MAP). The present study evaluated the effects of a selective FAAH inhibitor, N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidine carboxamide (PF-3845) on MAP and renal functions. Infusion of PF-3845 into the renal medulla of C57BL/6J mice reduced MAP during the posttreatment phases and increased UV at 15 and 30 nmol/min per gram kidney weight (g kwt), relative to the pretreatment control phase. Intravenous PF-3845 administration reduced MAP at the 7.5, 15, and 30 doses and increased UV at the 15 and 30 nmol⋅min-1⋅g-1 kwt doses. PF-3845 treatment elevated sodium and potassium urinary excretion and medullary blood flow. Homozygous FAAH knockout mice were refractory to intramedullary PF-3845-induced changes in MAP, but UV was increased. Both MAP and UV responses to intramedullary PF-3845 in C57BL/6J mice were diminished by pretreatment with the cannabinoid type 1 receptor-selective antagonist, rimonabant (3 mg/kg, ip) but not the cyclooxygenase 2-selective inhibitor, celecoxib (15 mg/kg, iv). Liquid chromatography-tandem mass spectrometry analyses showed increased anandamide in kidney tissue and 2-arachidonoyl glycerol in plasma after intramedullary PF-3845. These data suggest that inhibition of FAAH in the renal medulla leads to both a diuretic and blood pressure-lowering response mediated by elevated anandamide in kidney tissue or 2-arachidonoyl glycerol in plasma.


Assuntos
Amidoidrolases/farmacologia , Pressão Arterial/efeitos dos fármacos , Medula Renal/efeitos dos fármacos , Piperidinas/farmacologia , Piridinas/farmacologia , Amidoidrolases/metabolismo , Animais , Ácidos Araquidônicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Diurese/efeitos dos fármacos , Endocanabinoides/farmacologia , Inibidores Enzimáticos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/antagonistas & inibidores , Alcamidas Poli-Insaturadas/farmacologia
8.
J Biol Regul Homeost Agents ; 32(3): 705-709, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29921403

RESUMO

Pyrazinamide (PZA) is a key first-line antibiotic used for the short-course treatment of drug-sensitive and multidrug-resistant (MDR) isolates of tuberculosis. PZA exhibits potent action against semi-dormant bacilli in acidic environments. However, mutations that occur in target genes may cause technical difficulties in the diagnosis of PZA resistance during drug susceptibility testing. The objective of the current study is to identify mutations in pncAWT rpsA and rpsAWT panD genes among PZA-resistant isolates of Mycobacterium tuberculosis (MTB) circulating in the Pashtun dominant region, Khyber Pakhtunkhwa, Pakistan. We selected 18 PZA-resistant pncAWT strains from the Provincial Tuberculosis Reference Laboratory (PTRL) Khyber Pakhtunkhwa to investigate mutations in the coding region of rpsA and panD genes. The experiments were repeated for drug susceptibility testing using MGIT 960 automated system. In addition, eighteen PZA-resistant rpsA genes along with 5 susceptible strains and one H37Rv strain were sequenced. All 18 isolates were PZA-resistant. The majority of these isolates exhibited multidrug resistance (MDR) (13/18). We identified 14 non-synonymous and one synonymous mutation in the coding region of rpsA in 11 strains. All mutations were scattered throughout the gene and not reported previously. Further, we did not identify any mutation in 7 rpsAWT panD genes. Mutations in rpsA but not in panD occur in PZA-resistant pncAWT MTB isolates circulating in Khyber Pakhtunkhwa, Pakistan.


Assuntos
Amidoidrolases/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Humanos , Paquistão
9.
Metab Brain Dis ; 33(3): 939-948, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29504066

RESUMO

2-Arachidonoylglycerol (2-AG) and anandamide are two major endocannabinoids produced, released and eliminated by metabolic pathways. Anticonvulsive effect of 2-AG and CB1 receptor is well-established. Herein, we designed to investigate the anticonvulsive influence of key components of the 2-AG and anandamide metabolism. Tonic-clonic seizures were induced by an injection of Pentylenetetrazol (80 mg/kg, i.p.) in adult male Wistar rats. Delay and duration for the seizure stages were considered for analysis. Monoacylglycerol lipase blocker (JJKK048; 1 mg/kg) or alpha/beta hydroxylase domain 6 blocker (WWL70; 5 mg/kg) were administrated alone or with 2-AG to evaluate the anticonvulsive potential of these enzymes. To determine the CB1 receptor involvement, its blocker (MJ15; 3 mg/kg) was administrated associated with JJKK048 or WWL70. To assess anandamide anticonvulsive effect, anandamide membrane transporter blocker (LY21813240; 2.5 mg/kg) was used alone or associated with MJ15. Also, fatty acid amide hydrolase blocker (URB597; 1 mg/kg; to prevent intracellular anandamide hydrolysis) were used alone or with AMG21629 (transient receptor potential vanilloid; TRPV1 antagonist; 3 mg/kg). All compounds were dissolved in DMSO and injected i.p., before the Pentylenetetrazol. Both JJKK048 and WWL70 revealed anticonvulsive effect. Anticonvulsive effect of JJKK048 but not WWL70 was CB1 receptor dependent. LY2183240 showed CB1 receptor dependent anticonvulsive effect. However, URB597 revealed a TRPV1 dependent proconvulsive effect. It seems extracellular accumulation of 2-AG or anandamide has anticonvulsive effect through the CB1 receptor, while intracellular anandamide accumulation is proconvulsive through TRPV1.


Assuntos
Ácidos Araquidônicos/farmacologia , Endocanabinoides/farmacologia , Pentilenotetrazol/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Convulsões/tratamento farmacológico , Amidoidrolases/farmacologia , Animais , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Glicerídeos/farmacologia , Masculino , Piperidinas/farmacologia , Ratos Wistar , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Convulsões/induzido quimicamente , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo
10.
Antimicrob Agents Chemother ; 59(12): 7447-57, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26392484

RESUMO

As a consequence of excessive antibiotic therapies in hospitalized patients, Clostridium difficile, a Gram-positive anaerobic spore-forming intestinal pathogen, is the leading cause of hospital-acquired diarrhea and colitis. Drug treatments for these diseases are often complicated by antibiotic-resistant strains and a high frequency of treatment failures and relapse; therefore, novel nonantibiotic approaches may prove to be more effective. In this study, we recombinantly expressed a prophage lysin identified from a C. difficile strain, CD630, which we named PlyCD. PlyCD was found to have lytic activity against specific C. difficile strains. However, the recombinantly expressed catalytic domain of this protein, PlyCD1-174, displayed significantly greater lytic activity (>4-log kill) and a broader lytic spectrum against C. difficile strains while still retaining a high degree of specificity toward C. difficile versus commensal clostridia and other bacterial species. Our data also indicated that noneffective doses of vancomycin and PlyCD1-174 when combined in vitro could be significantly more bactericidal against C. difficile. In an ex vivo treatment model of mouse colon infection, we found that PlyCD1-174 functioned in the presence of intestinal contents, significantly decreasing colonizing C. difficile compared to controls. Together, these data suggest that PlyCD1-174 has potential as a novel therapeutic for clinical application against C. difficile infection, either alone or in combination with other preexisting treatments to improve their efficacy.


Assuntos
Amidoidrolases/farmacologia , Antibacterianos/farmacologia , Clostridioides difficile/efeitos dos fármacos , Endopeptidases/farmacologia , Prófagos/genética , Proteínas Virais/farmacologia , Amidoidrolases/genética , Sequência de Aminoácidos , Animais , Antibacterianos/uso terapêutico , Domínio Catalítico , Clostridioides difficile/genética , Colo/efeitos dos fármacos , Colo/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Endopeptidases/genética , Enterocolite Pseudomembranosa/tratamento farmacológico , Feminino , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Vancomicina/farmacologia , Proteínas Virais/genética , Proteínas Virais/uso terapêutico
11.
Appl Microbiol Biotechnol ; 99(10): 4373-85, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25582561

RESUMO

Bacteria use a signaling mechanism called quorum sensing (QS) to form complex communities of surface-attached cells known as biofilms. This protective mode of growth allows them to resist antibiotic treatment and originates the majority of hospital-acquired infections. Emerging alternatives to control biofilm-associated infections and multidrug resistance development interfere with bacterial QS pathways, exerting less selective pressure on bacterial population. In this study, biologically stable coatings comprising the QS disrupting enzyme acylase were built on silicone urinary catheters using a layer-by-layer technique. This was achieved by the alternate deposition of negatively charged enzyme and positively charged polyethylenimine. The acylase-coated catheters efficiently quenched the QS in the biosensor strain Chromobacterium violaceum CECT 5999, demonstrated by approximately 50% inhibition of violacein production. These enzyme multilayer coatings significantly reduced the Pseudomonas aeruginosa ATCC 10145 biofilm formation under static and dynamic conditions in an in vitro catheterized bladder model. The quorum quenching enzyme coatings did not affect the viability of the human fibroblasts (BJ-5ta) over 7 days, corresponding to the extended useful life of urinary catheters. Such enzyme-based approach could be an alternative to the conventional antibiotic treatment for prevention of biofilm-associated urinary tract infections.


Assuntos
Amidoidrolases/farmacologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Infecções Relacionadas a Cateter/prevenção & controle , Pseudomonas aeruginosa/efeitos dos fármacos , Cateteres Urinários/microbiologia , Amidoidrolases/química , Antibacterianos/química , Infecções Relacionadas a Cateter/microbiologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/prevenção & controle , Humanos , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/efeitos dos fármacos
12.
Chembiochem ; 15(13): 1911-9, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25044227

RESUMO

Biofilms are matrix-encapsulated cell aggregates that cause problems in technical and health-related areas; for example, 65 % of all human infections are biofilm associated. This is mainly due to their ameliorated resistance against antimicrobials and immune systems. Pseudomonas aeruginosa, a biofilm-forming organism, is commonly responsible for nosocomial infections. Biofilm development is partly mediated by signal molecules, such as acyl-homoserine lactones (AHLs) in Gram-negative bacteria. We applied horse liver esterase, porcine kidney acylase, and porcine liver esterase; these can hydrolyze AHLs, thereby inhibiting biofilm formation. As biofilm infections are often related to foreign material introduced into the human body, we immobilized the enzymes on medical plastic materials. Biofilm formation was quantified by Crystal Violet staining and confocal laser scanning microscopy, revealing up to 97 % (on silicone), 54 % (on polyvinyl chloride), and 77 % (on polyurethane) reduced biomass after 68 h growth.


Assuntos
Amidoidrolases/farmacologia , Biofilmes/efeitos dos fármacos , Enzimas Imobilizadas/farmacologia , Esterases/farmacologia , Plásticos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Animais , Biomassa , Cavalos , Fígado/enzimologia , Pseudomonas aeruginosa/efeitos dos fármacos , Eletricidade Estática , Suínos
13.
Oncotarget ; 14: 910-918, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37921652

RESUMO

Breast cancer is the leading cancer among females worldwide. Disease outcome depends on the hormonal status of the cancer and whether or not it is metastatic, but there is a need for more efficacious therapeutic strategies where first line treatment fails. In this study, Fatty Acid Amide Hydrolase (FAAH) inhibition and endocannabinoids were examined as therapeutic alternatives. FAAH is an integral membrane enzyme that hydrolyzes endocannabinoids, rendering them inactive, and FAAH inhibition is predicted to increase cancer cell death. To test this, breast cancer cells were probed for FAAH expression using Western blot analysis, treated with FAAH inhibitors, exogenous endocannabinoids, and combinations of the two treatments, and assessed for viability. High levels of FAAH were observed in different breast cancer cell lines. FAAH inhibition was more effective than exogenous endocannabinoid treatment, and the combination of FAAH inhibitors and endocannabinoids was the most effective in inducing apoptosis of breast cancer cells in vitro. In addition, in vivo FAAH inhibition reduced breast cancer growth in immunodeficient mice. FAAH inhibition is a promising approach, and tremendous progress has been made in the field to validate this mechanism as an alternative to chemotherapy. Further research exploring the therapeutic potential and impact of FAAH expression on cancer cells is warranted.


Assuntos
Endocanabinoides , Neoplasias , Feminino , Camundongos , Animais , Endocanabinoides/farmacologia , Endocanabinoides/metabolismo , Modelos Animais de Doenças , Amidoidrolases/metabolismo , Amidoidrolases/farmacologia , Morte Celular , Alcamidas Poli-Insaturadas/farmacologia
14.
J Chemother ; 35(7): 583-595, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37211822

RESUMO

Pyrazinamide (PZA) is an essential first-line tuberculosis drug for its unique mechanism of action active against multidrug-resistant-TB (MDR-TB). Thus, the aim of updated meta-analysis was to estimate the PZA weighted pooled resistance (WPR) rate in M. tuberculosis isolates based on publication date and WHO regions. We systematically searched the related reports in PubMed, Scopus, and Embase (from January 2015 to July 2022). Statistical analyses were performed using STATA software. The 115 final reports in the analysis investigated phenotypic PZA resistance data. The WPR of PZA was 57% (95% CI 48-65%) in MDR-TB cases. According to the WHO regions, the higher WPRs of PZA were reported in the Western Pacific (32%; 95% CI 18-46%), South East Asian region (37%; 95% CI 31-43%), and the Eastern Mediterranean (78%; 95% CI 54-95%) among any-TB patients, high risk of MDR-TB patients, and MDR-TB patients, respectively. A negligible increase in the rate of PZA resistance were showed in MDR-TB cases (55% to 58%). The rate of PZA resistance has been rising in recent years among MDR-TB cases, underlines the essential for both standard and novel drug regimens development.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Pirazinamida/farmacologia , Pirazinamida/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Farmacorresistência Bacteriana Múltipla , Amidoidrolases/genética , Amidoidrolases/farmacologia , Mutação , Testes de Sensibilidade Microbiana , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
15.
J Glob Antimicrob Resist ; 29: 507-512, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34818592

RESUMO

OBJECTIVES: Next-generation sequencing (NGS) can provide a comprehensive analysis of the genetic alterations most commonly linked with pyrazinamide (PZA) resistance. However, there are no studies reporting the molecular background of PZA resistance in Mycobacterium tuberculosis (TB) isolates from the Balkan Peninsula. We aimed to examine the feasibility of full-length analysis of a gene linked with PZA resistance (pncA) using Ion Torrent technology compared with phenotypic BACTEC MGIT 960 drug susceptibility testing (DST) in clinical TB isolates from two countries of the Balkan Peninsula. METHODS: Between 1996 and 2017, we retrospectively selected 61 TB isolates. To identify gene variants related to drug resistance in genomic DNA extracted from TB isolates, AmpliSeq libraries were generated automatically using an AmpliSeq™ Kit for Chef DL8 and Ion AmpliSeq TB Research Panel. RESULTS: Of the 61 TB isolates, 56 were phenotypically resistant to any antibiotic. Among them, 38/56 isolates (67.9%) were phenotypically resistant to pyrazinamide, and pncA mutations were detected in 34/38 cases (89.5%). A mutation in the pncA promoter region was the most prevalent genetic alteration, detected in eight TB isolates. Comparison of NGS data with conventional BACTEC MGIT 960 DST revealed very strong agreement (91.8%) between the two methods in identifying PZA resistance, with high sensitivity (89.5%) and specificity (95.7%) for NGS. CONCLUSION: Detection of PZA resistance using NGS appears to be a valuable tool for surveillance of TB drug resistance in the Balkan Peninsula, with great potential to provide useful information at least 1 weak earlier than is possible with phenotypic DST.


Assuntos
Mycobacterium tuberculosis , Pirazinamida , Amidoidrolases/genética , Amidoidrolases/farmacologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Península Balcânica , Farmacorresistência Bacteriana Múltipla/genética , Sequenciamento de Nucleotídeos em Larga Escala , Testes de Sensibilidade Microbiana , Pirazinamida/farmacologia , Estudos Retrospectivos
16.
Food Funct ; 13(2): 725-736, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34935837

RESUMO

Hypercholesterolemia is a major risk factor for cardiovascular diseases worldwide. Healthy intestinal microbiota can contribute to reducing the high cholesterol symptoms by producing bile salt hydrolase (BSH). In this study, recombinant BSH from the strain L. johnsonii 334 with high cholesterol reduction ability was selected to study the cholesterol-lowering mechanism mediated by farnesoid X receptor (FXR) regulation in mice. In the presence of recombinant BSH, mice had a larger bile acid pool. Analysis of individual bile acids revealed that bile acid composition was affected not only by recombinant BSH but also by the modulated gut microbiota. We confirmed a marked reduction in the transcription of FXR and its molecular targets in the ileum and a significant increase in the transcription of cholesterol 7a-hydroxylase (CYP7A1), which resulted in the increased bile acid synthesis and cholesterol-lowering effects. Notably, our work reveals the importance of BSH substrate specificity.


Assuntos
Amidoidrolases/farmacologia , Anticolesterolemiantes/farmacologia , Lactobacillus johnsonii , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Colesterol/sangue , Microbioma Gastrointestinal/efeitos dos fármacos , Lactobacillus johnsonii/enzimologia , Lactobacillus johnsonii/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais/efeitos dos fármacos
17.
Glia ; 59(10): 1435-46, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21608034

RESUMO

Aspartoacylase (ASPA) is an enzyme that functions to catabolize the neuronal amino acid derivative N-acetyl-L-aspartic acid (NAA). Loss of this function results in the failure of developmental myelination. NAA synthesis and catabolism are tightly compartmentalized within neurons and oligodendrocytes, respectively, and there is evidence to suggest the developmental regulation of ASPA activity is transcriptional. NAA has no known direct physiological mode of action, and the identification of a transcriptional regulator of aspa would provide an opportunity to link NAA to relatively more characterized physiological contexts with a view to definitive functional classification. Using transcriptional and immunohistochemical endpoints, we define a window of postnatal development punctuated by increases in aspa within a pre-existing population of oligodendrocytes in the rat brain. Ontological mining of expression data generated in aspa-null rats during this developmental window identifies both neuronal and oligodendroglial transcriptional abnormalities that suggest an association between glutamatergic synaptic activity and ASPA. Glutamate, but not NAA, is shown to activate endogenous aspa expression in vitro, and endogenous aspa expression is upregulated in the brains of animals over expressing vesicular glutamate transporter type-I (vglut1). These results define a discrete period of postnatal development within which glutamate provides a means by which the tightly compartmentalized NAA metabolic cycle can function in sync with normal development and may be a factor in pathological models of dysregulated NAA metabolism.


Assuntos
Amidoidrolases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Ácido Glutâmico/metabolismo , Oligodendroglia/metabolismo , Fatores Etários , Amidoidrolases/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Linhagem Celular Transformada , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Transferência de Genes , Vetores Genéticos , Ácido Glutâmico/farmacologia , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Antígenos O/metabolismo , Ratos , Transfecção/métodos , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
18.
BMC Microbiol ; 11: 226, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21985151

RESUMO

BACKGROUND: Staphylococcus aureus is a major cause of nosocomial and community-acquired infections. However, the rapid emergence of antibiotic resistance limits the choice of therapeutic options for treating infections caused by this organism. Muralytic enzymes from bacteriophages have recently gained attention for their potential as antibacterial agents against antibiotic-resistant gram-positive organisms. Phage K is a polyvalent virulent phage of the Myoviridae family that is active against many Staphylococcus species. RESULTS: We identified a phage K gene, designated orf56, as encoding the phage tail-associated muralytic enzyme (TAME). The gene product (ORF56) contains a C-terminal domain corresponding to cysteine, histidine-dependent amidohydrolase/peptidase (CHAP), which demonstrated muralytic activity on a staphylococcal cell wall substrate and was lethal to S. aureus cells. We constructed N-terminal truncated forms of ORF56 and arrived at a 16-kDa protein (Lys16) that retained antistaphylococcal activity. We then generated a chimeric gene construct encoding Lys16 and a staphylococcal cell wall-binding SH3b domain. This chimeric protein (P128) showed potent antistaphylococcal activity on global clinical isolates of S. aureus including methicillin-resistant strains. In addition, P128 was effective in decolonizing rat nares of S. aureus USA300 in an experimental model. CONCLUSIONS: We identified a phage K gene that encodes a protein associated with the phage tail structure. The muralytic activity of the phage K TAME was localized to the C-terminal CHAP domain. This potent antistaphylococcal TAME was combined with an efficient Staphylococcus-specific cell-wall targeting domain SH3b, resulting in the chimeric protein P128. This protein shows bactericidal activity against globally prevalent antibiotic resistant clinical isolates of S. aureus and against the genus Staphylococcus in general. In vivo, P128 was efficacious against methicillin-resistant S. aureus in a rat nasal colonization model.


Assuntos
Amidoidrolases/farmacologia , Antibacterianos/farmacologia , Myoviridae/enzimologia , Infecções Estafilocócicas/tratamento farmacológico , Fagos de Staphylococcus/enzimologia , Proteínas da Cauda Viral/farmacologia , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Antibacterianos/metabolismo , Feminino , Humanos , Myoviridae/química , Myoviridae/genética , Ratos , Ratos Wistar , Infecções Estafilocócicas/microbiologia , Staphylococcus/efeitos dos fármacos , Staphylococcus/fisiologia , Fagos de Staphylococcus/química , Fagos de Staphylococcus/genética , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo
19.
Nat Med ; 2(6): 662-7, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8640557

RESUMO

Naturally pyrazinamide (PZA)-resistant Mycobacterium bovis and acquired PZA-resistant M. tuberculosis strains lose pyrazinamidase (PZase). To investigate the molecular mechanism of PZA resistance, we have cloned the gene (pncA) encoding M. tuberculosis PZase. Mutations in pncA were identified in both types of PZA-resistant strains, and transformation of these strains with a functional pncA gene restored PZase activity and PZA susceptibility. These findings, besides providing the basis for understanding how PZA works, should have implications for rapid detection of PZA-resistant clinical isolates of M. tuberculosis and also for rapid differentiation of M. bovis from M. tuberculosis strains.


Assuntos
Amidoidrolases/genética , Amidoidrolases/farmacologia , Resistência Microbiana a Medicamentos/genética , Mutação , Mycobacterium tuberculosis/genética , Amidoidrolases/química , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Dados de Sequência Molecular , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium bovis/enzimologia , Mycobacterium bovis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Nicotinamidase/química , Nicotinamidase/genética , Transformação Genética
20.
J Neuroimmunol ; 358: 577654, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265624

RESUMO

Increasing evidence suggests that SARS-CoV-2, the virus responsible for the COVID-19 pandemic, is associated with increased risk of developing neurological or psychiatric conditions such as depression, anxiety or dementia. While the precise mechanism underlying this association is unknown, aberrant activation of toll-like receptor (TLR)3, a viral recognizing pattern recognition receptor, may play a key role. Synthetic cannabinoids and enhancing cannabinoid tone via inhibition of fatty acid amide hydrolase (FAAH) has been demonstrated to modulate TLR3-induced neuroimmune responses and associated sickness behaviour. However, the role of individual FAAH substrates, and the receptor mechanisms mediating these effects, are unknown. The present study examined the effects of intracerebral or systemic administration of the FAAH substrates N-oleoylethanolamide (OEA), N-palmitoylethanolamide (PEA) or the anandamide (AEA) analogue meth-AEA on hyperthermia and hypothalamic inflammatory gene expression following administration of the TLR3 agonist, and viral mimetic, poly I:C. The data demonstrate that meth-AEA does not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. In comparison, OEA and PEA attenuated the TLR3-induced hyperthermia, although only OEA attenuated the expression of hyperthermia-related genes (IL-1ß, iNOS, COX2 and m-PGES) in the hypothalamus. OEA, but not PEA, attenuated TLR3-induced increases in the expression of all IRF- and NFκB-related genes examined in the hypothalamus, but not in the spleen. Antagonism of PPARα prevented the OEA-induced attenuation of IRF- and NFκB-related genes in the hypothalamus following TLR3 activation but did not significantly alter temperature. PPARα agonism did not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. These data indicate that OEA may be the primary FAAH substrate that modulates TLR3-induced neuroinflammation and hyperthermia, effects partially mediated by PPARα.


Assuntos
Etanolaminas/farmacologia , Hipertermia Induzida/métodos , Mediadores da Inflamação/metabolismo , PPAR alfa/metabolismo , Receptor 3 Toll-Like/administração & dosagem , Amidoidrolases/farmacologia , Animais , Feminino , Expressão Gênica , PPAR alfa/agonistas , PPAR alfa/antagonistas & inibidores , Poli I-C/toxicidade , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA