RESUMO
Joubert syndrome (JS) is a recessive ciliopathy in which all affected individuals have congenital cerebellar vermis hypoplasia. Here, we report that CEP120, a JS-associated protein involved in centriole biogenesis and cilia assembly, regulates timely neuronal differentiation and the departure of granule neuron progenitors (GNPs) from their germinal zone during cerebellar development. Our results show that depletion of Cep120 perturbs GNP cell cycle progression, resulting in a delay of cell cycle exit in vivo. To dissect the potential mechanism, we investigated the association between CEP120 interactome and the JS database and identified KIAA0753 (a JS-associated protein) as a CEP120-interacting protein. Surprisingly, we found that CEP120 recruits KIAA0753 to centrioles, and that loss of this interaction induces accumulation of GNPs in the germinal zone and impairs neuronal differentiation. Importantly, the replenishment of wild-type CEP120 rescues the above defects, whereas expression of JS-associated CEP120 mutants, which hinder KIAA0753 recruitment, does not. Together, our data reveal a close interplay between CEP120 and KIAA0753 for the germinal zone exit and timely neuronal differentiation of GNPs during cerebellar development, and mutations in CEP120 and KIAA0753 may participate in the heterotopia and cerebellar hypoplasia observed in JS patients.
Assuntos
Centríolos , Doenças Renais Císticas , Anormalidades Múltiplas , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Centríolos/genética , Centríolos/metabolismo , Cerebelo/anormalidades , Cerebelo/metabolismo , Anormalidades do Olho , Humanos , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Proteínas Associadas aos Microtúbulos , Retina/anormalidadesRESUMO
Sterile alpha motif domain containing 7 (SAMD7) is a component of the Polycomb repressive complex 1, which inhibits transcription of many genes, including those activated by the transcription factor Cone-Rod Homeobox (CRX). Here we report bi-allelic mutations in SAMD7 as a cause of autosomal-recessive macular dystrophy with or without cone dysfunction. Four of these mutations affect splicing, while another mutation is a missense variant that alters the repressive effect of SAMD7 on CRX-dependent promoter activity, as shown by in vitro assays. Immunostaining of human retinal sections revealed that SAMD7 is localized in the nuclei of both rods and cones, as well as in those of cells belonging to the inner nuclear layer. These results place SAMD7 as a gene crucial for human retinal function and demonstrate a significant difference in the role of SAMD7 between the human and the mouse retina.
Assuntos
Anormalidades do Olho , Degeneração Macular , Camundongos , Animais , Humanos , Transativadores/genética , Proteínas de Homeodomínio/genética , Retina , Mutação/genética , Degeneração Macular/genéticaRESUMO
Primary cilia are antenna-like structures protruding from the surface of various eukaryotic cells, and have distinct protein compositions in their membranes. This distinct protein composition is maintained by the presence of the transition zone (TZ) at the ciliary base, which acts as a diffusion barrier between the ciliary and plasma membranes. Defects in cilia and the TZ are known to cause a group of disorders collectively called the ciliopathies, which demonstrate a broad spectrum of clinical features, such as perinatally lethal Meckel syndrome (MKS), relatively mild Joubert syndrome (JBTS), and nonsyndromic nephronophthisis (NPHP). Proteins constituting the TZ can be grouped into the MKS and NPHP modules. The MKS module is composed of several transmembrane proteins and three soluble proteins. TMEM218 was recently reported to be mutated in individuals diagnosed as MKS and JBTS. However, little is known about how TMEM218 mutations found in MKS and JBTS affect the functions of cilia. In this study, we found that ciliary membrane proteins were not localized to cilia in TMEM218-knockout cells, indicating impaired barrier function of the TZ. Furthermore, the exogenous expression of JBTS-associated TMEM218 variants but not MKS-associated variants in TMEM218-knockout cells restored the localization of ciliary membrane proteins. In particular, when expressed in TMEM218-knockout cells, the TMEM218(R115H) variant found in JBTS was able to restore the barrier function of cells, whereas the MKS variant TMEM218(R115C) could not. Thus, the severity of symptoms of MKS and JBTS individuals appears to correlate with the degree of their ciliary defects at the cellular level.
Assuntos
Anormalidades Múltiplas , Cílios , Ciliopatias , Encefalocele , Anormalidades do Olho , Doenças Renais Císticas , Proteínas de Membrana , Mutação , Retina , Cílios/metabolismo , Cílios/genética , Cílios/patologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Ciliopatias/patologia , Encefalocele/genética , Encefalocele/metabolismo , Encefalocele/patologia , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/patologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Anormalidades do Olho/metabolismo , Retina/metabolismo , Retina/anormalidades , Retina/patologia , Cerebelo/anormalidades , Cerebelo/metabolismo , Cerebelo/patologia , Doenças Cerebelares/genética , Doenças Cerebelares/metabolismo , Doenças Cerebelares/patologia , Animais , Membrana Celular/metabolismo , Camundongos , Transtornos da Motilidade Ciliar , Doenças Renais Policísticas , Retinose PigmentarRESUMO
Centrosomal proteins play pivotal roles in orchestrating microtubule dynamics, and their dysregulation leads to disorders, including cancer and ciliopathies. Understanding the multifaceted roles of centrosomal proteins is vital to comprehend their involvement in disease development. Here, we report novel cellular functions of CEP41, a centrosomal and ciliary protein implicated in Joubert syndrome. We show that CEP41 is an essential microtubule-associated protein with microtubule-stabilizing activity. Purified CEP41 binds to preformed microtubules, promotes microtubule nucleation and suppresses microtubule disassembly. When overexpressed in cultured cells, CEP41 localizes to microtubules and promotes microtubule bundling. Conversely, shRNA-mediated knockdown of CEP41 disrupts the interphase microtubule network and delays microtubule reassembly, emphasizing its role in microtubule organization. Further, we demonstrate that the association of CEP41 with microtubules relies on its conserved rhodanese homology domain (RHOD) and the N-terminal region. Interestingly, a disease-causing mutation in the RHOD domain impairs CEP41-microtubule interaction. Moreover, depletion of CEP41 inhibits cell proliferation and disrupts cell cycle progression, suggesting its potential involvement in cell cycle regulation. These insights into the cellular functions of CEP41 hold promise for unraveling the impact of its mutations in ciliopathies.
Assuntos
Proliferação de Células , Microtúbulos , Humanos , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Centrossomo/metabolismo , Retina/metabolismo , Retina/patologia , Retina/anormalidades , Ciliopatias/metabolismo , Ciliopatias/genética , Ciliopatias/patologia , Cerebelo/metabolismo , Cerebelo/anormalidades , Cerebelo/patologia , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Cílios/metabolismo , Cílios/patologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Animais , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Anormalidades do Olho/metabolismo , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Ligação Proteica , Ciclo Celular/genética , Células HEK293RESUMO
The eye and brain are composed of elaborately organized tissues, development of which is supported by spatiotemporally precise expression of a number of transcription factors and developmental regulators. Here we report the molecular and genetic characterization of Integrator complex subunit 15 (INTS15). INTS15 was identified in search for the causative gene(s) for an autosomal-dominant eye disease with variable individual manifestation found in a large pedigree. While homozygous Ints15 knockout mice are embryonic lethal, mutant mice lacking a small C-terminal region of Ints15 show ocular malformations similar to the human patients. INTS15 is highly expressed in the eye and brain during embryogenesis and stably interacts with the Integrator complex to support small nuclear RNA 3' end processing. Its knockdown resulted in missplicing of a large number of genes, probably as a secondary consequence, and substantially affected genes associated with eye and brain development. Moreover, studies using human iPS cells-derived neural progenitor cells showed that INTS15 is critical for axonal outgrowth in retinal ganglion cells. This study suggests a new link between general transcription machinery and a highly specific hereditary disease.
Assuntos
Anormalidades do Olho , Olho , Peptídeos e Proteínas de Sinalização Intracelular , Olho/crescimento & desenvolvimento , Anormalidades do Olho/genética , Linhagem , Humanos , Masculino , Feminino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco/metabolismo , Animais , Camundongos , Camundongos Knockout , Sobrevivência Celular , RNA Nuclear Pequeno/metabolismo , Processamento Pós-Transcricional do RNA , Encéfalo/crescimento & desenvolvimentoRESUMO
The Joubert syndrome (JS), Meckel syndrome (MKS), and nephronophthisis (NPH) ciliopathy spectrum could be the poster child for advances and challenges in Mendelian human genetics over the past half century. Progress in understanding these conditions illustrates many core concepts of human genetics. The JS phenotype alone is caused by pathogenic variants in more than 40 genes; remarkably, all of the associated proteins function in and around the primary cilium. Primary cilia are near-ubiquitous, microtubule-based organelles that play crucial roles in development and homeostasis. Protruding from the cell, these cellular antennae sense diverse signals and mediate Hedgehog and other critical signaling pathways. Ciliary dysfunction causes many human conditions termed ciliopathies, which range from multiple congenital malformations to adult-onset single-organ failure. Research on the genetics of the JS-MKS-NPH spectrum has spurred extensive functional work exploring the broadly important role of primary cilia in health and disease. This functional work promises to illuminate the mechanisms underlying JS-MKS-NPH in humans, identify therapeutic targets across genetic causes, and generate future precision treatments.
Assuntos
Anormalidades Múltiplas , Ciliopatias , Anormalidades do Olho , Doenças Renais Policísticas , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Cerebelo/anormalidades , Cerebelo/metabolismo , Cerebelo/patologia , Criança , Cílios/genética , Cílios/metabolismo , Cílios/patologia , Transtornos da Motilidade Ciliar , Ciliopatias/genética , Ciliopatias/metabolismo , Ciliopatias/patologia , Encefalocele , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Proteínas Hedgehog/metabolismo , Humanos , Doenças Renais Císticas , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Retina/anormalidades , Retina/metabolismo , Retina/patologia , Retinose PigmentarRESUMO
The integrity of the mammalian epidermis depends on a balance of proliferation and differentiation in the resident population of stem cells1. The kinase RIPK4 and the transcription factor IRF6 are mutated in severe developmental syndromes in humans, and mice lacking these genes display epidermal hyperproliferation and soft-tissue fusions that result in neonatal lethality2-5. Our understanding of how these genes control epidermal differentiation is incomplete. Here we show that the role of RIPK4 in mouse development requires its kinase activity; that RIPK4 and IRF6 expressed in the epidermis regulate the same biological processes; and that the phosphorylation of IRF6 at Ser413 and Ser424 primes IRF6 for activation. Using RNA sequencing (RNA-seq), histone chromatin immunoprecipitation followed by sequencing (ChIP-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) of skin in wild-type and IRF6-deficient mouse embryos, we define the transcriptional programs that are regulated by IRF6 during epidermal differentiation. IRF6 was enriched at bivalent promoters, and IRF6 deficiency caused defective expression of genes that are involved in the metabolism of lipids and the formation of tight junctions. Accordingly, the lipid composition of the stratum corneum of Irf6-/- skin was abnormal, culminating in a severe defect in the function of the epidermal barrier. Collectively, our results explain how RIPK4 and IRF6 function to ensure the integrity of the epidermis and provide mechanistic insights into why developmental syndromes that are characterized by orofacial, skin and genital abnormalities result when this axis goes awry.
Assuntos
Diferenciação Celular , Células Epidérmicas/citologia , Epiderme/fisiologia , Fatores Reguladores de Interferon/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Anormalidades Múltiplas/genética , Animais , Fenda Labial/genética , Fissura Palatina/genética , Cistos/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Células Epidérmicas/metabolismo , Epiderme/embriologia , Anormalidades do Olho/genética , Feminino , Dedos/anormalidades , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/deficiência , Fatores Reguladores de Interferon/genética , Joelho/anormalidades , Articulação do Joelho/anormalidades , Lábio/anormalidades , Metabolismo dos Lipídeos/genética , Deformidades Congênitas das Extremidades Inferiores/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Fosfosserina/metabolismo , Proteínas Serina-Treonina Quinases/genética , Sindactilia/genética , Anormalidades Urogenitais/genéticaRESUMO
BACKGROUND: Classic aniridia is a highly penetrant autosomal dominant disorder characterised by congenital absence of the iris, foveal hypoplasia, optic disc anomalies and progressive opacification of the cornea. >90% of cases of classic aniridia are caused by heterozygous, loss-of-function variants affecting the PAX6 locus. METHODS: Short-read whole genome sequencing was performed on 51 (39 affected) individuals from 37 different families who had screened negative for mutations in the PAX6 coding region. RESULTS: Likely causative mutations were identified in 22 out of 37 (59%) families. In 19 out of 22 families, the causative genomic changes have an interpretable deleterious impact on the PAX6 locus. Of these 19 families, 1 has a novel heterozygous PAX6 frameshift variant missed on previous screens, 4 have single nucleotide variants (SNVs) (one novel) affecting essential splice sites of PAX6 5' non-coding exons and 2 have deep intronic SNV (one novel) resulting in gain of a donor splice site. In 12 out of 19, the causative variants are large-scale structural variants; 5 have partial or whole gene deletions of PAX6, 3 have deletions encompassing critical PAX6 cis-regulatory elements, 2 have balanced inversions with disruptive breakpoints within the PAX6 locus and 2 have complex rearrangements disrupting PAX6. The remaining 3 of 22 families have deletions encompassing FOXC1 (a known cause of atypical aniridia). Seven of the causative variants occurred de novo and one cosegregated with familial aniridia. We were unable to establish inheritance status in the remaining probands. No plausibly causative SNVs were identified in PAX6 cis-regulatory elements. CONCLUSION: Whole genome sequencing proves to be an effective diagnostic test in most individuals with previously unexplained aniridia.
Assuntos
Aniridia , Anormalidades do Olho , Humanos , Fator de Transcrição PAX6/genética , Aniridia/genética , Mutação/genética , Anormalidades do Olho/genética , Éxons , Proteínas de Homeodomínio/genética , Proteínas do Olho/genética , LinhagemRESUMO
BACKGROUND: Weill-Marchesani syndrome (WMS) belongs to the group of acromelic dysplasias, defined by short stature, brachydactyly and joint limitations. WMS is characterised by specific ophthalmological abnormalities, although cardiovascular defects have also been reported. Monoallelic variations in FBN1 are associated with a dominant form of WMS, while biallelic variations in ADAMTS10, ADAMTS17 and LTBP2 are responsible for a recessive form of WMS. OBJECTIVE: Natural history description of WMS and genotype-phenotype correlation establishment. MATERIALS AND METHODS: Retrospective multicentre study and literature review. INCLUSION CRITERIA: clinical diagnosis of WMS with identified pathogenic variants. RESULTS: 61 patients were included: 18 individuals from our cohort and 43 patients from literature. 21 had variants in ADAMTS17, 19 in FBN1, 19 in ADAMTS10 and 2 in LTBP2. All individuals presented with eye anomalies, mainly spherophakia (42/61) and ectopia lentis (39/61). Short stature was present in 73% (from -2.2 to -5.5 SD), 10/61 individuals had valvulopathy. Regarding FBN1 variants, patients with a variant located in transforming growth factor (TGF)-ß-binding protein-like domain 5 (TB5) domain were significantly smaller than patients with FBN1 variant outside TB5 domain (p=0.0040). CONCLUSION: Apart from the ophthalmological findings, which are mandatory for the diagnosis, the phenotype of WMS seems to be more variable than initially described, partially explained by genotype-phenotype correlation.
Assuntos
Nanismo , Anormalidades do Olho , Síndrome de Weill-Marchesani , Humanos , Síndrome de Weill-Marchesani/genética , Síndrome de Weill-Marchesani/diagnóstico , Síndrome de Weill-Marchesani/patologia , Nanismo/genética , Fenótipo , Estudos de Associação Genética , Fibrilina-1/genética , Proteínas de Ligação a TGF-beta Latente/genética , Estudos Multicêntricos como AssuntoRESUMO
Joubert syndrome (JBTS) is a systematic developmental disorder mainly characterized by a pathognomonic mid-hindbrain malformation. All known JBTS-associated genes encode proteins involved in the function of antenna-like cellular organelle, primary cilium, which plays essential roles in cellular signal transduction and development. Here, we identified four unreported variants in ARL13B in two patients with the classical features of JBTS. ARL13B is a member of the Ras GTPase family and functions in ciliogenesis and cilia-related signaling. The two missense variants in ARL13B harbored the substitutions of amino acids at evolutionarily conserved positions. Using model cell lines, we found that the accumulations of the missense variants in cilia were impaired and the variants showed attenuated functions in ciliogenesis or the trafficking of INPP5E. Overall, these findings expanded the ARL13B pathogenetic variant spectrum of JBTS.
Assuntos
Fatores de Ribosilação do ADP , Anormalidades Múltiplas , Cerebelo , Anormalidades do Olho , Doenças Renais Císticas , Retina , Humanos , Anormalidades Múltiplas/genética , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Cerebelo/anormalidades , Cílios/genética , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/patologia , Monoéster Fosfórico Hidrolases/metabolismo , Retina/metabolismo , Retina/anormalidades , Masculino , Feminino , LactenteRESUMO
Mutations in Talpid3, a basal body protein essential for the assembly of primary cilia, have been reported to be causative for Joubert Syndrome (JS). Herein, we report prominent developmental defects in the hippocampus of a conditional knockout mouse lacking the conserved exons 11 and 12 of Talpid3. At early postnatal stages, the Talpid3 mutants exhibit a reduction in proliferation in the dentate gyrus and a disrupted glial scaffold. The occurrence of mis-localized progenitors in the granule cell layer suggests a role for the disrupted glial scaffold in cell migration resulting in defective subpial neurogenic zone-to-hilar transition. Neurospheres derived from the hippocampus of Talpid3fl/flUbcCre mouse, in which Talpid3 was conditionally deleted, lacked primary cilia and were smaller in size. In addition, neurosphere cells showed a disrupted actin cytoskeleton and defective migration. Our findings suggest a link between the hippocampal defects and the learning/memory deficits seen in JS patients.
Assuntos
Anormalidades Múltiplas , Anormalidades do Olho , Doenças Renais Císticas , Anormalidades Múltiplas/genética , Animais , Cerebelo/anormalidades , Giro Denteado , Anormalidades do Olho/genética , Hipocampo , Doenças Renais Císticas/genética , Camundongos , Camundongos Knockout , Neurogênese/genética , Retina/anormalidadesRESUMO
INTRODUCTION: Joubert syndrome (JS) arises from defects of primary cilia resulting in potential malformations of the brain, kidneys, eyes, liver, and limbs. Several of the 35+ genes associated with JS have recognized genotype/phenotype correlations, but most genes have not had enough reported individuals to draw meaningful conclusions. METHODS: A PubMed literature review identified 688 individuals with JS across 32 genes and 112 publications to bolster known genotype/phenotype relationships and identify new correlations. All included patients had the "molar tooth sign" and a confirmed genetic diagnosis. Individuals were categorized by age, ethnicity, sex and the presence of developmental disability/intellectual disability, hypotonia, abnormal eye movements, ataxia, visual impairment, renal impairment, polydactyly, and liver abnormalities. RESULTS: Most genes demonstrated unique phenotypic profiles. Grouping proteins based on physiologic interactions established stronger phenotypic relationships that reflect known ciliary pathophysiology. Age-stratified data demonstrated that end-organ disease is progressive in JS. Most genes demonstrated a significant skew towards having variants with either residual protein function or no residual protein function. CONCLUSION: This cohort demonstrates that clinically meaningful genotype/phenotype relationships exist within most JS-related genes and can be referenced to allow for more personalized clinical care.
Assuntos
Anormalidades Múltiplas , Anormalidades do Olho , Doenças Renais Císticas , Humanos , Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Doenças Renais Císticas/genética , Anormalidades do Olho/genética , Retina/anormalidades , Proteínas/genética , Variação Biológica da PopulaçãoRESUMO
Congenital diaphragmatic hernia (CDH) is a severe congenital anomaly that is often accompanied by other anomalies. Although the role of genetics in the pathogenesis of CDH has been established, only a small number of disease-associated genes have been identified. To further investigate the genetics of CDH, we analyzed de novo coding variants in 827 proband-parent trios and confirmed an overall significant enrichment of damaging de novo variants, especially in constrained genes. We identified LONP1 (lon peptidase 1, mitochondrial) and ALYREF (Aly/REF export factor) as candidate CDH-associated genes on the basis of de novo variants at a false discovery rate below 0.05. We also performed ultra-rare variant association analyses in 748 affected individuals and 11,220 ancestry-matched population control individuals and identified LONP1 as a risk gene contributing to CDH through both de novo and ultra-rare inherited largely heterozygous variants clustered in the core of the domains and segregating with CDH in affected familial individuals. Approximately 3% of our CDH cohort who are heterozygous with ultra-rare predicted damaging variants in LONP1 have a range of clinical phenotypes, including other anomalies in some individuals and higher mortality and requirement for extracorporeal membrane oxygenation. Mice with lung epithelium-specific deletion of Lonp1 die immediately after birth, most likely because of the observed severe reduction of lung growth, a known contributor to the high mortality in humans. Our findings of both de novo and inherited rare variants in the same gene may have implications in the design and analysis for other genetic studies of congenital anomalies.
Assuntos
Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/fisiologia , Anormalidades Craniofaciais/genética , Variações do Número de Cópias de DNA , Anormalidades do Olho/genética , Transtornos do Crescimento/genética , Hérnias Diafragmáticas Congênitas/genética , Luxação Congênita de Quadril/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Mutação de Sentido Incorreto , Osteocondrodisplasias/genética , Anormalidades Dentárias/genética , Animais , Estudos de Casos e Controles , Estudos de Coortes , Anormalidades Craniofaciais/patologia , Anormalidades do Olho/patologia , Feminino , Transtornos do Crescimento/patologia , Hérnias Diafragmáticas Congênitas/patologia , Luxação Congênita de Quadril/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteocondrodisplasias/patologia , Linhagem , Anormalidades Dentárias/patologiaRESUMO
Joubert syndrome (JS) is a recessively inherited congenital ataxia characterized by hypotonia, psychomotor delay, abnormal ocular movements, intellectual disability, and a peculiar cerebellar and brainstem malformation, the "molar tooth sign." Over 40 causative genes have been reported, all encoding for proteins implicated in the structure or functioning of the primary cilium, a subcellular organelle widely present in embryonic and adult tissues. In this paper, we developed an in vitro neuronal differentiation model using patient-derived induced pluripotent stem cells (iPSCs), to evaluate possible neurodevelopmental defects in JS. To this end, iPSCs from four JS patients harboring mutations in distinct JS genes (AHI1, CPLANE1, TMEM67, and CC2D2A) were differentiated alongside healthy control cells to obtain mid-hindbrain precursors and cerebellar granule cells. Differentiation was monitored over 31 days through the detection of lineage-specific marker expression by qRT-PCR, immunofluorescence, and transcriptomics analysis. All JS patient-derived iPSCs, regardless of the mutant gene, showed a similar impairment to differentiate into mid-hindbrain and cerebellar granule cells when compared to healthy controls. In addition, analysis of primary cilium count and morphology showed notable ciliary defects in all differentiating JS patient-derived iPSCs compared to controls. These results confirm that patient-derived iPSCs are an accessible and relevant in vitro model to analyze cellular phenotypes connected to the presence of JS gene mutations in a neuronal context.
Assuntos
Anormalidades Múltiplas , Diferenciação Celular , Cerebelo , Cerebelo/anormalidades , Anormalidades do Olho , Células-Tronco Pluripotentes Induzidas , Doenças Renais Císticas , Neurônios , Retina , Retina/anormalidades , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Cerebelo/patologia , Cerebelo/metabolismo , Neurônios/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Retina/metabolismo , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Doenças Renais Císticas/metabolismo , Masculino , Feminino , Mutação/genética , Cílios/metabolismoRESUMO
OBJECTIVE: To characterize long-term outcomes of PHACE syndrome. STUDY DESIGN: Multicenter study with cross-sectional interviews and chart review of individuals with definite PHACE syndrome ≥10 years of age. Data from charts were collected across multiple PHACE-related topics. Data not available in charts were collected from patients directly. Likert scales were used to assess the impact of specific findings. Patient-Reported Outcomes Measurement Information System (PROMIS) scales were used to assess quality of life domains. RESULTS: A total of 104/153 (68%) individuals contacted participated in the study at a median of 14 years of age (range 10-77 years). There were infantile hemangioma (IH) residua in 94.1%. Approximately one-half had received laser treatment for residual IH, and the majority (89.5%) of participants were satisfied or very satisfied with the appearance. Neurocognitive manifestations were common including headaches/migraines (72.1%), participant-reported learning differences (45.1%), and need for individualized education plans (39.4%). Cerebrovascular arteriopathy was present in 91.3%, with progression identified in 20/68 (29.4%) of those with available follow-up imaging reports. Among these, 6/68 (8.8%) developed moyamoya vasculopathy or progressive stenoocclusion, leading to isolated circulation at or above the level of the circle of Willis. Despite the prevalence of cerebrovascular arteriopathy, the proportion of those with ischemic stroke was low (2/104; 1.9%). PROMIS global health scores were lower than population norms by at least 1 SD. CONCLUSIONS: PHACE syndrome is associated with long-term, mild to severe morbidities including IH residua, headaches, learning differences, and progressive arteriopathy. Primary and specialty follow-up care is critical for PHACE patients into adulthood.
Assuntos
Coartação Aórtica , Anormalidades do Olho , Síndromes Neurocutâneas , Humanos , Lactente , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Síndromes Neurocutâneas/complicações , Anormalidades do Olho/complicações , Coartação Aórtica/complicações , Qualidade de Vida , Estudos Transversais , CefaleiaRESUMO
Phenotypic and genotypic heterogeneity in congenital ocular diseases, especially in anterior segment dysgenesis (ASD), have created challenges for proper diagnosis and classification of diseases. Over the last decade, genomic research has indeed boosted our understanding in the molecular basis of ASD and genes associated with both autosomal dominant and recessive patterns of inheritance have been described with a wide range of expressivity. Here we describe the molecular characterization of a cohort of 162 patients displaying isolated or syndromic congenital ocular dysgenesis. Samples were analyzed with diverse techniques, such as direct sequencing, multiplex ligation-dependent probe amplification, and whole exome sequencing (WES), over 20 years. Our data reiterate the notion that PAX6 alterations are primarily associated with ASD, mostly aniridia, since the majority of the cohort (66.7%) has a pathogenic or likely pathogenic variant in the PAX6 locus. Unexpectedly, a high fraction of positive samples (20.3%) displayed deletions involving the 11p13 locus, either partially/totally involving PAX6 coding region or abolishing its critical regulatory region, underlying its significance. Most importantly, the use of WES has allowed us to both assess variants in known ASD genes (i.e., CYP1B1, ITPR1, MAB21L1, PXDN, and PITX2) and to identify rarer phenotypes (i.e., MIDAS, oculogastrointestinal-neurodevelopmental syndrome and Jacobsen syndrome). Our data clearly suggest that WES allows expanding the analytical portfolio of ocular dysgenesis, both isolated and syndromic, and that is pivotal for the differential diagnosis of those conditions in which there may be phenotypic overlaps and in general in ASD.
Assuntos
Sequenciamento do Exoma , Fator de Transcrição PAX6 , Humanos , Fator de Transcrição PAX6/genética , Masculino , Feminino , Anormalidades do Olho/genética , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/patologia , Fenótipo , Segmento Anterior do Olho/anormalidades , Segmento Anterior do Olho/patologia , Mutação , Oftalmopatias/genética , Oftalmopatias/diagnóstico , Oftalmopatias/congênitoRESUMO
Duane retraction syndrome (DRS) is a rare congenital eye movement disorder causing by the dysplasia of abducens nerve, and has highly variable phenotype. MRI can reveal the endophenotype of DRS. Most DRS cases are sporadical and isolated, while some are familial or accompanied by other ocular disorders and systemic congenital abnormalities. CHN1 was the most common causative gene for familial DRS. Until now, 13 missense variants of CHN1 have been reported. In this study, we enrolled two unrelated pedigrees with DRS. Detailed clinical examinations, MRI, and the whole exome sequencing (WES) were performed to reveal their clinical and genetic characteristics. Patients from pedigree-1 presented with isolated DRS, and a novel heterozygous variant c.650 A > G, p. His217Arg was identified in CHN1 gene. Patients from pedigree-2 presented with classic DRS and abnormalities in auricle morphology, and the pedigree segregated another novel heterozygous CHN1 variant c.637 T > C, p. Phe213Leu. A variety of bioinformatics software predicted that the two variants had deleterious or disease-causing effects. After injecting of two mutant CHN1 mRNAs into zebrafish embryos, the dysplasia of ocular motor nerves (OMN) was observed. Our present findings expanded the phenotypic and genotypic spectrum of CHN1 related DRS, as well as provided new insights into the role of CHN1 in OMN development. Genetic testing is strongly recommended for patients with a DRS family history or accompanying systemic congenital abnormalities.
Assuntos
Síndrome da Retração Ocular , Anormalidades do Olho , Animais , Humanos , Síndrome da Retração Ocular/genética , Peixe-Zebra/genética , Linhagem , Mutação de Sentido IncorretoRESUMO
The neuropsychological characteristics of the cerebellar cognitive affective syndrome (CCAS) in congenital, non-progressive malformations of the cerebellum have been scarcely investigated, and even less is known for Joubert syndrome (JS), an inherited, non-progressive cerebellar ataxia characterized by the so-called molar tooth sign. The few studies on this topic reported inconsistent results about intellectual functioning and specific neuropsychological impairments. The aim of this research is to examine the neuropsychological profile of JS compared to other congenital cerebellar malformations (CM), considering individual variability of intellectual quotient (IQ) in the two groups. Fourteen patients with JS and 15 patients with CM aged 6-25 years were tested through a comprehensive, standardized neuropsychological battery. Their scores in the neuropsychological domains were inspected through descriptive analysis and compared by mean of MANOVA and ANOVA models, then replicated inserting IQ as covariate. The two groups showed a largely overlapping neuropsychological profile, consistent with CCAS. However, the JS group showed worse performance in visual-spatial memory compared to CM patients, although this difference was mitigated when considering IQ. These findings highlight a divergence between JS and other CM in visual-spatial memory, which might suggest a critical role of the cerebellum in recalling task-relevant memories and might inform rehabilitative interventions.
Assuntos
Anormalidades Múltiplas , Doenças Cerebelares , Cerebelo/anormalidades , Anormalidades do Olho , Doenças Renais Císticas , Retina/anormalidades , Humanos , Anormalidades Múltiplas/psicologia , Doenças Renais Císticas/genética , Doenças Renais Císticas/psicologia , Anormalidades do Olho/psicologiaRESUMO
Axenfeld-Rieger Syndrome (ARS) type 1 is a rare autosomal dominant condition characterized by anterior chamber anomalies, umbilical defects, dental hypoplasia, and craniofacial anomalies, with Meckel's diverticulum in some individuals. Here, we describe a clinically ascertained female of childbearing age with ARS for whom clinical targeted sequencing and deletion/duplication analysis followed by clinical exome and genome sequencing resulted in no pathogenic variants or variants of unknown significance in PITX2 or FOXC1. Advanced bioinformatic analysis of the genome data identified a complex, balanced rearrangement disrupting PITX2. This case is the first reported intrachromosomal rearrangement leading to ARS, illustrating that for patients with compelling clinical phenotypes but negative genomic testing, additional bioinformatic analysis are essential to identify subtle genomic abnormalities in target genes.
Assuntos
Segmento Anterior do Olho , Anormalidades do Olho , Oftalmopatias Hereditárias , Proteína Homeobox PITX2 , Feminino , Humanos , Segmento Anterior do Olho/anormalidades , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Oftalmopatias Hereditárias/diagnóstico , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/patologia , Fatores de Transcrição Forkhead/genética , Proteínas de Homeodomínio/genéticaRESUMO
Cat Eye Syndrome (CES) is a rare genetic disease caused by the presence of a small supernumerary marker chromosome derived from chromosome 22, which results in a partial tetrasomy of 22p-22q11.21. CES is classically defined by association of iris coloboma, anal atresia, and preauricular tags or pits, with high clinical and genetic heterogeneity. We conducted an international retrospective study of patients carrying genomic gain in the 22q11.21 chromosomal region upstream from LCR22-A identified using FISH, MLPA, and/or array-CGH. We report a cohort of 43 CES cases. We highlight that the clinical triad represents no more than 50% of cases. However, only 16% of CES patients presented with the three signs of the triad and 9% not present any of these three signs. We also highlight the importance of other impairments: cardiac anomalies are one of the major signs of CES (51% of cases), and high frequency of intellectual disability (47%). Ocular motility defects (45%), abdominal malformations (44%), ophthalmologic malformations (35%), and genitourinary tract defects (32%) are other frequent clinical features. We observed that sSMC is the most frequent chromosomal anomaly (91%) and we highlight the high prevalence of mosaic cases (40%) and the unexpectedly high prevalence of parental transmission of sSMC (23%). Most often, the transmitting parent has mild or absent features and carries the mosaic marker at a very low rate (<10%). These data allow us to better delineate the clinical phenotype associated with CES, which must be taken into account in the cytogenetic testing for this syndrome. These findings draw attention to the need for genetic counseling and the risk of recurrence.