Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.410
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 160(5): 882-892, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25723163

RESUMO

Evolvability­the capacity to generate beneficial heritable variation­is a central property of biological systems. However, its origins and modulation by environmental factors have not been examined systematically. Here, we analyze the fitness effects of all single mutations in TEM-1 ß-lactamase (4,997 variants) under selection for the wild-type function (ampicillin resistance) and for a new function (cefotaxime resistance). Tolerance to mutation in this enzyme is bimodal and dependent on the strength of purifying selection in vivo, a result that derives from a steep non-linear ampicillin-dependent relationship between biochemical activity and fitness. Interestingly, cefotaxime resistance emerges from mutations that are neutral at low levels of ampicillin but deleterious at high levels; thus the capacity to evolve new function also depends on the strength of selection. The key property controlling evolvability is an excess of enzymatic activity relative to the strength of selection, suggesting that fluctuating environments might select for high-activity enzymes.


Assuntos
Resistência a Ampicilina , Cefotaxima/farmacologia , Evolução Molecular Direcionada , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , beta-Lactamases/genética , Ampicilina/farmacologia , Escherichia coli/enzimologia , Aptidão Genética , Mutação , Resistência beta-Lactâmica , beta-Lactamases/química
2.
Proc Natl Acad Sci U S A ; 120(3): e2209043119, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36634144

RESUMO

The emergence of antibiotic tolerance (prolonged survival against exposure) in natural bacterial populations is a major concern. Since it has been studied primarily in isogenic populations, we do not yet understand how ecological interactions in a diverse community impact the evolution of tolerance. To address this, we studied the evolutionary dynamics of a synthetic bacterial community composed of two interacting strains. In this community, an antibiotic-resistant strain protected the other, susceptible strain by degrading the antibiotic ampicillin in the medium. Surprisingly, we found that in the presence of antibiotics, the susceptible strain evolved tolerance. Tolerance was typified by an increase in survival as well as an accompanying decrease in the growth rate, highlighting a trade-off between the two. A simple mathematical model explained that the observed decrease in the death rate, even when coupled with a decreased growth rate, is beneficial in a community with weak protective interactions. In the presence of strong interactions, the model predicted that the trade-off would instead be detrimental, and tolerance would not emerge, which we experimentally verified. By whole genome sequencing the evolved tolerant isolates, we identified two genetic hot spots which accumulated mutations in parallel lines, suggesting their association with tolerance. Our work highlights that ecological interactions can promote antibiotic tolerance in bacterial communities, which has remained understudied.


Assuntos
Ampicilina , Antibacterianos , Antibacterianos/farmacologia , Ampicilina/farmacologia , Bactérias/genética , Mutação , Tolerância Imunológica , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
3.
J Proteome Res ; 23(10): 4480-4494, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39294851

RESUMO

Antibiotic resistance is a major global challenge requiring new treatments and a better understanding of the bacterial resistance mechanisms. In this study, we compared ampicillin-resistant (R-AMP) and gentamicin-resistant (R-GEN) Staphylococcus aureus strains with a sensitive strain (ATCC6538) using metabolomics. We identified 109 metabolites; 28 or 31 metabolites in R-AMP or R-GEN differed from those in ATCC6538. Moreover, R-AMP and R-GEN were enriched in five and four pathways, respectively. R-AMP showed significantly up-regulated amino acid metabolism and down-regulated energy metabolism, whereas R-GEN exhibited an overall decrease in metabolism, including carbohydrate, energy, and amino acid metabolism. Furthermore, the activities of the metabolism-related enzymes pyruvate dehydrogenase and TCA cycle dehydrogenases were inhibited in antibiotic-resistant bacteria. Significant decreases in NADH and ATP levels were also observed. In addition, the arginine biosynthesis pathway, which is related to nitric oxide (NO) production, was enriched in both antibiotic-resistant strains. Enhanced NO synthase activity in S. aureus promoted NO production, which further reduced reactive oxygen species, mediating the development of bacterial resistance to ampicillin and gentamicin. This study reveals that bacterial resistance affects metabolic profile, and changes in energy metabolism and arginine biosynthesis are important factors leading to drug resistance in S. aureus.


Assuntos
Ampicilina , Antibacterianos , Metabolismo Energético , Gentamicinas , Redes e Vias Metabólicas , Metabolômica , Staphylococcus aureus , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Gentamicinas/farmacologia , Ampicilina/farmacologia , Metabolômica/métodos , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Antibacterianos/farmacologia , Óxido Nítrico/metabolismo , Farmacorresistência Bacteriana , Espécies Reativas de Oxigênio/metabolismo , Aminoácidos/metabolismo , Trifosfato de Adenosina/metabolismo , Metaboloma/efeitos dos fármacos
4.
J Biol Chem ; 299(5): 104630, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963495

RESUMO

CTX-M ß-lactamases are a widespread source of resistance to ß-lactam antibiotics in Gram-negative bacteria. These enzymes readily hydrolyze penicillins and cephalosporins, including oxyimino-cephalosporins such as cefotaxime. To investigate the preference of CTX-M enzymes for cephalosporins, we examined eleven active-site residues in the CTX-M-14 ß-lactamase model system by alanine mutagenesis to assess the contribution of the residues to catalysis and specificity for the hydrolysis of the penicillin, ampicillin, and the cephalosporins cephalothin and cefotaxime. Key active site residues for class A ß-lactamases, including Lys73, Ser130, Asn132, Lys234, Thr216, and Thr235, contribute significantly to substrate binding and catalysis of penicillin and cephalosporin substrates in that alanine substitutions decrease both kcat and kcat/KM. A second group of residues, including Asn104, Tyr105, Asn106, Thr215, and Thr216, contribute only to substrate binding, with the substitutions decreasing only kcat/KM. Importantly, calculating the average effect of a substitution across the 11 active-site residues shows that the most significant impact is on cefotaxime hydrolysis while ampicillin hydrolysis is least affected, suggesting the active site is highly optimized for cefotaxime catalysis. Furthermore, we determined X-ray crystal structures for the apo-enzymes of the mutants N106A, S130A, N132A, N170A, T215A, and T235A. Surprisingly, in the structures of some mutants, particularly N106A and T235A, the changes in structure propagate from the site of substitution to other regions of the active site, suggesting that the impact of substitutions is due to more widespread changes in structure and illustrating the interconnected nature of the active site.


Assuntos
Domínio Catalítico , Cefalosporinas , Resistência a Medicamentos , Escherichia coli , beta-Lactamases , Ampicilina/metabolismo , Ampicilina/farmacologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Catálise , Domínio Catalítico/genética , Cefotaxima/metabolismo , Cefotaxima/farmacologia , Cefalosporinas/metabolismo , Cefalosporinas/farmacologia , Resistência a Medicamentos/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Mutagênese , Penicilinas/metabolismo , Penicilinas/farmacologia , beta-Lactamas/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína
5.
BMC Genomics ; 25(1): 178, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355437

RESUMO

BACKGROUND: Acute Hepatopancreatic Necrosis Disease (AHPND) causes significant mortality in shrimp aquaculture. The infection is primarily instigated by Vibrio parahaemolyticus (Vp) strains carrying a plasmid encoding the binary toxin PirAB. Yet, comprehension of supplementary virulence factors associated with this relatively recent disease remains limited. Furthermore, the same holds for gastroenteritis in humans caused by other Vp genotypes. Additionally, given the prevalent use of antibiotics to combat bacterial infections, it becomes imperative to illuminate the presence of antimicrobial resistance genes within these bacteria. RESULTS: A subsampled number of 1,036 Vp genomes was screened for the presence of antimicrobial resistance genes, revealing an average prevalence of 5 ± 2 (SD) genes. Additional phenotypic antimicrobial susceptibility testing of three Vp strains (M0904, TW01, and PV1) sequenced in this study demonstrated resistance to ampicillin by all tested strains. Additionally, Vp M0904 showed multidrug resistance (against ampicillin, tetracycline, and trimethoprim-sulfamethoxazole). With a focus on AHPND, a screening of all Vibrio spp. for the presence of pirA and/or pirB indicates an estimated prevalence of 0.6%, including four V. campbellii, four V. owensii, and a Vibrio sp. next to Vp. Their pirAB-encoding plasmids exhibited a highly conserved backbone, with variations primarily in the region of the Tn3 family transposase. Furthermore, an assessment of the subsampled Vp genomes for the presence of known virulence factors showed a correlation between the presence of the Type 3 Secretion System 2 and tdh, while the presence of the Type 6 Secretion System 1 was clade dependent. Furthermore, a genome-wide association study (GWAS) unveiled (new) genes associated with pirA, pirB, tdh, and trh genotypes. Notable associations with the pirAB genotype included outer membrane proteins, immunoglobulin-like domain containing proteins, and toxin-antitoxin systems. For the tdh + /trh + genotypes (containing tdh, trh, or both genes), associations were found with T3SS2 genes, urease-related genes and nickel-transport system genes, and genes involved in a 'minimal' type I-F CRISPR mechanism. CONCLUSIONS: This study highlights the prevalence of antimicrobial resistance and virulence genes in Vp, identifying novel genetic markers associated with AHPND and tdh + /trh + genotypes. These findings contribute valuable insights into the genomic basis of these genotypes, with implications for shrimp aquaculture and food safety.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Humanos , Animais , Vibrio parahaemolyticus/genética , Antibacterianos/farmacologia , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Prevalência , Farmacorresistência Bacteriana/genética , Genômica , Genótipo , Fatores de Virulência/genética , Ampicilina , Necrose , Penaeidae/genética , Penaeidae/microbiologia
6.
BMC Genomics ; 25(1): 287, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500034

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) remains a significant global health threat particularly impacting low- and middle-income countries (LMICs). These regions often grapple with limited healthcare resources and access to advanced diagnostic tools. Consequently, there is a pressing need for innovative approaches that can enhance AMR surveillance and management. Machine learning (ML) though underutilized in these settings, presents a promising avenue. This study leverages ML models trained on whole-genome sequencing data from England, where such data is more readily available, to predict AMR in E. coli, targeting key antibiotics such as ciprofloxacin, ampicillin, and cefotaxime. A crucial part of our work involved the validation of these models using an independent dataset from Africa, specifically from Uganda, Nigeria, and Tanzania, to ascertain their applicability and effectiveness in LMICs. RESULTS: Model performance varied across antibiotics. The Support Vector Machine excelled in predicting ciprofloxacin resistance (87% accuracy, F1 Score: 0.57), Light Gradient Boosting Machine for cefotaxime (92% accuracy, F1 Score: 0.42), and Gradient Boosting for ampicillin (58% accuracy, F1 Score: 0.66). In validation with data from Africa, Logistic Regression showed high accuracy for ampicillin (94%, F1 Score: 0.97), while Random Forest and Light Gradient Boosting Machine were effective for ciprofloxacin (50% accuracy, F1 Score: 0.56) and cefotaxime (45% accuracy, F1 Score:0.54), respectively. Key mutations associated with AMR were identified for these antibiotics. CONCLUSION: As the threat of AMR continues to rise, the successful application of these models, particularly on genomic datasets from LMICs, signals a promising avenue for improving AMR prediction to support large AMR surveillance programs. This work thus not only expands our current understanding of the genetic underpinnings of AMR but also provides a robust methodological framework that can guide future research and applications in the fight against AMR.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Ampicilina , Cefotaxima , Aprendizado de Máquina , Nigéria
7.
EMBO J ; 39(20): e104231, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32882062

RESUMO

Bile salts are secreted into the gastrointestinal tract to aid in the absorption of lipids. In addition, bile salts show potent antimicrobial activity in part by mediating bacterial protein unfolding and aggregation. Here, using a protein folding sensor, we made the surprising discovery that the Escherichia coli periplasmic glycerol-3-phosphate (G3P)-binding protein UgpB can serve, in the absence of its substrate, as a potent molecular chaperone that exhibits anti-aggregation activity against bile salt-induced protein aggregation. The substrate G3P, which is known to accumulate in the later compartments of the digestive system, triggers a functional switch between UgpB's activity as a molecular chaperone and its activity as a G3P transporter. A UgpB mutant unable to bind G3P is constitutively active as a chaperone, and its crystal structure shows that it contains a deep surface groove absent in the G3P-bound wild-type UgpB. Our work illustrates how evolution may be able to convert threats into signals that first activate and then inactivate a chaperone at the protein level in a manner that bypasses the need for ATP.


Assuntos
Bile/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Glicerofosfatos/metabolismo , Chaperonas Moleculares/metabolismo , Ampicilina/farmacologia , Proteínas de Transporte/genética , Dicroísmo Circular , Cristalografia por Raios X , Elementos de DNA Transponíveis/genética , Proteínas de Escherichia coli/genética , Deleção de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Concentração de Íons de Hidrogênio , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Conformação Molecular , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Proteoma/metabolismo
8.
Ann Surg ; 279(4): 640-647, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099477

RESUMO

OBJECTIVE: To assess the effect of antimicrobial prophylaxis with ampicillin-sulbactam (ABPC/SBT) compared with cefazolin (CEZ) on the short-term outcomes after esophagectomy. BACKGROUND: CEZ is widely used for antimicrobial prophylaxis in esophagectomy without procedure-specific evidence, whereas ABPC/SBT is preferred in some hospitals to target both aerobic and anaerobic oral bacteria. METHODS: Data of patients who underwent esophagectomy for cancer between July 2010 and March 2019 were extracted from a nationwide Japanese inpatient database. Overlap propensity score weighting was conducted to compare the short-term outcomes [including surgical site infection (SSI), anastomotic leakage, and respiratory failure] between antimicrobial prophylaxis with CEZ and ABPC/SBT after adjusting for potential confounders. Sensitivity analyses were also performed using propensity score matching and instrumental variable analyses. RESULTS: Among 17,772 eligible patients, 16,077 (90.5%) and 1695 (9.5%) patients were administered CEZ and ABPC/SBT, respectively. SSI, anastomotic leakage, and respiratory failure occurred in 2971 (16.7%), 2604 (14.7%), and 2754 patients (15.5%), respectively. After overlap weighting, ABPC/SBT was significantly associated with a reduction in SSI [odds ratio 0.51 (95% CI: 0.43-0.60)], anastomotic leakage [0.51 (0.43-0.61)], and respiratory failure [0.66 (0.57-0.77)]. ABPC/SBT was also associated with reduced respiratory complications, postoperative length of stay, and total hospitalization costs. The proportion of Clostridioides difficile colitis and noninfectious complications did not differ between the groups. Propensity score matching and instrumental variable analyses demonstrated equivalent results. CONCLUSIONS: The administration of ABPC/SBT as antimicrobial prophylaxis for esophagectomy was associated with better short-term postoperative outcomes compared with CEZ.


Assuntos
Anti-Infecciosos , Insuficiência Respiratória , Humanos , Cefazolina/uso terapêutico , Japão , Pacientes Internados , Fístula Anastomótica , Esofagectomia , Ampicilina/uso terapêutico , Sulbactam/uso terapêutico , Infecção da Ferida Cirúrgica/epidemiologia , Infecção da Ferida Cirúrgica/prevenção & controle , Infecção da Ferida Cirúrgica/tratamento farmacológico
9.
Biochem Biophys Res Commun ; 714: 149974, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663094

RESUMO

Due to the rapid emergence of antibiotic resistant new bacterial strains and new infections, there is an urgent need for novel or newly modified and efficient alternatives of treatment. However, conventional antibiotics are still used in therapeutic settings but their efficacy is uncertain due to the rapid evolution of drug resistance. In the present study, we have synthesized a new derivative of conventional antibiotic ampicillin using SN2-type substitution reaction. NMR and mass analysis of the newly synthesized derivative of ampicillin confirmed it as ampicillin-bromo-methoxy-tetralone (ABMT). Importantly, ABMT is revealed to have efficient activity against Staphylococcus aureus (S. aureus) with a MIC value of 32 µg ml-1 while ampicillin was not effective, even at 64 µg ml-1 of concentration. Electron microscopy results confirmed the membrane-specific killing of S. aureus at 1 h of treatment. Additionally, molecular docking analysis revealed a strong binding affinity of ABMT with ß-lactamase via the formation of a closed compact bridge. Our findings, avail a new derivative of ampicillin that could be a potential alternative to fight ampicillin-resistant bacteria possibly by neutralizing the ß-lactamase action.


Assuntos
Ampicilina , Antibacterianos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Staphylococcus aureus , Ampicilina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Tetralonas/farmacologia , Tetralonas/química , Tetralonas/síntese química , Resistência a Ampicilina , beta-Lactamases/metabolismo
10.
Biochem Biophys Res Commun ; 710: 149859, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38581948

RESUMO

Penicillin-binding protein 2 (PBP2) plays a key role in the formation of peptidoglycans in bacterial cell walls by crosslinking glycan chains through transpeptidase activity. PBP2 is also found in Campylobacter jejuni, a pathogenic bacterium that causes food-borne enteritis in humans. To elucidate the essential structural features of C. jejuni PBP2 (cjPBP2) that mediate its biological function, we determined the crystal structure of cjPBP2 and assessed its protein stability under various conditions. cjPBP2 adopts an elongated two-domain structure, consisting of a transpeptidase domain and a pedestal domain, and contains typical active site residues necessary for transpeptidase activity, as observed in other PBP2 proteins. Moreover, cjPBP2 responds to ß-lactam antibiotics, including ampicillin, cefaclor, and cefmetazole, suggesting that ß-lactam antibiotics inactivate cjPBP2. In contrast to typical PBP2 proteins, cjPBP2 is a rare example of a Zn2+-binding PBP2 protein, as the terminal structure of its transpeptidase domain accommodates a Zn2+ ion via three cysteine residues and one histidine residue. Zn2+ binding helps improve the protein stability of cjPBP2, providing opportunities to develop new C. jejuni-specific antibacterial drugs that counteract the Zn2+-binding ability of cjPBP2.


Assuntos
Campylobacter jejuni , Peptidil Transferases , Humanos , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Antibacterianos/farmacologia , Ampicilina/farmacologia , Proteínas de Bactérias
11.
J Mol Recognit ; 37(5): e3100, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39014869

RESUMO

Metallo-ß-lactamases (MßLs) hydrolyze and inactivate ß-lactam antibiotics, are a pivotal mechanism conferring resistance against bacterial infections. SMB-1, a novel B3 subclass of MßLs from Serratia marcescens could deactivate almost all ß-lactam antibiotics including ampicillin (AMP), which has posed a serious threat to public health. To illuminate the mechanism of recognition and interaction between SMB-1 and AMP, various fluorescence spectroscopy techniques and molecular dynamics simulation were employed. The results of quenching spectroscopy unraveled that AMP could make SMB-1 fluorescence quenching that mechanism was the static quenching; the synchronous and three-dimensional fluorescence spectra validated that the microenvironment and conformation of SMB-1 were altered after interaction with AMP. The molecular dynamics results demonstrated that the whole AMP enters the binding pocket of SMB-1, even though with a relatively bulky R1 side chain. Loop1 and loop2 in SMB-1 undergo significant fluctuations, and α2 (71-73) and local α5 (186-188) were turned into random coils, promoting zinc ion exposure consistent with circular dichroism spectroscopy results. The binding between them was driven by a combination of enthalpy and entropy changes, which was dominated by electrostatic force in agreement with the fluorescence observations. The present study brings structural insights and solid foundations for the design of new substrates for ß-lactamases and the development of effective antibiotics that are resistant to superbugs.


Assuntos
Ampicilina , Simulação de Dinâmica Molecular , Serratia marcescens , Espectrometria de Fluorescência , beta-Lactamases , beta-Lactamases/química , beta-Lactamases/metabolismo , Ampicilina/química , Ampicilina/metabolismo , Ampicilina/farmacologia , Serratia marcescens/enzimologia , Ligação Proteica , Sítios de Ligação , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
12.
J Antimicrob Chemother ; 79(9): 2227-2236, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39031073

RESUMO

BACKGROUND: Sulbactam dosing for Acinetobacter baumannii infections has not been standardized due to limited available pharmacokinetics/pharmacodynamics (PK/PD) data. Herein, we report a comprehensive PK/PD analysis of ampicillin-sulbactam against A. baumannii pneumonia. METHODS: Twenty-one A. baumannii clinical isolates were tested in the neutropenic murine pneumonia model. For dose-ranging studies, groups of mice were administered escalating doses of ampicillin-sulbactam. Changes in log10cfu/lungs relative to 0 h were assessed. Dose-fractionation studies were performed. Estimates of the percentage of of time during which the unbound plasma sulbactam concentrations exceeded the MIC (%fT > MIC) required for different efficacy endpoints were calculated. The probabilities of target attainment (PTA) for the 1-log kill plasma targets were estimated following clinically utilized sulbactam regimens. RESULTS: Dose-fractionation studies demonstrated time-dependent kill. Isolates resistant to both sulbactam and meropenem required three times the exposures to achieve 1-log kill; median [IQR] %fT > MIC of 60.37% [51.6-66.8] compared with other phenotypes (21.17 [16.0-32.9] %fT > MIC). Sulbactam standard dose (1 g q6h, 0.5 h infusion) provided >90% PTA up to MIC of 4 mg/L. Sulbactam 3 g q8h, 4 h inf provided greater PTA for isolates with sulbactam-intermediate susceptibility (8 mg/L, 100% versus 86% following the standard dose). Despite the higher exposure following 3 g q8h, 4 h inf, PTA was ≤57% among sulbactam-resistant/meropenem-resistant isolates. CONCLUSION: Sulbactam standard dose is a valuable regimen across sulbactam-susceptible isolates while the high-dose extended-infusion provides additional benefit against sulbactam-intermediate isolates. Given that most of the sulbactam-resistant A. baumannii isolates are meropenem-resistant, high-dose prolonged-infusion regimens are not expected to be effective as monotherapy against infections due to these isolates.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Ampicilina , Antibacterianos , Testes de Sensibilidade Microbiana , Sulbactam , Acinetobacter baumannii/efeitos dos fármacos , Sulbactam/farmacocinética , Sulbactam/administração & dosagem , Sulbactam/farmacologia , Sulbactam/uso terapêutico , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Animais , Ampicilina/farmacocinética , Ampicilina/administração & dosagem , Ampicilina/farmacologia , Camundongos , Feminino , Modelos Animais de Doenças , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Humanos
13.
J Antimicrob Chemother ; 79(4): 801-809, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334390

RESUMO

OBJECTIVES: To investigate the genomic diversity and ß-lactam susceptibilities of Enterococcus faecalis collected from patients with infective endocarditis (IE). METHODS: We collected 60 contemporary E. faecalis isolates from definite or probable IE cases identified between 2018 and 2021 at the University of Pittsburgh Medical Center. We used whole-genome sequencing to study bacterial genomic diversity and employed antibiotic checkerboard assays and a one-compartment pharmacokinetic-pharmacodynamic (PK/PD) model to investigate bacterial susceptibility to ampicillin and ceftriaxone both alone and in combination. RESULTS: Genetically diverse E. faecalis were collected, however, isolates belonging to two STs, ST6 and ST179, were collected from 21/60 (35%) IE patients. All ST6 isolates encoded a previously described mutation upstream of penicillin-binding protein 4 (pbp4) that is associated with pbp4 overexpression. ST6 isolates had higher ceftriaxone MICs and higher fractional inhibitory concentration index values for ampicillin and ceftriaxone (AC) compared to other isolates, suggesting diminished in vitro AC synergy against this lineage. Introduction of the pbp4 upstream mutation found among ST6 isolates caused increased ceftriaxone resistance in a laboratory E. faecalis isolate. PK/PD testing showed that a representative ST6 isolate exhibited attenuated efficacy of AC combination therapy at humanized antibiotic exposures. CONCLUSIONS: We find evidence for diminished in vitro AC activity among a subset of E. faecalis IE isolates with increased pbp4 expression. These findings suggest that alternate antibiotic combinations against diverse contemporary E. faecalis IE isolates should be evaluated.


Assuntos
Endocardite Bacteriana , Endocardite , Infecções por Bactérias Gram-Positivas , Humanos , Ceftriaxona/farmacologia , Ceftriaxona/uso terapêutico , Enterococcus faecalis , Ampicilina/farmacologia , Ampicilina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Endocardite Bacteriana/tratamento farmacológico , Endocardite Bacteriana/microbiologia , Endocardite/tratamento farmacológico , Testes de Sensibilidade Microbiana , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Quimioterapia Combinada
14.
J Antimicrob Chemother ; 79(2): 403-411, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153239

RESUMO

BACKGROUND: Streptococcus suis is an important pig pathogen and an emerging zoonotic agent. In a previous study, we described a high proportion of penicillin-resistant serotype 9 S. suis (SS9) isolates on pig farms in Italy. OBJECTIVES: We hypothesized that resistance to penicillin emerged in some SS9 lineages characterized by substitutions at the PBPs, contributing to the successful spread of these lineages in the last 20 years. METHODS: Sixty-six SS9 isolates from cases of streptococcosis in pigs were investigated for susceptibility to penicillin, ceftiofur and ampicillin. The isolates were characterized for ST, virulence profile, and antimicrobial resistance genes through WGS. Multiple linear regression models were employed to investigate the associations between STs, year of isolation, substitutions at the PBPs and an increase in MIC values to ß-lactams. RESULTS: MIC values to penicillin increased by 4% each year in the study period. Higher MIC values for penicillin were also positively associated with ST123, ST1540 and ST1953 compared with ST16. The PBP sequences presented a mosaic organization of blocks. Within the same ST, substitutions at the PBPs were generally more frequent in recent isolates. Resistance to penicillin was driven by substitutions at PBP2b, including K479T, D512E and K513E, and PBP2x, including T551S, while reduced susceptibility to ceftiofur and ampicillin were largely dependent on substitutions at PBP2x. CONCLUSIONS: Here, we identify the STs and substitutions at the PBPs responsible for increased resistance of SS9 to penicillin on Italian pig farms. Our data highlight the need for monitoring the evolution of S. suis in the coming years.


Assuntos
Aminoaciltransferases , Cefalosporinas , Streptococcus suis , Animais , Suínos , Penicilinas/farmacologia , Proteínas de Ligação às Penicilinas/genética , Streptococcus suis/genética , Proteínas de Bactérias/genética , Streptococcus pneumoniae/genética , Sorogrupo , Aminoaciltransferases/genética , Testes de Sensibilidade Microbiana , Resistência às Penicilinas/genética , Genômica , Ampicilina , Células Clonais , Antibacterianos/farmacologia
15.
Int J Med Microbiol ; 316: 151626, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38954914

RESUMO

BACKGROUND: Aminopenicillins are recommended agents for non-invasive Haemophilus influenzae infections. One of the mechanisms of resistance to ß-lactams is the alteration of the transpeptidase region of penicillin binding protein 3 (PBP3) which is caused by mutations in the ftsI gene. It was shown that exposure to beta-lactams has a stimulating effect on increase of prevalence of H. influenzae strains with the non-enzymatic mechanism of resistance. OBJECTIVES: The aim of our study was to compare the mutational potential of ampicillin and cefuroxime in H. influenzae strains, determination of minimum inhibitory concentration and the evolution of mutations over time, focusing on amino acid substitutions in PBP3. METHODS: 30 days of serial passaging of strains in liquid broth containing increasing concentrations of ampicillin or cefuroxime was followed by whole-genome sequencing. RESULTS: On average, cefuroxime increased the minimum inhibitory concentration more than ampicillin. The minimum inhibitory concentration was increased by a maximum of 32 fold. Substitutions in the PBP3 started to appear after 15 days of passaging. In PBP3, cefuroxime caused different substitutions than ampicillin. CONCLUSIONS: Our experiment observed differences in mutation selection by ampicillin and cefuroxime. Selection pressure of antibiotics in vitro generated substitutions that do not occur in clinical strains in the Czech Republic.


Assuntos
Substituição de Aminoácidos , Ampicilina , Antibacterianos , Cefuroxima , Haemophilus influenzae , Testes de Sensibilidade Microbiana , Mutação , Proteínas de Ligação às Penicilinas , Cefuroxima/farmacologia , Ampicilina/farmacologia , Haemophilus influenzae/genética , Haemophilus influenzae/efeitos dos fármacos , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Antibacterianos/farmacologia , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Haemophilus/microbiologia , Sequenciamento Completo do Genoma , Evolução Molecular , Seleção Genética , Inoculações Seriadas
16.
Mol Syst Biol ; 19(4): e11320, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36866643

RESUMO

Bacteria can survive antibiotics by forming dormant, drug-tolerant persisters. Persisters can resuscitate from dormancy after treatment and prolong infections. Resuscitation is thought to occur stochastically, but its transient, single-cell nature makes it difficult to investigate. We tracked the resuscitation of individual persisters by microscopy after ampicillin treatment and, by characterizing their dynamics, discovered that Escherichia coli and Salmonella enterica persisters resuscitate exponentially rather than stochastically. We demonstrated that the key parameters controlling resuscitation map to the ampicillin concentration during treatment and efflux during resuscitation. Consistently, we observed many persister progeny have structural defects and transcriptional responses indicative of cellular damage, for both ß-lactam and quinolone antibiotics. During resuscitation, damaged persisters partition unevenly, generating both healthy daughter cells and defective ones. This persister partitioning phenomenon was observed in S. enterica, Klebsiella pneumoniae, Pseudomonas aeruginosa, and an E. coli urinary tract infection (UTI) isolate. It was also observed in the standard persister assay and after in situ treatment of a clinical UTI sample. This study reveals novel properties of resuscitation and indicates that persister partitioning may be a survival strategy in bacteria that lack genetic resistance.


Assuntos
Antibacterianos , Escherichia coli , Escherichia coli/genética , Ampicilina , Bactérias
17.
BMC Microbiol ; 24(1): 127, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627609

RESUMO

BACKGROUND: In Ethiopia, milk production and handling practices often lack proper hygiene measures, leading to the potential contamination of milk and milk products with Staphylococcus aureus (S. aureus), including methicillin-resistant strains, posing significant public health concerns. This study aimed to investigate the occurrence, antimicrobial susceptibility profiles and presence of resistance genes in S. aureus strains isolated from milk and milk products. METHODS: A cross-sectional study was conducted in the Arsi highlands, Oromia, Ethiopia from March 2022 to February 2023. A total of 503 milk and milk product samples were collected, comprising 259 raw milk, 219 cottage cheese, and 25 traditional yogurt samples. S. aureus isolation and coagulase-positive staphylococci enumeration were performed using Baird-Parker agar supplemented with tellurite and egg yolk. S. aureus was further characterized based on colony morphology, Gram stain, mannitol fermentation, catalase test, and coagulase test. Phenotypic antimicrobial resistance was assessed using the Kirby-Bauer disc diffusion method, while the polymerase chain reaction (PCR) was employed for confirming the presence of S. aureus and detecting antimicrobial resistance genes. RESULTS: S. aureus was detected in 24.9% of the milk and milk products, with the highest occurrence in raw milk (40.9%), followed by yogurt (20%), and cottage cheese (6.4%). The geometric mean for coagulase-positive staphylococci counts in raw milk, yogurt, and cottage cheese was 4.6, 3.8, and 3.2 log10 CFU/mL, respectively. Antimicrobial resistance analysis revealed high levels of resistance to ampicillin (89.7%) and penicillin G (87.2%), with 71.8% of the isolates demonstrating multidrug resistance. Of the 16 S. aureus isolates analyzed using PCR, all were found to carry the nuc gene, with the mecA and blaZ genes detected in 50% of these isolates each. CONCLUSION: This study revealed the widespread distribution of S. aureus in milk and milk products in the Arsi highlands of Ethiopia. The isolates displayed high resistance to ampicillin and penicillin, with a concerning level of multidrug resistance. The detection of the mecA and blaZ genes in selected isolates is of particular concern, highlighting a potential public health hazard and posing a challenge to effective antimicrobial treatment. These findings highlight the urgent need to enhance hygiene standards in milk and milk product handling and promote the rational use of antimicrobial drugs. Provision of adequate training for all individuals involved in the dairy sector can help minimize contamination. These measures are crucial in addressing the threats posed by S. aureus, including methicillin-resistant strains, and ensuring the safety of milk and its products for consumers.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Animais , Staphylococcus aureus , Leite , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/genética , Coagulase/genética , Etiópia , Estudos Transversais , Infecções Estafilocócicas/epidemiologia , Staphylococcus , Anti-Infecciosos/farmacologia , Ampicilina/farmacologia , Testes de Sensibilidade Microbiana
18.
BMC Microbiol ; 24(1): 229, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943061

RESUMO

BACKGROUND: Lactobacillus plantarum has been found to play a significant role in maintaining the balance of intestinal flora in the human gut. However, it is sensitive to commonly used antibiotics and is often incidentally killed during treatment. We attempted to identify a means to protect L. plantarum ATCC14917 from the metabolic changes caused by two commonly used antibiotics, ampicillin, and doxycycline. We examined the metabolic changes under ampicillin and doxycycline treatment and assessed the protective effects of adding key exogenous metabolites. RESULTS: Using metabolomics, we found that under the stress of ampicillin or doxycycline, L. plantarum ATCC14917 exhibited reduced metabolic activity, with purine metabolism a key metabolic pathway involved in this change. We then screened the key biomarkers in this metabolic pathway, guanine and adenosine diphosphate (ADP). The exogenous addition of each of these two metabolites significantly reduced the lethality of ampicillin and doxycycline on L. plantarum ATCC14917. Because purine metabolism is closely related to the production of reactive oxygen species (ROS), the results showed that the addition of guanine or ADP reduced intracellular ROS levels in L. plantarum ATCC14917. Moreover, the killing effects of ampicillin and doxycycline on L. plantarum ATCC14917 were restored by the addition of a ROS accelerator in the presence of guanine or ADP. CONCLUSIONS: The metabolic changes of L. plantarum ATCC14917 under antibiotic treatments were determined. Moreover, the metabolome information that was elucidated can be used to help L. plantarum cope with adverse stress, which will help probiotics become less vulnerable to antibiotics during clinical treatment.


Assuntos
Ampicilina , Antibacterianos , Doxiciclina , Lactobacillus plantarum , Metabolômica , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/efeitos dos fármacos , Antibacterianos/farmacologia , Ampicilina/farmacologia , Doxiciclina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Purinas/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Difosfato de Adenosina/metabolismo , Humanos
19.
Microb Pathog ; 186: 106501, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38122875

RESUMO

Antibiotic resistance is a critical topic worldwide with important consequences for public health. So considering the rising issue of antibiotic-resistance in bacteria, we explored the impact of nitrogen and phosphorus eutrophication on drug resistance mechanisms in Enterococcus faecalis, especially ciprofloxacin, oxytetracycline, and ampicillin. For this purpose we examined the antibiotic-resistance genes and biofilm formation of Enterococcus faecalis under different concentration of nitrogen and phosphorus along with mentioned antibiotics. Mesocosms were designed to evaluate the impact of influence of eutrophication on the underlying mechanism of drugn resistence in Enterococcus faecalis. For this purpose, we explored the potential relation to biofilm formation, adhesion ability, and the expression levels of the regulatory gene fsrA and the downstream gene gelEI. Our results demonstrated that the isolates of all treatments displayed high biofilm forming potential, and fsrA and gelE genes expression. Additionally, the experimental group demonstrated substantially elevated Enterococcus faecalis gelE expression. Crystal violet staining was applied to observe biofilm formation during bacterial development phase and found higher biofilm formation. In conclusion, our data suggest that E. faecalis resistance to ciprofloxacin, oxytetracycline, and ampicillin is related to biofilm development. Also, the high level of resistance in Enterococcus faecalis is linked to the expression of the fsrA and gelE genes. Understanding these pathways is vital in tackling the rising problem of bacterial resistance and its potential effect on human health.


Assuntos
Enterococcus faecalis , Oxitetraciclina , Humanos , Fósforo , Oxitetraciclina/farmacologia , Nitrogênio , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Biofilmes , Ampicilina/farmacologia , Ciprofloxacina/farmacologia
20.
Microb Pathog ; 196: 106974, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39307200

RESUMO

This study investigated the acid adaptation and antimicrobial resistance of seven pathogenic Escherichia coli strains and one commensal strain under nutrient-rich acidic conditions. After acid adaptation, three pathogenic E. coli survived during 100 h incubation in tryptic soy broth at pH 3.25. Acid-adapted (AA) strains showed increased resistance to antimicrobials including ampicillin, ciprofloxacin and especially polymyxins (colistin and polymyxin B), the last resort antimicrobial for multidrug-resistant Gram-negative bacteria. Enterotoxigenic E. coli strain (NCCP 13717) showed significantly increased resistance to acids and polymyxins. Transcriptome analysis of the AA NCCP 13717 revealed upregulation of genes related to the acid fitness island and the arn operon, which reduces lipopolysaccharide binding affinity at the polymyxin site of action. Genes such as eptA, tolC, and ompCF were also upregulated to alter the structure of the cell membrane, reducing the outer membrane permeability compared to the control, which is likely to be another mechanism for polymyxin resistance. This study highlights the emergence of antimicrobial resistance in AA pathogenic E. coli strains, particularly polymyxin resistance, and the mechanisms behind the increased antimicrobial resistance, providing important insights for the development of risk management strategies to effectively control the antimicrobial resistant foodborne pathogens.


Assuntos
Antibacterianos , Escherichia coli , Perfilação da Expressão Gênica , Testes de Sensibilidade Microbiana , Polimixinas , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Polimixinas/farmacologia , Concentração de Íons de Hidrogênio , Regulação Bacteriana da Expressão Gênica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Farmacorresistência Bacteriana/genética , Ácidos/farmacologia , Polimixina B/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Ciprofloxacina/farmacologia , Transcriptoma , Ampicilina/farmacologia , Colistina/farmacologia , Adaptação Fisiológica/genética , Proteínas de Membrana Transportadoras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA