Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.411
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 21(5): 555-566, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32327756

RESUMO

Regulatory myeloid immune cells, such as myeloid-derived suppressor cells (MDSCs), populate inflamed or cancerous tissue and block immune cell effector functions. The lack of mechanistic insight into MDSC suppressive activity and a marker for their identification has hampered attempts to overcome T cell inhibition and unleash anti-cancer immunity. Here, we report that human MDSCs were characterized by strongly reduced metabolism and conferred this compromised metabolic state to CD8+ T cells, thereby paralyzing their effector functions. We identified accumulation of the dicarbonyl radical methylglyoxal, generated by semicarbazide-sensitive amine oxidase, to cause the metabolic phenotype of MDSCs and MDSC-mediated paralysis of CD8+ T cells. In a murine cancer model, neutralization of dicarbonyl activity overcame MDSC-mediated T cell suppression and, together with checkpoint inhibition, improved the efficacy of cancer immune therapy. Our results identify the dicarbonyl methylglyoxal as a marker metabolite for MDSCs that mediates T cell paralysis and can serve as a target to improve cancer immune therapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Melanoma/imunologia , Células Supressoras Mieloides/imunologia , Aldeído Pirúvico/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Linfócitos T CD8-Positivos/transplante , Comunicação Celular , Proliferação de Células , Humanos , Tolerância Imunológica , Ativação Linfocitária , Melanoma Experimental , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais , Receptor de Morte Celular Programada 1/metabolismo
2.
Plant Cell ; 34(6): 2364-2382, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35212762

RESUMO

Polyamines are important metabolites in plant development and abiotic and biotic stress responses. Copper-containing amine oxidases (CuAOs) are involved in the regulation of polyamine levels in the cell. CuAOs oxidize primary amines to their respective aldehydes and hydrogen peroxide. In plants, aldehydes are intermediates in various biosynthetic pathways of alkaloids. CuAOs are thought to oxidize polyamines at only one of the primary amino groups, a process frequently resulting in monocyclic structures. These oxidases have been postulated to be involved in pyrrolizidine alkaloid (PA) biosynthesis. Here, we describe the identification and characterization of homospermidine oxidase (HSO), a CuAO of Heliotropium indicum (Indian heliotrope), involved in PA biosynthesis. Virus-induced gene silencing of HSO in H. indicum leads to significantly reduced PA levels. By in vitro enzyme assays after transient in planta expression, we show that this enzyme prefers Hspd over other amines. Nuclear magnetic resonance spectroscopy and mass spectrometry analyses of the reaction products demonstrate that HSO oxidizes both primary amino groups of homospermidine (Hspd) to form a bicyclic structure, 1-formylpyrrolizidine. Using tracer feeding, we have further revealed that 1-formylpyrrolizidine is an intermediate in the biosynthesis of PAs. Our study therefore establishes that HSO, a canonical CuAO, catalyzes the second step of PA biosynthesis and provides evidence for an undescribed and unusual mechanism involving two discrete steps of oxidation that might also be involved in the biosynthesis of complex structures in other alkaloidal pathways.


Assuntos
Amina Oxidase (contendo Cobre) , Alcaloides de Pirrolizidina , Aldeídos , Amina Oxidase (contendo Cobre)/genética , Amina Oxidase (contendo Cobre)/metabolismo , Oxirredução , Poliaminas/metabolismo , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/metabolismo
3.
Bioorg Med Chem ; 98: 117558, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142562

RESUMO

Vascular adhesion protein-1 (VAP-1), also known as plasma amine oxidase or semicarbazide-sensitive amine oxidase, is an enzyme that degrades primary amines to aldehydes with the formation of hydrogen peroxide and ammonia. Among others, it plays a role in inflammatory processes as it can mediate the migration of leukocytes from the blood to the inflamed tissue. We prepared a series of ω-(5-phenyl-2H-tetrazol-2-yl)alkyl-substituted glycine amides and related compounds and tested them for inhibition of purified bovine plasma VAP-1. Compounds with submicromolar activity were obtained. Studies on the mechanism of action revealed that the glycine amides are substrate inhibitors, i.e., they are also converted to an aldehyde derivative. However, the reaction proceeds much more slowly than that of the substrate used in the assay, whose conversion is thus blocked. Examination of the selectivity of the synthesized glycine amides with respect to other amine oxidases showed that they inhibited diamine oxidase, which is structurally related to VAP-1, but only to a much lesser extent. In contrast, the activity of monoamine oxidase A and B was not affected. Selected compounds also inhibited VAP-1 in human plasma. The IC50 values measured were higher than those determined with the bovine enzyme. However, the structure-activity relationships obtained with the glycine amides were similar for both enzymes.


Assuntos
Amina Oxidase (contendo Cobre) , Monoaminoxidase , Animais , Bovinos , Humanos , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Aminas/farmacologia , Aldeídos , Amina Oxidase (contendo Cobre)/metabolismo , Glicina/farmacologia , Amidas/farmacologia
4.
Kidney Int ; 104(1): 90-107, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37121432

RESUMO

The polyamines spermidine and spermine and their common precursor molecule putrescine are involved in tissue injury and repair. Here, we test the hypothesis that impaired polyamine homeostasis contributes to various kidney pathologies in mice during experimental models of ischemia-reperfusion, transplantation, rhabdomyolysis, cyclosporine treatment, arterial hypertension, diabetes, unilateral ureteral obstruction, high oxalate feeding, and adenine-induced injuries. We found a remarkably similar pattern in most kidney pathologies with reduced expression of enzymes involved in polyamine synthesis together with increased expression of polyamine degrading enzymes. Transcript levels of amine oxidase copper-containing 1 (Aoc1), an enzyme which catalyzes the breakdown of putrescine, were barely detectable by in situ mRNA hybridization in healthy kidneys. Aoc1 was highly expressed upon various experimental kidney injuries resulting in a significant reduction of kidney putrescine content. Kidney levels of spermine were also significantly reduced, whereas spermidine was increased in response to ischemia-reperfusion injury. Increased Aoc1 expression in injured kidneys was mainly accounted for by an Aoc1 isoform that harbors 22 additional amino acids at its N-terminus and shows increased secretion. Mice with germline deletion of Aoc1 and injured kidneys showed no decrease of kidney putrescine content; although they displayed no overt phenotype, they had fewer tubular casts upon ischemia-reperfusion injury. Hyperosmotic stress stimulated AOC1 expression at the transcriptional and post-transcription levels in metanephric explants and kidney cell lines. AOC1 expression was also significantly enhanced after kidney transplantation in humans. These data demonstrate that the kidneys respond to various forms of injury with down-regulation of polyamine synthesis and activation of the polyamine breakdown pathway. Thus, an imbalance in kidney polyamines may contribute to various etiologies of kidney injury.


Assuntos
Amina Oxidase (contendo Cobre) , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , Poliaminas/metabolismo , Espermidina/metabolismo , Putrescina/metabolismo , Espermina/metabolismo , Espermina/farmacologia , Acetiltransferases/genética , Acetiltransferases/metabolismo , Rim/patologia , Amina Oxidase (contendo Cobre)/metabolismo , Traumatismo por Reperfusão/patologia , Expressão Gênica
5.
Biochemistry (Mosc) ; 88(4): 491-501, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37080935

RESUMO

The review describes the syndrome of endogenous intoxication in patients with mental disorders. Oxidative stress, middle-mass endotoxic molecules, impaired functional properties of serum albumin and albumin thiol groups, neurotrophic factors, and enzymes, including monoamine oxidase and semicarbazide-sensitive amine oxidase contribute to the development of endogenous intoxication. Possible pathogenetic mechanisms of the endogenous intoxication development in mental disorders and approaches to its treatment are discussed.


Assuntos
Amina Oxidase (contendo Cobre) , Transtornos Mentais , Humanos , Monoaminoxidase , Albumina Sérica , Estresse Oxidativo , Amina Oxidase (contendo Cobre)/metabolismo
6.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835077

RESUMO

The progress of space science and technology has ushered in a new era for humanity's exploration of outer space. Recent studies have indicated that the aerospace special environment including microgravity and space radiation poses a significant risk to the health of astronauts, which involves multiple pathophysiological effects on the human body as well on tissues and organs. It has been an important research topic to study the molecular mechanism of body damage and further explore countermeasures against the physiological and pathological changes caused by the space environment. In this study, we used the rat model to study the biological effects of the tissue damage and related molecular pathway under either simulated microgravity or heavy ion radiation or combined stimulation. Our study disclosed that ureaplasma-sensitive amino oxidase (SSAO) upregulation is closely related to the systematic inflammatory response (IL-6, TNF-α) in rats under a simulated aerospace environment. In particular, the space environment leads to significant changes in the level of inflammatory genes in heart tissues, thus altering the expression and activity of SSAO and causing inflammatory responses. The detailed molecular mechanisms have been further validated in the genetic engineering cell line model. Overall, this work clearly shows the biological implication of SSAO upregulation in microgravity and radiation-mediated inflammatory response, providing a scientific basis or potential target for further in-depth investigation of the pathological damage and protection strategy under a space environment.


Assuntos
Amina Oxidase (contendo Cobre) , Síndrome de Resposta Inflamatória Sistêmica , Animais , Ratos , Amina Oxidase (contendo Cobre)/metabolismo , Voo Espacial , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Ausência de Peso/efeitos adversos
7.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902055

RESUMO

Vegetal diamine oxidase (vDAO), an enzyme proposed to relieve symptoms of histaminosis, shows better reactivity with histamine and aliphatic diamines, as well as higher enzymatic activity than DAO of animal origin. The objective of this study was to evaluate the enzyme activity of vDAO from germinating grains from Lathyrus sativus (grass pea) and Pisum sativum (pea), and to verify the presence of a neurotoxin, ß-N-Oxalyl-L-α,ß-diaminopropionic acid (ß-ODAP), in the crude extract obtained from their seedlings. A targeted liquid chromatography-multiple-reaction monitoring mass spectrometry method was developed and used to quantify ß-ODAP in the analysed extracts. An optimized sample preparation procedure, involving protein precipitation with acetonitrile followed by mixed-anion exchange solid-phase extraction, allowed for high sensitivity and good peak shape for ß-ODAP detection. The Lathyrus sativus extract exhibited the highest vDAO enzyme activity of the extracts, followed by the extract from pea cultivar Amarillo from the Crop Development Centre (CDC). The results have also shown that even though ß-ODAP was present in the crude extract from L. sativus, its content was far below the toxicity threshold (300 mg of ß-ODAP/kg body/day). CDC Amarillo showed 5000-fold less ß-ODAP than the undialysed L. sativus extract. It was concluded that both species can be considered as convenient sources of vDAO for potential therapeutic use.


Assuntos
Amina Oxidase (contendo Cobre) , Diamino Aminoácidos , Lathyrus , Cromatografia Líquida/métodos , Amina Oxidase (contendo Cobre)/metabolismo , Espectrometria de Massas em Tandem , Diamino Aminoácidos/análise , Diamino Aminoácidos/química , Diamino Aminoácidos/metabolismo
8.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902376

RESUMO

Semicarbazide-sensitive amine oxidase (SSAO) is both a soluble- and membrane-bound transmembrane protein expressed in the vascular endothelial and in smooth muscle cells. In vascular endothelial cells, SSAO contributes to the development of atherosclerosis by mediating a leukocyte adhesion cascade; however, its contributory role in the development of atherosclerosis in VSMCs has not yet been fully explored. This study investigates SSAO enzymatic activity in VSMCs using methylamine and aminoacetone as model substrates. The study also addresses the mechanism by which SSAO catalytic activity causes vascular damage, and further evaluates the contribution of SSAO in oxidative stress formation in the vascular wall. SSAO demonstrated higher affinity for aminoacetone when compared to methylamine (Km = 12.08 µM vs. 65.35 µM). Aminoacetone- and methylamine-induced VSMCs death at concentrations of 50 & 1000 µM, and their cytotoxic effect, was reversed with 100 µM of the irreversible SSAO inhibitor MDL72527, which completely abolished cell death. Cytotoxic effects were also observed after 24 h of exposure to formaldehyde, methylglyoxal and H2O2. Enhanced cytotoxicity was detected after the simultaneous addition of formaldehyde and H2O2, as well as methylglyoxal and H2O2. The highest ROS production was observed in aminoacetone- and benzylamine-treated cells. MDL72527 abolished ROS in benzylamine-, methylamine- and aminoacetone-treated cells (**** p < 0.0001), while ßAPN demonstrated inhibitory potential only in benzylamine-treated cells (* p < 0.05). Treatment with benzylamine, methylamine and aminoacetone reduced the total GSH levels (**** p < 0.0001); the addition of MDL72527 and ßAPN failed to reverse this effect. Overall, a cytotoxic consequence of SSAO catalytic activity was observed in cultured VSMCs where SSAO was identified as a key mediator in ROS formation. These findings could potentially associate SSAO activity with the early developing stages of atherosclerosis through oxidative stress formation and vascular damage.


Assuntos
Amina Oxidase (contendo Cobre) , Ratos , Animais , Amina Oxidase (contendo Cobre)/metabolismo , Músculo Liso Vascular/metabolismo , Peróxido de Hidrogênio/farmacologia , Aldeído Pirúvico/farmacologia , Células Endoteliais/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Metilaminas/metabolismo , Benzilaminas/farmacologia , Formaldeído/farmacologia
9.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139139

RESUMO

Copper-containing amine oxidases (CuAOs) are known to have significant involvement in the process of polyamine catabolism, as well as serving crucial functions in plant development and response to abiotic stress. A genome-wide investigation of the CuAO protein family was previously carried out in sweet orange (Citrus sinensis) and sweet cherry (Prunus avium L.). Six CuAO (KoCuAO1-KoCuAO6) genes were discovered for the first time in the Kandelia obovata (Ko) genome through a genome-wide analysis conducted to better understand the key roles of the CuAO gene family in Kandelia obovata. This study encompassed an investigation into various aspects of gene analysis, including gene characterization and identification, subcellular localization, chromosomal distributions, phylogenetic tree analysis, gene structure analysis, motif analysis, duplication analysis, cis-regulatory element identification, domain and 3D structural variation analysis, as well as expression profiling in leaves under five different treatments of copper (CuCl2). Phylogenetic analysis suggests that these KoCuAOs, like sweet cherry, may be subdivided into three subgroups. Examining the chromosomal location revealed an unequal distribution of the KoCuAO genes across four out of the 18 chromosomes in Kandelia obovata. Six KoCuAO genes have coding regions with 106 and 159 amino acids and exons with 4 and 12 amino acids. Additionally, we discovered that the 2.5 kb upstream promoter region of the KoCuAOs predicted many cis elements linked to phytohormones and stress responses. According to the expression investigations, CuCl2 treatments caused up- and downregulation of all six genes. In conclusion, our work provides a comprehensive overview of the expression pattern and functional variety of the Kandelia obovata CuAO gene family, which will facilitate future functional characterization of each KoCuAO gene.


Assuntos
Amina Oxidase (contendo Cobre) , Rhizophoraceae , Rhizophoraceae/genética , Amina Oxidase (contendo Cobre)/metabolismo , Filogenia , Cobre/metabolismo , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Vnitr Lek ; 69(1): 37-40, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36931880

RESUMO

Histamine intolerance (HIT) is a non-immunological disorder associated with an impaired ability to metabolize ingested histamine. Manifestation of HIT includes gastrointestinal and non-gastrointestinal symptoms. Clinical symptoms of HIT are non-specific and can imitate different diseases such as allergies, food intolerance, mastocytosis and other. The diagnosis of HIT is difficult. There are several candidate tests to detect DAO insufficiency, but their informative value is questionable. Currently, a positive clinical effect of a low-histamine diet is the most important for establishing the diagnosis. Equally in the treatment, a low-histamine diet is the most crucial approach. Other therapeutic options such as DAO supplementation treatment with antihistamines or probiotics are considered as complementary treatments. Our article provides a review on histamine intolerance, focusing on etiology and the diagnostic and treatment possibilities.


Assuntos
Amina Oxidase (contendo Cobre) , Hipersensibilidade Alimentar , Humanos , Histamina/metabolismo , Hipersensibilidade Alimentar/diagnóstico , Hipersensibilidade Alimentar/terapia , Hipersensibilidade Alimentar/etiologia , Amina Oxidase (contendo Cobre)/metabolismo
11.
Glycobiology ; 32(5): 404-413, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35088086

RESUMO

Elevated plasma and tissues histamine concentrations can cause severe symptoms in mast cell activation syndrome, mastocytosis or anaphylaxis. Endogenous and recombinant human diamine oxidase (rhDAO) can rapidly and completely degrade histamine, and administration of rhDAO represents a promising new treatment approach for diseases with excess histamine release from activated mast cells. We recently generated heparin-binding motif mutants of rhDAO with considerably increased in vivo half-lives in rodents compared with the rapidly cleared wildtype protein. Herein, we characterize the role of an evolutionary recently added glycosylation site asparagine 168 in the in vivo clearance and the influence of an unusually solvent accessible free cysteine 123 on the oligomerization of diamine oxidase (DAO). Mutation of the unpaired cysteine 123 strongly reduced oligomerization without influence on enzymatic DAO activity and in vivo clearance. Recombinant hDAO produced in ExpiCHO-S™ cells showed a 15-fold reduction in the percentage of glycans with terminal sialic acid at Asn168 compared with Chinese hamster ovary (CHO)-K1 cells. Capping with sialic acid was also strongly reduced at the other glycosylation sites. The high abundance of terminal mannose and N-acetylglucosamine residues in the four glycans expressed in ExpiCHO-S™ cells compared with CHO-K1 cells resulted in rapid in vivo clearance. Mutation of Asn168 or sialidase treatment also significantly increased clearance. Intact N-glycans at Asn168 seem to protect DAO from rapid clearance in rodents. Full processing of all glycoforms is critical for preserving the improved in vivo half-life characteristics of the rhDAO heparin-binding motif mutants.


Assuntos
Amina Oxidase (contendo Cobre) , Amina Oxidase (contendo Cobre)/química , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Cisteína , Glicosilação , Heparina , Histamina/metabolismo , Humanos , Ácido N-Acetilneuramínico , Polissacarídeos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
J Pharmacol Exp Ther ; 382(2): 113-122, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35688477

RESUMO

Nafamostat is an approved short-acting serine protease inhibitor. However, its administration is also associated with anaphylactic reactions. One mechanism to augment hypersensitivity reactions could be inhibition of diamine oxidase (DAO). The chemical structure of nafamostat is related to the potent DAO inhibitors pentamidine and diminazene. Therefore, we tested whether nafamostat is a human DAO inhibitor. Using different activity assays, nafamostat reversibly inhibited recombinant human DAO with an IC50 of 300-400 nM using 200 µM substrate concentrations. The Ki of nafamostat for the inhibition of putrescine and histamine deamination is 27 nM and 138 nM, respectively For both substrates, nafamostat is a mixed mode inhibitor with P values of <0.01 compared with other inhibition types. Using 80-90% EDTA plasma, the IC50 of nafamostat inhibition was approximately 360 nM using 20 µM cadaverine. In 90% EDTA plasma, the IC50 concentrations were 2-3 µM using 0.9 µM and 0.18 µM histamine as substrate. In silico modeling showed a high overlap compared with published diminazene crystallography data, with a preferred orientation of the guanidine group toward topaquinone. In conclusion, nafamostat is a potent human DAO inhibitor and might increase severity of anaphylactic reaction by interfering with DAO-mediated extracellular histamine degradation. SIGNIFICANCE STATEMENT: Treatment with the short-acting anticoagulant nafamostat during hemodialysis, leukocytapheresis, extracorporeal membrane oxygenator procedures, and disseminated intravascular coagulation is associated with severe anaphylaxis in humans. Histamine is a central mediator in anaphylaxis. Potent inhibition of the only extracellularly histamine-degrading enzyme diamine oxidase could augment anaphylaxis reactions during nafamostat treatment.


Assuntos
Amina Oxidase (contendo Cobre) , Anafilaxia , Amina Oxidase (contendo Cobre)/metabolismo , Benzamidinas , Diminazena , Ácido Edético , Guanidinas/efeitos adversos , Histamina/efeitos adversos , Histamina/metabolismo , Humanos
13.
Inflamm Res ; 71(4): 497-511, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35303133

RESUMO

OBJECTIVE: To evaluate the contribution of endogenous diamine oxidase (DAO) in the inactivation of exogenous histamine, to find a mouse strain with increased histamine sensitivity and to test the efficacy of rhDAO in a histamine challenge model. METHODS: Diamine oxidase knockout (KO) mice were challenged with orally and subcutaneously administered histamine in combination with the ß-adrenergic blocker propranolol, with the two histamine-N-methyltransferase (HNMT) inhibitors metoprine and tacrine, with folic acid to mimic acute kidney injury and treated with recombinant human DAO. Core body temperature was measured using a subcutaneously implanted microchip and histamine plasma levels were quantified using a homogeneous time resolved fluorescence assay. RESULTS: Core body temperature and plasma histamine levels were not significantly different between wild type (WT) and DAO KO mice after oral and subcutaneous histamine challenge with and without acute kidney injury or administration of HNMT inhibitors. Treatment with recombinant human DAO reduced the mean area under the curve (AUC) for core body temperature loss by 63% (p = 0.002) and the clinical score by 88% (p < 0.001). The AUC of the histamine concentration was reduced by 81%. CONCLUSIONS: Inactivation of exogenous histamine is not driven by enzymatic degradation and kidney filtration. Treatment with recombinant human DAO strongly reduced histamine-induced core body temperature loss, histamine concentrations and prevented the development of severe clinical symptoms.


Assuntos
Amina Oxidase (contendo Cobre) , Histamina , Injúria Renal Aguda/induzido quimicamente , Amina Oxidase (contendo Cobre)/genética , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Histamina/administração & dosagem , Histamina/metabolismo , Histamina N-Metiltransferase/metabolismo , Camundongos , Camundongos Knockout
14.
Support Care Cancer ; 30(11): 9369-9377, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36112225

RESUMO

PURPOSE: The relationship between activity of the small intestinal villi and the effectiveness of chemotherapy remains unclear. This study aimed to investigate how serum diamine oxidase (DAO) activity affects antitumor effects, adverse events, and amino acid absorption. METHODS: We performed a single-center prospective cohort study that enrolled 50 patients with esophageal cancer (EC) receiving docetaxel, cisplatin, and 5-fluorouracil therapy. We determined the cut-off value of serum DAO activity contributing to a response to chemotherapy using a generalized additive model. Additionally, we compared adverse events, inflammatory markers, blood amino acid levels, and quality of life between the high and low DAO activity groups during chemotherapy. RESULTS: The cut-off value of serum DAO activity at the first visit that contributed to a chemotherapy response was 6.5 units/L. Leukopenia and neutropenia of grade ≥ 3 were significantly higher in the DAO low (< 6.5 units/L) group (p = 0.044, 0.017, respectively). Interleukin-6 was significantly lower in the DAO high (≥ 6.5 units/L) group at the first visit and at 4 weeks after the end of chemotherapy (p = 0.039, 0.011, respectively). Glutamine was higher in the DAO high group at all measurement points during chemotherapy. Fatigue was significantly lower in the DAO high group (p = 0.001). CONCLUSION: Serum DAO activity may be a predictor of the response to chemotherapy in patients with EC. The absorption capacity of amino acids was maintained in the group with high DAO activity, which may have contributed to the anti-inflammatory effect and provided a background for reducing adverse events.


Assuntos
Amina Oxidase (contendo Cobre) , Antineoplásicos , Neoplasias , Humanos , Amina Oxidase (contendo Cobre)/metabolismo , Glutamina , Mucosa Intestinal/patologia , Estudos Prospectivos , Qualidade de Vida , Neoplasias/tratamento farmacológico , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico
15.
Immunopharmacol Immunotoxicol ; 44(5): 757-765, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35616237

RESUMO

BACKGROUND: Fentanyl is an analgesic used against pancreatitis-related pain, while whether it ameliorates severe acute pancreatitis (SAP) has yet to be checked. This study aims to determine fentanyl-delivered effect on SAP and the mechanism underlying this effect. METHODS: Rat SAP models were established, following fentanyl treatment. The serum activity of amylase (AMY), lipase (LIP), and diamine oxidase (DAO) was detected by enzyme-linked immunosorbent assay (ELISA). Histological examination was performed in the pancreatic and intestinal tissues with hematoxylin-eosin staining. After transfection with matrix metalloproteinase (MMP) 9 overexpression plasmids, Caco-2 monolayers were treated with fentanyl and subsequently exposed to lipopolysaccharide (LPS). The transepithelial electrical resistance (TEER) value was determined in rat intestinal mucosa through an Ussing chamber assisted by Analyze & Acquire, and in Caco-2 cell monolayers through a voltohmmeter. Intestinal mucosa and paracellular permeabilities were determined by fluorescein isothiocyanate (FITC)-labeled dextran assay. The expressions of ZO-1, Occludin, MMP9, Fas and Fas ligand (FasL) in rat intestinal mucosa and/or Caco-2 monolayers were analyzed by qRT-PCR or/and western blot. RESULTS: Fentanyl alleviated SAP-related histological alterations in the pancreas and intestines, reduced the elevated levels of SAP-related AMY, LIP, and DAO, but promoted the levels of ZO-1 and Occludin. In SAP rats and Caco-2 monolayers, SAP-related or LPS-induced TEER value decreases, permeability increases, and increases in the expressions of MMP9, Fas, and FasL were reversed partly by fentanyl. Notably, MMP9 overexpression could reverse the above fentanyl-delivered in vitro effects. CONCLUSIONS: Fentanyl alleviates intestinal mucosal barrier damage in rats with SAP by inhibiting the MMP9/FasL/Fas pathway.


Assuntos
Amina Oxidase (contendo Cobre) , Pancreatite , Doença Aguda , Amina Oxidase (contendo Cobre)/metabolismo , Amina Oxidase (contendo Cobre)/farmacologia , Amilases/metabolismo , Animais , Células CACO-2 , Dextranos/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Proteína Ligante Fas/metabolismo , Fentanila/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Humanos , Mucosa Intestinal , Lipase/metabolismo , Lipopolissacarídeos/farmacologia , Metaloproteinase 9 da Matriz , Ocludina/metabolismo , Ocludina/farmacologia , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Ratos
16.
Arch Pharm (Weinheim) ; 355(8): e2200111, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35507758

RESUMO

Amine oxidase copper containing 3 (AOC3), also known as plasma amine oxidase, semicarbazide-sensitive amine oxidase, or vascular adhesion protein-1, catalyzes the oxidative deamination of primary amines to aldehydes using copper and a quinone as cofactors. Because it is involved in the transmigration of inflammatory cells through blood vessels into tissues, AOC3 is thought to play an important role in inflammatory diseases. Therefore, inhibitors of this enzyme could lead to new therapeutics for the treatment of inflammation-related diseases. Recently, 6-(5-phenyl-2H-tetrazol-2-yl)hexan-1-amine was found to be a tight-binding substrate of AOC3. To obtain novel inhibitors of the enzyme, the amino group of this substrate was replaced with functional groups that occur in known AOC3 inhibitors, such as hydrazide or glycine amide moieties. In addition, derivatives of the compounds obtained in this way were prepared. The obtained hydrazide 5, which proved to be the most effective, was subjected to further structural modifications. Selected hydrazides were evaluated for selectivity toward some other amine oxidases.


Assuntos
Amina Oxidase (contendo Cobre) , Cobre , Amina Oxidase (contendo Cobre)/metabolismo , Aminas/farmacologia , Cobre/farmacologia , Hidrazinas/farmacologia , Monoaminoxidase , Relação Estrutura-Atividade
17.
J Allergy Clin Immunol ; 148(6): 1533-1544, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33864889

RESUMO

BACKGROUND: The number of mast cells in various organs is elevated manifold in individuals with systemic mastocytosis. Degranulation can lead to life-threatening symptomatology. No data about the alterations of the metabolome and lipidome during an attack have been published. OBJECTIVE: Our aim was to analyze changes in metabolomics and lipidomics during the acute phase of a severe mast cell activation event. METHODS: A total of 43 metabolites and 11 lipid classes comprising 200 subvariants from multiple plasma samples in duplicate, covering 72 hours of a severe mast cell activation attack with nausea and vomiting, were compared with 2 baseline samples by using quantitative liquid chromatography-mass spectrometry. RESULTS: A strong enterocyte dysfunction reflected in an almost 20-fold reduction in the functional small bowel length was extrapolated from strongly reduced ornithine and citrulline concentrations and was very likely secondary to severe endothelial cell dysfunction with hypoperfusion and extensive vascular leakage. Highly increased histamine and lactate concentrations accompanied the peak in clinical symptoms. Elevated asymmetric and symmetric dimethylarginine levels combined with reduced arginine levels compromised endothelial nitric oxide synthase activity and nitric oxide signaling. Specific and extensive depletion of many lysophosphatidylcholine variants indicates localized autotaxin activation and lysophosphatidic acid release. A strong correlation of clinical parameters with histamine concentrations and symptom reduction after 100-fold elevated plasma diamine oxidase concentrations implies that histamine is the key driver of the acute phase. CONCLUSIONS: Rapid elimination of elevated histamine concentrations through use of recombinant human diamine oxidase, supplementation of lysophosphatidylcholine for immunomodulation, inhibition of autotaxin activity, and/or blockade of lysophosphatidic acid receptors might represent new treatment options for life-threatening mast cell activation events.


Assuntos
Amina Oxidase (contendo Cobre)/metabolismo , Mastócitos/imunologia , Mastocitose Sistêmica/metabolismo , Adulto , Degranulação Celular , Histamina/metabolismo , Humanos , Imunomodulação , Lipidômica , Lisofosfatidilcolinas/metabolismo , Masculino , Metaboloma , Náusea , Óxido Nítrico Sintase Tipo III/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Vômito
18.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613704

RESUMO

Cucumber (Cucumis sativus L.) is a crop plant being the third most-produced vegetable developed as a new model plant. Heavy metal pollution is a serious global problem that affects crop production. An industrial activity has led to high emissions of Cd into the environment. Plants realize adaptive strategies to diminish the toxic effects of Cd. They can remove excess toxic ions of heavy metals from the cytoplasm to the outside of cells using the metal/proton antiport. The proton gradient needed for the action of the antiporter is generated by the plasma membrane (PM) H+-ATPase (EC 3.6.3.14). We have shown that treatment of cucumber plants with Cd stimulated the diamine oxidase (DAO, EC 1.4.3.6) activity in roots. Under cadmium stress, the PM H+-ATPase activity also increased in cucumber seedlings. The stimulating effect of Cd on the PM H+-ATPase activity and expression of three genes encoding this enzyme (CsHA2, CsHA4, CsHA8) was reduced by aminoguanidine (AG, a DAO inhibitor). Moreover, we have observed that H2O2 produced by DAO promotes the formation of NO in the roots of seedlings. The results presented in this work showed that DAO may be an element of the signal transduction pathway, leading to enhanced PM H+-ATPase activity under cadmium stress.


Assuntos
Amina Oxidase (contendo Cobre) , Cucumis sativus , Metais Pesados , Cádmio/metabolismo , Cucumis sativus/genética , Plântula/genética , Amina Oxidase (contendo Cobre)/metabolismo , Prótons , Peróxido de Hidrogênio/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Metais Pesados/metabolismo , Membrana Celular/metabolismo , Transporte de Íons , Raízes de Plantas/metabolismo
19.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292969

RESUMO

Copper amine oxidases (CuAOs) play important roles in PA catabolism, plant growth and development, and abiotic stress response. In order to better understand how PA affects cherry fruit, four potential PavCuAO genes (PavCuAO1-PavCuAO4) that are dispersed over two chromosomes were identified in the sweet cherry genome. Based on phylogenetic analysis, they were classified into three subclasses. RNA-seq analysis showed that the PavCuAO genes were tissue-specific and mostly highly expressed in flowers and young leaves. Many cis-elements associated with phytohormones and stress responses were predicted in the 2 kb upstream region of the promoter. The PavCuAOs transcript levels were increased in response to abscisic acid (ABA) and gibberellin 3 (GA3) treatments, as well as abiotic stresses (NaCl, PEG, and cold). Quantitative fluorescence analysis and high-performance liquid chromatography confirmed that the Put content fell, and the PavCuAO4 mRNA level rose as the sweet cherry fruit ripened. After genetically transforming Arabidopsis with PavCuAO4, the Put content in transgenic plants decreased significantly, and the expression of the ABA synthesis gene NCED was also significantly increased. At the same time, excessive H2O2 was produced in PavCuAO4 transiently expressed tobacco leaves. The above results strongly proved that PavCuAO4 can decompose Put and may promote fruit ripening by increasing the content of ABA and H2O2 while suppressing total free PA levels in the fruit.


Assuntos
Amina Oxidase (contendo Cobre) , Arabidopsis , Prunus avium , Prunus avium/metabolismo , Ácido Abscísico/metabolismo , Amina Oxidase (contendo Cobre)/genética , Amina Oxidase (contendo Cobre)/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Giberelinas/metabolismo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Peróxido de Hidrogênio/metabolismo , Cloreto de Sódio/metabolismo , Cobre/metabolismo , Arabidopsis/genética , RNA Mensageiro/metabolismo , Poliaminas/metabolismo
20.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142202

RESUMO

To explore the protective effect of dietary ß-glucan (BGL) supplementation on intestinal epithelium exposure to enterotoxigenic Escherichia coli (ETEC), thirty-two weaned pigs were assigned to four groups. Pigs were fed with a basal diet or basal diet containing 500 mg/kg BGL, and were orally infused with ETEC or culture medium. Results showed BGL supplementation had no influence on growth performance in weaned pigs. However, BGL supplementation increased the absorption of D-xylose, and significantly decreased the serum concentrations of D-lactate and diamine oxidase (DAO) in the ETEC-challenged pigs (p < 0.05). Interestingly, BGL significantly increased the abundance of the zonula occludens-1-(ZO-1) in the jejunal epithelium upon ETEC challenge (p < 0.05). BGL supplementation also increased the number of S-phase cells and the number of sIgA-positive cells, but significantly decreased the number of total apoptotic cells in the jejunal epithelium upon ETEC challenge (p < 0.05). Moreover, BGL significantly increased the duodenal catalase (CAT) activity and the ileal total superoxide dismutase (T-SOD) activity in the ETEC-challenged pigs (p < 0.05). Importantly, BGL significantly decreased the expression levels of critical inflammation related proteins such as the tumor necrosis factor-α (TNF-α), interlukin-6 (IL-6), myeloid differentiation factor 88 (MyD88), and nuclear factor-κB (NF-κB) in the jejunal and ileal mucosa upon ETEC challenge (p < 0.05). BGL also elevated the propanoic acid content and the abundance of Lactobacillus and Bacillus in the colon upon ETEC challenge (p < 0.05). These results suggested BGL could alleviate the ETEC-induced intestinal epithelium injury, which may be associated with suppressed inflammation and improved intestinal immunity and antioxidant capacity, as well as the improved intestinal macrobiotic.


Assuntos
Amina Oxidase (contendo Cobre) , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , beta-Glucanas , Agrobacterium/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Antioxidantes/farmacologia , Catalase/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Imunoglobulina A Secretora/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Lactatos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Propionatos/farmacologia , Superóxido Dismutase/metabolismo , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/prevenção & controle , Fator de Necrose Tumoral alfa/metabolismo , Xilose/metabolismo , beta-Glucanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA