Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 166(1): 102-14, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27293192

RESUMO

Co-option of RAG1 and RAG2 for antigen receptor gene assembly by V(D)J recombination was a crucial event in the evolution of jawed vertebrate adaptive immunity. RAG1/2 are proposed to have arisen from a transposable element, but definitive evidence for this is lacking. Here, we report the discovery of ProtoRAG, a DNA transposon family from lancelets, the most basal extant chordates. A typical ProtoRAG is flanked by 5-bp target site duplications and a pair of terminal inverted repeats (TIRs) resembling V(D)J recombination signal sequences. Between the TIRs reside tail-to-tail-oriented, intron-containing RAG1-like and RAG2-like genes. We demonstrate that ProtoRAG was recently active in the lancelet germline and that the lancelet RAG1/2-like proteins can mediate TIR-dependent transposon excision, host DNA recombination, transposition, and low-efficiency TIR rejoining using reaction mechanisms similar to those used by vertebrate RAGs. We propose that ProtoRAG represents a molecular "living fossil" of the long-sought RAG transposon.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Anfioxos/genética , Recombinação V(D)J , Animais , Proteínas de Ligação a DNA , Proteínas de Homeodomínio , Sequências Repetidas Terminais
2.
Nature ; 631(8021): 678-685, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961301

RESUMO

Pericentric heterochromatin is a critical component of chromosomes marked by histone H3 K9 (H3K9) methylation1-3. However, what recruits H3K9-specific histone methyltransferases to pericentric regions in vertebrates remains unclear4, as does why pericentric regions in different species share the same H3K9 methylation mark despite lacking highly conserved DNA sequences2,5. Here we show that zinc-finger proteins ZNF512 and ZNF512B specifically localize at pericentric regions through direct DNA binding. Notably, both ZNF512 and ZNF512B are sufficient to initiate de novo heterochromatin formation at ectopically targeted repetitive regions and pericentric regions, as they directly recruit SUV39H1 and SUV39H2 (SUV39H) to catalyse H3K9 methylation. SUV39H2 makes a greater contribution to H3K9 trimethylation, whereas SUV39H1 seems to contribute more to silencing, probably owing to its preferential association with HP1 proteins. ZNF512 and ZNF512B from different species can specifically target pericentric regions of other vertebrates, because the atypical long linker residues between the zinc-fingers of ZNF512 and ZNF512B offer flexibility in recognition of non-consecutively organized three-nucleotide triplets targeted by each zinc-finger. This study addresses two long-standing questions: how constitutive heterochromatin is initiated and how seemingly variable pericentric sequences are targeted by the same set of conserved machinery in vertebrates.


Assuntos
Centrômero , Evolução Molecular , Heterocromatina , Histona-Lisina N-Metiltransferase , Histonas , Motivos de Nucleotídeos , Animais , Humanos , Camundongos , Centrômero/genética , Centrômero/metabolismo , Galinhas , Homólogo 5 da Proteína Cromobox , Inativação Gênica , Heterocromatina/metabolismo , Heterocromatina/química , Heterocromatina/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/química , Histonas/metabolismo , Histonas/química , Anfioxos , Metilação , Petromyzon , Proteínas Repressoras/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Serpentes , Xenopus laevis , Peixe-Zebra , Dedos de Zinco
3.
Nature ; 610(7933): 699-703, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36261526

RESUMO

Gas exchange and ion regulation at gills have key roles in the evolution of vertebrates1-4. Gills are hypothesized to have first acquired these important homeostatic functions from the skin in stem vertebrates, facilitating the evolution of larger, more-active modes of life2,3,5. However, this hypothesis lacks functional support in relevant taxa. Here we characterize the function of gills and skin in a vertebrate (lamprey ammocoete; Entosphenus tridentatus), a cephalochordate (amphioxus; Branchiostoma floridae) and a hemichordate (acorn worm; Saccoglossus kowalevskii) with the presumed burrowing, filter-feeding traits of vertebrate ancestors6-9. We provide functional support for a vertebrate origin of gas exchange at the gills with increasing body size and activity, as direct measurements in vivo reveal that gills are the dominant site of gas exchange only in ammocoetes, and only with increasing body size or challenges to oxygen supply and demand. Conversely, gills of all three taxa are implicated in ion regulation. Ammocoete gills are responsible for all ion flux at all body sizes, whereas molecular markers for ion regulation are higher in the gills than in the skin of amphioxus and acorn worms. This suggests that ion regulation at gills has an earlier origin than gas exchange that is unrelated to vertebrate size and activity-perhaps at the very inception of pharyngeal pores in stem deuterostomes.


Assuntos
Brânquias , Íons , Oxigênio , Filogenia , Vertebrados , Animais , Brânquias/metabolismo , Anfioxos/metabolismo , Oxigênio/metabolismo , Vertebrados/classificação , Vertebrados/metabolismo , Íons/metabolismo , Tamanho Corporal , Lampreias/metabolismo , Pele/metabolismo
4.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39109637

RESUMO

Vertebrate calcitonin-producing cells (C-cells) are neuroendocrine cells that secrete the small peptide hormone calcitonin in response to elevated blood calcium levels. Whereas mouse C-cells reside within the thyroid gland and derive from pharyngeal endoderm, avian C-cells are located within ultimobranchial glands and have been reported to derive from the neural crest. We use a comparative cell lineage tracing approach in a range of vertebrate model systems to resolve the ancestral embryonic origin of vertebrate C-cells. We find, contrary to previous studies, that chick C-cells derive from pharyngeal endoderm, with neural crest-derived cells instead contributing to connective tissue intimately associated with C-cells in the ultimobranchial gland. This endodermal origin of C-cells is conserved in a ray-finned bony fish (zebrafish) and a cartilaginous fish (the little skate, Leucoraja erinacea). Furthermore, we discover putative C-cell homologs within the endodermally-derived pharyngeal epithelium of the ascidian Ciona intestinalis and the amphioxus Branchiostoma lanceolatum, two invertebrate chordates that lack neural crest cells. Our findings point to a conserved endodermal origin of C-cells across vertebrates and to a pre-vertebrate origin of this cell type along the chordate stem.


Assuntos
Calcitonina , Linhagem da Célula , Ciona intestinalis , Endoderma , Crista Neural , Células Neuroendócrinas , Animais , Endoderma/metabolismo , Endoderma/citologia , Calcitonina/metabolismo , Células Neuroendócrinas/metabolismo , Células Neuroendócrinas/citologia , Ciona intestinalis/metabolismo , Ciona intestinalis/embriologia , Crista Neural/metabolismo , Crista Neural/citologia , Embrião de Galinha , Camundongos , Vertebrados/embriologia , Vertebrados/metabolismo , Peixe-Zebra/embriologia , Anfioxos/embriologia , Anfioxos/metabolismo , Anfioxos/genética , Corpo Ultimobranquial/metabolismo
5.
PLoS Biol ; 21(5): e3002062, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37134086

RESUMO

Members of the gasdermin (GSDM) family are pore-forming effectors that cause membrane permeabilization and pyroptosis, a lytic proinflammatory type of cell death. To reveal the functional evolution of GSDM-mediated pyroptosis at the transition from invertebrates to vertebrates, we conducted functional characterization of amphioxus GSDME (BbGSDME) and found that it can be cleaved by distinct caspase homologs, yielding the N253 and N304 termini with distinct functions. The N253 fragment binds to cell membrane, triggers pyroptosis, and inhibits bacterial growth, while the N304 performs negative regulation of N253-mediated cell death. Moreover, BbGSDME is associated with bacteria-induced tissue necrosis and transcriptionally regulated by BbIRF1/8 in amphioxus. Interestingly, several amino acids that are evolutionarily conserved were found to be important for the function of both BbGSDME and HsGSDME, shedding new lights on the functional regulation of GSDM-mediated inflammation.


Assuntos
Anfioxos , Piroptose , Animais , Piroptose/fisiologia , Anfioxos/genética , Anfioxos/metabolismo , Morte Celular , Necrose , Caspase 3/metabolismo
6.
PLoS Biol ; 21(5): e3002103, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141191

RESUMO

The gasdermins are a family of pore-forming proteins involved in various cellular processes such as cell death and inflammation. A new study in PLOS Biology explores the evolutionary history of gasdermins across metazoans, highlighting the conservation and divergence of gasdermin E.


Assuntos
Anfioxos , Piroptose , Animais , Piroptose/fisiologia , Anfioxos/metabolismo , Gasderminas , Proteínas de Neoplasias/metabolismo , Mecanismos de Defesa
7.
Proc Natl Acad Sci U S A ; 120(10): e2201504120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36867684

RESUMO

The slow-evolving invertebrate amphioxus has an irreplaceable role in advancing our understanding of the vertebrate origin and innovations. Here we resolve the nearly complete chromosomal genomes of three amphioxus species, one of which best recapitulates the 17 chordate ancestor linkage groups. We reconstruct the fusions, retention, or rearrangements between descendants of whole-genome duplications, which gave rise to the extant microchromosomes likely existed in the vertebrate ancestor. Similar to vertebrates, the amphioxus genome gradually establishes its three-dimensional chromatin architecture at the onset of zygotic activation and forms two topologically associated domains at the Hox gene cluster. We find that all three amphioxus species have ZW sex chromosomes with little sequence differentiation, and their putative sex-determining regions are nonhomologous to each other. Our results illuminate the unappreciated interspecific diversity and developmental dynamics of amphioxus genomes and provide high-quality references for understanding the mechanisms of chordate functional genome evolution.


Assuntos
Anfioxos , Animais , Cromatina , Cromossomos Sexuais , Rearranjo Gênico , Família Multigênica
8.
Dev Biol ; 508: 24-37, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38224933

RESUMO

Cephalochordates occupy a key phylogenetic position for deciphering the origin and evolution of chordates, since they diverged earlier than urochordates and vertebrates. The notochord is the most prominent feature of chordates. The amphioxus notochord features coin-shaped cells bearing myofibrils. Notochord-derived hedgehog signaling contributes to patterning of the dorsal nerve cord, as in vertebrates. However, properties of constituent notochord cells remain unknown at the single-cell level. We examined these properties using Iso-seq analysis, single-cell RNA-seq analysis, and in situ hybridization (ISH). Gene expression profiles broadly categorize notochordal cells into myofibrillar cells and non-myofibrillar cells. Myofibrillar cells occupy most of the central portion of the notochord, and some cells extend the notochordal horn to both sides of the ventral nerve cord. Some notochord myofibrillar genes are not expressed in myotomes, suggesting an occurrence of myofibrillar genes that are preferentially expressed in notochord. On the other hand, non-myofibrillar cells contain dorsal, lateral, and ventral Müller cells, and all three express both hedgehog and Brachyury. This was confirmed by ISH, although expression of hedgehog in ventral Müller cells was minimal. In addition, dorsal Müller cells express neural transmission-related genes, suggesting an interaction with nerve cord. Lateral Müller cells express hedgehog and other signaling-related genes, suggesting an interaction with myotomes positioned lateral to the notochord. Ventral Müller cells also expressed genes for FGF- and EGF-related signaling, which may be associated with development of endoderm, ventral to the notochord. Lateral Müller cells were intermediate between dorsal/ventral Müller cells. Since vertebrate notochord contributes to patterning and differentiation of ectoderm (nerve cord), mesoderm (somite), and endoderm, this investigation provides evidence that an ancestral or original form of vertebrate notochord is present in extant cephalochordates.


Assuntos
Anfioxos , Animais , Filogenia , Notocorda , Análise da Expressão Gênica de Célula Única , Proteínas Hedgehog/genética , Vertebrados , Regulação da Expressão Gênica no Desenvolvimento/genética
9.
Development ; 149(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35575387

RESUMO

The fibroblast growth factor (FGF) signalling pathway plays various roles during vertebrate embryogenesis, from mesoderm formation to brain patterning. This diversity of functions relies on the fact that vertebrates possess the largest FGF gene complement among metazoans. In the cephalochordate amphioxus, which belongs to the chordate clade together with vertebrates and tunicates, we have previously shown that the main role of FGF during early development is the control of rostral somite formation. Inhibition of this signalling pathway induces the loss of these structures, resulting in an embryo without anterior segmented mesoderm, as in the vertebrate head. Here, by combining several approaches, we show that the anterior presumptive paraxial mesoderm cells acquire an anterior axial fate when FGF signal is inhibited and that they are later incorporated in the anterior notochord. Our analysis of notochord formation in wild type and in embryos in which FGF signalling is inhibited also reveals that amphioxus anterior notochord presents transient prechordal plate features. Altogether, our results give insight into how changes in FGF functions during chordate evolution might have participated to the emergence of the complex vertebrate head.


Assuntos
Anfioxos , Somitos , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Anfioxos/genética , Anfioxos/metabolismo , Mesoderma/metabolismo , Notocorda/metabolismo , Somitos/metabolismo , Vertebrados/metabolismo
10.
Nature ; 569(7754): 79-84, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30971819

RESUMO

Domestication of a transposon (a DNA sequence that can change its position in a genome) to give rise to the RAG1-RAG2 recombinase (RAG) and V(D)J recombination, which produces the diverse repertoire of antibodies and T cell receptors, was a pivotal event in the evolution of the adaptive immune system of jawed vertebrates. The evolutionary adaptations that transformed the ancestral RAG transposase into a RAG recombinase with appropriately regulated DNA cleavage and transposition activities are not understood. Here, beginning with cryo-electron microscopy structures of the amphioxus ProtoRAG transposase (an evolutionary relative of RAG), we identify amino acid residues and domains the acquisition or loss of which underpins the propensity of RAG for coupled cleavage, its preference for asymmetric DNA substrates and its inability to perform transposition in cells. In particular, we identify two adaptations specific to jawed-vertebrates-arginine 848 in RAG1 and an acidic region in RAG2-that together suppress RAG-mediated transposition more than 1,000-fold. Our findings reveal a two-tiered mechanism for the suppression of RAG-mediated transposition, illuminate the evolution of V(D)J recombination and provide insight into the principles that govern the molecular domestication of transposons.


Assuntos
Elementos de DNA Transponíveis/genética , Evolução Molecular , Genes RAG-1 , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/ultraestrutura , Anfioxos/enzimologia , Recombinação V(D)J , Sequência de Aminoácidos , Animais , Sequência de Bases , Microscopia Crioeletrônica , Clivagem do DNA , Proteínas de Homeodomínio/metabolismo , Modelos Moleculares , Domínios Proteicos , Relação Estrutura-Atividade
11.
Proc Natl Acad Sci U S A ; 119(11): e2114802119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35263228

RESUMO

SignificanceIn this manuscript, we address an essential question in developmental and evolutionary biology: How have changes in gene regulatory networks contributed to the invertebrate-to-vertebrate transition? To address this issue, we perturbed four signaling pathways critical for body plan formation in the cephalochordate amphioxus and in zebrafish and compared the effects of such perturbations on gene expression and gene regulation in both species. Our data reveal that many developmental genes have gained response to these signaling pathways in the vertebrate lineage. Moreover, we show that the interconnectivity between these pathways is much higher in zebrafish than in amphioxus. We conclude that this increased signaling pathway complexity likely contributed to vertebrate morphological novelties during evolution.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Anfioxos , Peixe-Zebra , Animais , Evolução Biológica , Gastrulação/genética , Anfioxos/embriologia , Anfioxos/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética
12.
J Biol Chem ; 299(6): 104689, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37044216

RESUMO

The basal chordate amphioxus is a model for tracing the origin and evolution of vertebrate immunity. To explore the evolution of immunoreceptor signaling pathways, we searched the associated receptors of the amphioxus Branchiostoma belcheri (Bb) homolog of immunoreceptor signaling adaptor protein Grb2. Mass-spectrum analysis of BbGrb2 immunoprecipitates from B. belcheri intestine lysates revealed a folate receptor (FR) domain- and leucine-rich repeat (LRR)-containing protein (FrLRR). Sequence and structural analysis showed that FrLRR is a membrane protein with a predicted curved solenoid structure. The N-terminal Fr domain contains very few folate-binding sites; the following LRR region is a Slit2-type LRR, and a GPI-anchored site was predicted at the C-terminus. RT-PCR analysis showed FrLRR is a transcription-mediated fusion gene of BbFR-like and BbSlit2-N-like genes. Genomic DNA structure analysis implied the B. belcheri FrLRR gene locus and the corresponding locus in Branchiostoma floridae might be generated by exon shuffling of a Slit2-N-like gene into an FR gene. RT-qPCR, immunostaining, and immunoblot results showed that FrLRR was primarily distributed in B. belcheri intestinal tissue. We further demonstrated that FrLRR localized to the cell membrane and lysosomes. Functionally, FrLRR mediated and promoted bacteria-binding and phagocytosis, and FrLRR antibody blocking or Grb2 knockdown inhibited FrLRR-mediated phagocytosis. Interestingly, we found that human Slit2-N (hSlit2-N) also mediated direct bacteria-binding and phagocytosis which was inhibited by Slit2-N antibody blocking or Grb2 knockdown. Together, these results indicate FrLRR and hSlit2-N may function as phagocytotic-receptors to promote phagocytosis through Grb2, implying the Slit2-N-type-LRR-containing proteins play a role in bacterial binding and elimination.


Assuntos
Anfioxos , Animais , Humanos , Anfioxos/genética , Leucina , Sítios de Ligação , Transdução de Sinais , Fagocitose , Filogenia
13.
Development ; 148(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34343262

RESUMO

Embryonic tissues are shaped by the dynamic behaviours of their constituent cells. To understand such cell behaviours and how they evolved, new approaches are needed to map out morphogenesis across different organisms. Here, we apply a quantitative approach to learn how the notochord forms during the development of amphioxus: a basally branching chordate. Using a single-cell morphometrics pipeline, we quantify the geometries of thousands of amphioxus notochord cells, and project them into a common mathematical space, termed morphospace. In morphospace, notochord cells disperse into branching trajectories of cell shape change, revealing a dynamic interplay between cell shape change and growth that collectively contributes to tissue elongation. By spatially mapping these trajectories, we identify conspicuous regional variation, both in developmental timing and trajectory topology. Finally, we show experimentally that, unlike ascidians but like vertebrates, posterior cell division is required in amphioxus to generate full notochord length, thereby suggesting this might be an ancestral chordate trait that is secondarily lost in ascidians. Altogether, our novel approach reveals that an unexpectedly complex scheme of notochord morphogenesis might have been present in the first chordates. This article has an associated 'The people behind the papers' interview.


Assuntos
Desenvolvimento Embrionário/fisiologia , Anfioxos/embriologia , Notocorda/embriologia , Organogênese/fisiologia , Análise de Célula Única/métodos , Animais , Divisão Celular/fisiologia , Forma Celular/fisiologia , Feminino , Masculino , Modelos Teóricos , Urocordados/embriologia
14.
Fish Shellfish Immunol ; 147: 109423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341117

RESUMO

Cystatins comprise a vast superfamily of evolutionary conserved proteins, predominantly recognized for their roles as endogenous inhibitors by regulating the activity of cysteine proteases. Emerging lines of research evidence also provides insight into their alternative roles in a spectrum of biological and pathological processes, including neurodegenerative disorders, tumor progression, inflammatory diseases, and immune response. Nowadays, various type-1 cystatins (stefins) have been demonstrated among a variety of discovered vertebrate groups, while little is known about the related homologue in cephalochordate amphioxus, which are repositioned at the base of the chordate phylum. In the present study, a single type-1 cystatin homologue in Branchiostoma japonicum was first successfully cloned and designated as Bjcystatin-1. The deduced Bjcystatin-1 protein is structurally characterized by the presence of typical wedge-shaped cystatin features, including the 'QxVxG' and 'Px' motif, as well as the conserved N-terminal glycine residue. Phylogenomic analyses utilizing different cystatin counterparts affirmed the close evolutionary relationship of Bjcystatin-1 and type-1 cystatin homologue. Bjcystatin-1 was predominantly expressed in the gills and hind-gut in a tissue-specific pattern, and its expression was remarkably up-regulated in response to challenge with bacteria or their signature molecules LPS and LTA, suggesting the involvement in immune response. Additionally, the recombinant Bjcystatin-1 (rBjcystatin-1) protein showed significant inhibitory activity towards papain and binding ability to LPS and LTA, indicating its hypothesized role as a pattern recognition receptor in immune response. Subcellular localization results also showed that Bjcystatin-1 was located in the cytoplasm and nucleus, and its overexpression could attenuate the activation of LPS-induced nuclear transcription factors NF-κB. Taken together, our study suggests that amphioxus Bjcystatin-1 acts as a dual role in protease inhibitor and an immunocompetent factor, providing new insights into the immune defense effect of type-1 cystatin in amphioxus.


Assuntos
Cistatinas , Anfioxos , Animais , Lipopolissacarídeos , Cistatinas/genética , Evolução Biológica , Fatores de Transcrição
15.
Fish Shellfish Immunol ; 152: 109791, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067494

RESUMO

Antimicrobial peptides (AMPs), characterized by their cationic nature and amphiphilic properties, play a pivotal role in inhibiting the biological activity of microbes. Currently, only a fraction of the antimicrobial potential within the ribosomal protein family has been explored, despite its extensive membership and resemblance to AMPs. Herein we demonstrated that amphioxus RPL17 (BjRPL17) exhibited not only upregulated expression upon bacterial stimulation but also possessed bactericidal capabilities against both Gram-negative and -positive bacteria through combined action mechanisms including interaction with cell surface molecules LPS, LTA, and PGN, disruption of cell membrane integrity, promotion of membrane depolarization, and induction of intracellular ROS production. Furthermore, a peptide derived from residues 127-141 of BjRPL17 (termed BjRPL17-1) showed antibacterial activity against Staphylococcus aureus and its methicillin-resistant strain via the same mechanism observed for the full-length protein. Additionally, the rpl17 gene was highly conserved in Metazoa, hinting it may play a universal role in the antibacterial defense system in different animals. Importantly, neither BjRPL17 nor peptide BjRPL17-1 exhibited toxicity towards mammalian cells thereby offering prospects for designing novel AMP agents based on these findings. Collectively, our results establish RPL17 as a novel member of AMPs with remarkable evolutionary conservation.


Assuntos
Sequência de Aminoácidos , Anfioxos , Proteínas Ribossômicas , Animais , Anfioxos/genética , Anfioxos/imunologia , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/imunologia , Alinhamento de Sequência/veterinária , Staphylococcus aureus/fisiologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/genética , Filogenia , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/imunologia
16.
Nature ; 564(7734): 64-70, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30464347

RESUMO

Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that-in vertebrates-over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations.


Assuntos
Regulação da Expressão Gênica , Genômica , Anfioxos/genética , Vertebrados/genética , Animais , Padronização Corporal/genética , Metilação de DNA , Humanos , Anfioxos/embriologia , Anotação de Sequência Molecular , Regiões Promotoras Genéticas , Transcriptoma/genética
17.
Gen Comp Endocrinol ; 355: 114560, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38806133

RESUMO

Growth hormone-releasing hormone (GHRH) has been widely shown to stimulate growth hormone (GH) production via binding to GHRH receptor GHRHR in various species of vertebrates, but information regarding the functional roles of GHRH and GHRHR in the protochordate amphioxus remains rather scarce. We showed here that two mature peptides, BjGHRH-1 and BjGHRH-2, encoded by BjGHRH precursor, and a single BjGHRHR protein were identified in the amphioxus Branchiostoma. japonicum. Like the distribution profiles of vertebrate GHRHs and GHRHRs, both the genes Bjghrh and Bjghrhr were widely expressed in the different tissues of amphioxus, including in the cerebral vesicle, Hatschek's pit, neural tube, gill, hepatic caecum, notochord, testis and ovary. Moreover, both BjGHRH-1 and BjGHRH-2 interacted with BjGHRHR, and triggered the cAMP/PKA signal pathway in a dose-dependent manner. Importantly, BjGHRH-1 and BjGHRH-2 were both able to activate the expression of GH-like gene in the cells of Hatschek's pit. These indicate that a functional vertebrate-like GHRH-GHRHR axis had already emerged in amphioxus, which is a seminal innovation making physiological divergence including reproduction, growth, metabolism, stress and osmoregulation possible during the early evolution of vertebrates.


Assuntos
Hormônio Liberador de Hormônio do Crescimento , Anfioxos , Receptores de Neuropeptídeos , Receptores de Hormônios Reguladores de Hormônio Hipofisário , Animais , Anfioxos/metabolismo , Anfioxos/genética , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hormônio Liberador de Hormônio do Crescimento/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Sistema Hipotálamo-Hipofisário/metabolismo
18.
Mol Biol Evol ; 39(4)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35276009

RESUMO

Neurons are a highly specialized cell type only found in metazoans. They can be scattered throughout the body or grouped together, forming ganglia or nerve cords. During embryogenesis, centralized nervous systems develop from the ectoderm, which also forms the epidermis. How pluripotent ectodermal cells are directed toward neural or epidermal fates, and to which extent this process is shared among different animal lineages, are still open questions. Here, by using micromere explants, we were able to define in silico the putative gene regulatory networks (GRNs) underlying the first steps of the epidermis and the central nervous system formation in the cephalochordate amphioxus. We propose that although the signal triggering neural induction in amphioxus (i.e., Nodal) is different from vertebrates, the main transcription factors implicated in this process are conserved. Moreover, our data reveal that transcription factors of the neural program seem to not only activate neural genes but also to potentially have direct inputs into the epidermal GRN, suggesting that the Nodal signal might also contribute to neural fate commitment by repressing the epidermal program. Our functional data on whole embryos support this result and highlight the complex interactions among the transcription factors activated by the signaling pathways that drive ectodermal cell fate choice in chordates.


Assuntos
Redes Reguladoras de Genes , Anfioxos , Animais , Epiderme/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sistema Nervoso/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Evol Dev ; 25(3): 197-208, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36946416

RESUMO

The present contribution is chiefly a review, augmented by some new results on amphioxus and lamprey anatomy, that draws on paleontological and developmental data to suggest a scenario for cranial cartilage evolution in the phylum chordata. Consideration is given to the cartilage-related tissues of invertebrate chordates (amphioxus and some fossil groups like vetulicolians) as well as in the two major divisions of the subphylum Vertebrata (namely, agnathans, and gnathostomes). In the invertebrate chordates, which can be considered plausible proxy ancestors of the vertebrates, only a viscerocranium is present, whereas a neurocranium is absent. For this situation, we examine how cartilage-related tissues of this head region prefigure the cellular cartilage types in the vertebrates. We then focus on the vertebrate neurocranium, where cyclostomes evidently lack neural-crest derived trabecular cartilage (although this point needs to be established more firmly). In the more complex gnathostome, several neural-crest derived cartilage types are present: namely, the trabecular cartilages of the prechordal region and the parachordal cartilage the chordal region. In sum, we present an evolutionary framework for cranial cartilage evolution in chordates and suggest aspects of the subject that should profit from additional study.


Assuntos
Anfioxos , Vertebrados , Animais , Vertebrados/genética , Crânio , Cartilagem , Crista Neural , Evolução Biológica
20.
Development ; 147(1)2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31826864

RESUMO

Cilia rotation-driven nodal flow is crucial for the left-right (L-R) break in symmetry in most vertebrates. However, the mechanism by which the flow signal is translated to asymmetric gene expression has been insufficiently addressed. Here, we show that Hedgehog (Hh) signalling is asymmetrically activated (L

Assuntos
Cílios/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Anfioxos/embriologia , Animais , Evolução Biológica , Padronização Corporal , Embrião não Mamífero/fisiologia , Embrião não Mamífero/ultraestrutura , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Anfioxos/genética , Anfioxos/metabolismo , Anfioxos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA