RESUMO
Antibody drug conjugates (ADCs) with twelve FDA approved drugs, known as a novel category of anti-neoplastic treatment created to merge the monoclonal antibody specificity with cytotoxicity effect of chemotherapy. However, despite many undeniable advantages, ADCs face certain problems, including insufficient internalization after binding, complex structures and large size of full antibodies especially in targeting of solid tumors. Camelid single domain antibody fragments (Nanobody®) offer solutions to this challenge by providing nanoscale size, high solubility and excellent stability, recombinant expression in bacteria, in vivo enhanced tissue penetration, and conjugation advantages. Here, an anti-human CD22 Nanobody was expressed in E.coli cells and conjugated to Mertansine (DM1) as a cytotoxic payload. The anti-CD22 Nanobody was expressed and purified by Ni-NTA resin. DM1 conjugated anti-CD22 Nanobody was generated by conjugation of SMCC-DM1 to Nanobody lysine groups. The conjugates were characterized using SDS-PAGE and Capillary electrophoresis (CE-SDS), RP-HPLC, and MALDI-TOF mass spectrometry. Additionally, flow cytometry analysis and a competition ELISA were carried out for binding evaluation. Finally, cytotoxicity of conjugates on Raji and Jurkat cell lines was assessed. The drug-to-antibody ratio (DAR) of conjugates was calculated 2.04 using UV spectrometry. SDS-PAGE, CE-SDS, HPLC, and mass spectrometry confirmed conjugation of DM1 to the Nanobody. The obtained results showed the anti-CD22 Nanobody cytotoxicity was enhanced almost 80% by conjugation with DM1. The binding of conjugates was similar to the non-conjugated anti-CD22 Nanobody in flow cytometry experiments. Concludingly, this study successfully suggest that the DM1 conjugated anti-CD22 Nanobody can be used as a novel tumor specific drug delivery system.
Assuntos
Imunoconjugados , Maitansina , Neoplasias , Anticorpos de Domínio Único , Anticorpos Monoclonais/farmacologia , Antineoplásicos/imunologia , Linhagem Celular Tumoral , Imunoconjugados/química , Imunoconjugados/uso terapêutico , Maitansina/química , Neoplasias/tratamento farmacológico , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Camelidae/imunologiaRESUMO
cGAS-STING signaling is a central component in the therapeutic action of most existing cancer therapies. The accumulated knowledge of tumor immunoregulatory network in recent years has spurred the development of cGAS-STING agonists for tumor treatment as an effective immunotherapeutic strategy. However, the clinical translation of these agonists is thus far unsatisfactory because of the low immunostimulatory efficacy and unrestricted side effects under clinically relevant conditions. Interestingly, the rational integration of biomaterial technology offers a promising approach to overcome these limitations for more effective and safer cGAS-STING-mediated tumor therapy. Herein, we first outline the cGAS-STING signaling axis and generally discuss its association with tumors. We then symmetrically summarize the recent progress in those biomaterial-based cGAS-STING agonism strategies to generate robust antitumor immunity, categorized by the chemical nature of those cGAS-STING stimulants and carrier substrates. Finally, a perspective is provided to discuss the existing challenges and potential opportunities in cGAS-STING modulation for tumor therapy.
Assuntos
Materiais Biocompatíveis , Excipientes , Imunidade Inata , Imunização , Nucleotidiltransferases/genética , Transdução de Sinais , Neoplasias/imunologia , Neoplasias/terapia , Antineoplásicos/imunologiaRESUMO
Intracellular delivery of messenger RNA (mRNA)-based cancer vaccine has shown great potential to elicit antitumor immunity. To achieve robust antitumor efficacy, mRNA encoding tumor antigens needs to be efficiently delivered and translated in dendritic cells with concurrent innate immune stimulation to promote antigen presentation. Here, by screening a group of cationic lipid-like materials, we developed a minimalist nanovaccine with C1 lipid nanoparticle (LNP) that could efficiently deliver mRNA in antigen presenting cells with simultaneous Toll-like receptor 4 (TLR4) activation and induced robust T cell activation. The C1 nanovaccine entered cells via phagocytosis and showed efficient mRNA-encoded antigen expression and presentation. Furthermore, the C1 lipid nanoparticle itself induced the expression of inflammatory cytokines such as IL-12 via stimulating TLR4 signal pathway in dendritic cells. Importantly, the C1 mRNA nanovaccine exhibited significant antitumor efficacy in both tumor prevention and therapeutic vaccine settings. Overall, our work presents a C1 LNP-based mRNA cancer nanovaccine with efficient antigen expression as well as self-adjuvant property, which may provide a platform for developing cancer immunotherapy for a wide range of tumor types.
Assuntos
Antineoplásicos/imunologia , Lipídeos/química , RNA Mensageiro/administração & dosagem , RNA Mensageiro/imunologia , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Células da Medula Óssea/citologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Endocitose , Feminino , Células HEK293 , Humanos , Imunidade Inata , Ativação Linfocitária/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Nanopartículas/química , Linfócitos T/imunologia , Distribuição TecidualRESUMO
The recently identified anion channel LRRC8 volume-regulated anion channels (VRACs) are heteromeric hexamers constituted with the obligate LRRC8A subunit paired with at least one of the accessory LRRC8B to LRRC8E subunits. In addition to transport chloride, taurine, and glutamate, LRRC8 VRACs also transport the anticancer agent cisplatin and STING agonists 2'3'-cyclic GMP-AMP (cGAMP) and cyclic dinucleotides; hence, they are implicated in a variety of physiological and pathological processes, such as cell swelling, stroke, cancer, and viral infection. Although the subunit composition largely determines VRAC substrate specificity, the opening of various VRAC pores under physiological and pathological settings remains enigmatic. In this study, we demonstrated that VRACs comprising LRRC8A and LRRC8E (LRRC8A/E-containing VRACs), specialized in cGAMP transport, can be opened by a protein component present in serum under resting condition. Serum depletion ablated the tonic activity of LRRC8A/E-containing VRACs, decreasing cGAMP transport in various human and murine cells. Also, heating or proteinase K treatment abolished the ability of serum to activate VRAC. Genetic analyses revealed a crucial role for cGAMP synthase (cGAS) in serum/TNF-promoted VRAC activation. Notably, the presence of cGAS on the plasma membrane, rather than its DNA-binding or enzymatic activity, enabled VRAC activation. Moreover, phospholipid PIP2 seemed to be instrumental in the membrane localization of cGAS and its association with VRACs. Corroborating a role for LRRC8A/D-containing VRACs in cisplatin transport, serum and TNF markedly potentiated cisplatin uptake and killing of cancer cells derived from human or mouse. Together, these observations provide new insights into the complex regulation of VRAC activation and suggest a novel approach to enhance the efficacy of cGAMP and cisplatin in treating infection and cancer.
Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Inflamação/tratamento farmacológico , Proteínas de Membrana/imunologia , Nucleotídeos Cíclicos/farmacologia , Animais , Antineoplásicos/imunologia , Cisplatino/imunologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nucleotídeos Cíclicos/imunologiaRESUMO
Here, we present a novel case of a patient with chronic lymphocytic leukemia (CLL) who received CTLA-4 and then PD-1 immune-checkpoint blockade (ICB) as treatment for concomitant metastatic melanoma. Whereas the metastatic melanoma was responsive to ICB, the CLL rapidly progressed (but responded to ICB cessation and ibrutinib). There were no new genetic mutational drivers to explain the altered clinical course. PD-1/PD-L1/PD-L2 and CTLA-4/CD80/CD86 expression was not increased in CLL B cells, CD8+ or CD4+ T-cell subsets, or monocytes. The patient's CLL B cells demonstrated strikingly prolonged in vitro survival during PD-1 blockade, which was not observed in samples taken before or after ICB, or with other patients. To our knowledge, a discordant clinical course to ICB coupled with these biological features has not been reported in a patient with dual malignancies.
Assuntos
Antineoplásicos , Inibidores de Checkpoint Imunológico , Leucemia Linfocítica Crônica de Células B , Melanoma , Receptor de Morte Celular Programada 1 , Neoplasias Cutâneas , Humanos , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Progressão da Doença , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/patologia , Melanoma/tratamento farmacológico , Melanoma/etiologia , Melanoma/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/patologia , Antígeno B7-H1 , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Antineoplásicos/imunologia , Antineoplásicos/uso terapêuticoRESUMO
Bacillus Calmette-Guérin (BCG) immunotherapy for bladder cancer is the only bacterial cancer therapy approved for clinical use. Although presumed to induce T cell-mediated immunity, whether tumor elimination depends on bacteria-specific or tumor-specific immunity is unknown. Herein we show that BCG-induced bladder tumor elimination requires CD4 and CD8 T cells, although augmentation or inhibition of bacterial antigen-specific T cell responses does not alter the efficacy of BCG-induced tumor elimination. In contrast, BCG stimulates long-term tumor-specific immunity that primarily depends on CD4 T cells. We demonstrate that BCG therapy results in enhanced effector function of tumor-specific CD4 T cells, mainly through enhanced production of IFN-γ. Accordingly, BCG-induced tumor elimination and tumor-specific immune memory require tumor cell expression of the IFN-γ receptor, but not MHC class II. Our findings establish that a bacterial immunotherapy for cancer is capable of inducing tumor immunity, an antitumor effect that results from enhanced function of tumor-specific CD4 T cells, and ultimately requires tumor-intrinsic IFN-γ signaling, via a mechanism that is distinct from other tumor immunotherapies.
Assuntos
Antineoplásicos/imunologia , Vacina BCG/imunologia , Imunoterapia/métodos , Interferon gama/imunologia , Neoplasias da Bexiga Urinária , Animais , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular Tumoral , Humanos , Camundongos , Neoplasias Experimentais/imunologia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/terapiaRESUMO
Gonadotropin-releasing hormone (GnRH) is pivotal in regulating human reproduction and fertility through its specific receptors. Among these, gonadotropin-releasing hormone receptor type I (GnRHR I), which is a member of the G-protein-coupled receptor family, is expressed on the surface of both healthy and malignant cells. Its presence in cancer cells has positioned this receptor as a primary target for the development of novel anti-cancer agents. Moreover, the extensive regulatory functions of GnRH have underscored decapeptide as a prominent vehicle for targeted drug delivery, which is accomplished through the design of appropriate conjugates. On this basis, a rationally designed series of anthraquinone/mitoxantrone-GnRH conjugates (con1-con8) has been synthesized herein. Their in vitro binding affinities range from 0.06 to 3.42 nM, with six of them (con2-con7) demonstrating higher affinities for GnRH than the established drug leuprolide (0.64 nM). Among the mitoxantrone based GnRH conjugates, con3 and con7 show the highest affinities at 0.07 and 0.06 nM, respectively, while the disulfide bond present in the conjugates is found to be readily reduced by the thioredoxin (Trx) system. These findings are promising for further pharmacological evaluation of the synthesized conjugates with the prospect of performing future clinical studies.
Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/síntese química , Antineoplásicos/imunologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Fatores Imunológicos , Terapia de Imunossupressão , Imunossupressores , Mitoxantrona , Neoplasias/tratamento farmacológico , Receptores LHRH/metabolismoRESUMO
A plethora of new cancer immunotherapies are under clinical development individually and in combination for a wide variety of indications, but optimizing therapeutic outcomes will require precise consideration of timing in treatment schedule design. In this review, we summarize the current understanding of the temporal rhythms of the anticancer immune response. Lessons learned in preclinical and clinical studies begin to define a framework for incorporating duration and sequencing into immunotherapy. We also discuss key challenges and opportunities for translation of temporally programmed treatment schedules to the clinic, including alignment of immunological timescales in preclinical models and humans, and the use of current and emerging biomarkers.
Assuntos
Antineoplásicos/imunologia , Biomarcadores Tumorais/imunologia , Neoplasias/imunologia , Animais , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológicoRESUMO
Conventional chemotherapeutics and targeted antineoplastic agents have been developed based on the simplistic notion that cancer constitutes a cell-autonomous genetic or epigenetic disease. However, it is becoming clear that many of the available anticancer drugs that have collectively saved millions of life-years mediate therapeutic effects by eliciting de novo or reactivating pre-existing tumor-specific immune responses. Here, we discuss the capacity of both conventional and targeted anticancer therapies to enhance the immunogenic properties of malignant cells and to stimulate immune effector cells, either directly or by subverting the immunosuppressive circuitries that preclude antitumor immune responses in cancer patients. Accumulating evidence indicates that the therapeutic efficacy of several antineoplastic agents relies on their capacity to influence the tumor-host interaction, tipping the balance toward the activation of an immune response specific for malignant cells. We surmise that the development of successful anticancer therapies will be improved and accelerated by the immunological characterization of candidate agents.
Assuntos
Antineoplásicos/imunologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Animais , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Monitorização Imunológica/métodos , Neoplasias/patologia , Avaliação de Resultados em Cuidados de Saúde/métodosRESUMO
Asparaginase is commonly used in combination therapy of acute lymphoblastic leukemia. However, as an immunogenic protein, hypersensitivity reactions (HSRs) during asparaginase therapy are frequent, indicating the development of anti-asparaginase antibodies. These can be associated with diminished clinical effectiveness, including poorer survival. Therapeutic drug monitoring of serum asparaginase activity to confirm complete asparagine depletion is therefore crucial during asparaginase therapy. Switching to alternative types of asparaginase is recommended for patients experiencing HSRs or silent inactivation; those with HSRs or silent inactivation on Escherichia coli-derived asparaginases should switch to another preparation. However, prior global shortages of Erwinia asparaginase highlight the importance of alternative non-E. coli-derived asparaginase, including recombinant Erwinia asparaginase.
Asparaginase is commonly used as a part of a multidrug regimen for acute lymphoblastic leukemia treatment. As foreign proteins, asparaginases have the potential to induce immune responses known as hypersensitivity reactions (HSRs), which can range from a mild rash to a severe allergic reaction. Here, we provide an overview of HSRs and their prevalence in asparaginase-based therapies, and clinical approaches to reduce HSRs. We also review the current understanding of cellular and molecular mechanisms of HSRs, consequences of HSRs and current recommendations for the management of immune reactions to asparaginase. Prior global shortages of Erwinia asparaginase due to manufacturing and supply issues have limited access of asparaginase treatment to patients. In this context, newer therapies have recently been developed.
Assuntos
Antineoplásicos/efeitos adversos , Asparaginase/efeitos adversos , Hipersensibilidade a Drogas/etiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Adolescente , Antineoplásicos/sangue , Antineoplásicos/imunologia , Asparaginase/sangue , Asparaginase/imunologia , Linfócitos B/imunologia , Criança , Hipersensibilidade a Drogas/imunologia , Monitoramento de Medicamentos , Feminino , Humanos , Imunoglobulina M/sangue , Masculino , Linfócitos T Auxiliares-Indutores/metabolismoRESUMO
Rationale: Early pathogenesis of lung adenocarcinoma (LUAD) remains largely unknown. We found that, relative to wild-type littermates, the innate immunomodulator Lcn2 (lipocalin-2) was increased in normal airways from mice with knockout of the airway lineage gene Gprc5a (Gprc5a-/-) and that are prone to developing inflammation and LUAD. Yet, the role of LCN2 in lung inflammation and LUAD is poorly understood.Objectives: Delineate the role of Lcn2 induction in LUAD pathogenesis.Methods: Normal airway brushings, uninvolved lung tissues, and tumors from Gprc5a-/- mice before and after tobacco carcinogen exposure were analyzed by RNA sequencing. LCN2 mRNA was analyzed in public and in-house data sets of LUAD, lung squamous cancer (LUSC), chronic obstructive pulmonary disease (COPD), and LUAD/LUSC with COPD. LCN2 protein was immunohistochemically analyzed in a tissue microarray of 510 tumors. Temporal lung tumor development, gene expression programs, and host immune responses were compared between Gprc5a-/- and Gprc5a-/-/Lcn2-/- littermates.Measurements and Main Results:Lcn2 was progressively elevated during LUAD development and positively correlated with proinflammatory cytokines and inflammation gene sets. LCN2 was distinctively elevated in human LUADs, but not in LUSCs, relative to normal lungs and was associated with COPD among smokers and patients with LUAD. Relative to Gprc5a-/- mice, Gprc5a-/-/Lcn2-/- littermates exhibited significantly increased lung tumor development concomitant with reduced T-cell abundance (CD4+) and richness, attenuated antitumor immune gene programs, and increased immune cell expression of protumor inflammatory cytokines.Conclusions: Augmented LCN2 expression is a molecular feature of COPD-associated LUAD and counteracts LUAD development in vivo by maintaining antitumor immunity.
Assuntos
Adenocarcinoma de Pulmão/imunologia , Antineoplásicos/imunologia , Lipocalina-2/genética , Lipocalina-2/imunologia , Neoplasias Pulmonares/imunologia , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Animais , Biomarcadores/sangue , Feminino , Regulação da Expressão Gênica , Humanos , Lipocalina-2/sangue , Masculino , Camundongos , RNA MensageiroRESUMO
BACKGROUND: Patients with cancer have an increased risk of complications from SARS-CoV-2 infection. Vaccination to prevent COVID-19 is recommended, but data on the immunogenicity and safety of COVID-19 vaccines for patients with solid tumours receiving systemic cancer treatment are scarce. Therefore, we aimed to assess the impact of immunotherapy, chemotherapy, and chemoimmunotherapy on the immunogenicity and safety of the mRNA-1273 (Moderna Biotech, Madrid, Spain) COVID-19 vaccine as part of the Vaccination Against COVID in Cancer (VOICE) trial. METHODS: This prospective, multicentre, non-inferiority trial was done across three centres in the Netherlands. Individuals aged 18 years or older with a life expectancy of more than 12 months were enrolled into four cohorts: individuals without cancer (cohort A [control cohort]), and patients with solid tumours, regardless of stage and histology, treated with immunotherapy (cohort B), chemotherapy (cohort C), or chemoimmunotherapy (cohort D). Participants received two mRNA-1273 vaccinations of 100 µg in 0·5 mL intramuscularly, 28 days apart. The primary endpoint, analysed per protocol (excluding patients with a positive baseline sample [>10 binding antibody units (BAU)/mL], indicating previous SARS-CoV-2 infection), was defined as the SARS-CoV-2 spike S1-specific IgG serum antibody response (ie, SARS-CoV-2-binding antibody concentration of >10 BAU/mL) 28 days after the second vaccination. For the primary endpoint analysis, a non-inferiority design with a margin of 10% was used. We also assessed adverse events in all patients who received at least one vaccination, and recorded solicited adverse events in participants who received at least one vaccination but excluding those who already had seroconversion (>10 BAU/mL) at baseline. This study is ongoing and is registered with ClinicalTrials.gov, NCT04715438. FINDINGS: Between Feb 17 and March 12, 2021, 791 participants were enrolled and followed up for a median of 122 days (IQR 118 to 128). A SARS-CoV-2-binding antibody response was found in 240 (100%; 95% CI 98 to 100) of 240 evaluable participants in cohort A, 130 (99%; 96 to >99) of 131 evaluable patients in cohort B, 223 (97%; 94 to 99) of 229 evaluable patients in cohort C, and 143 (100%; 97 to 100) of 143 evaluable patients in cohort D. The SARS-CoV-2-binding antibody response in each patient cohort was non-inferior compared with cohort A. No new safety signals were observed. Grade 3 or worse serious adverse events occurred in no participants in cohort A, three (2%) of 137 patients in cohort B, six (2%) of 244 patients in cohort C, and one (1%) of 163 patients in cohort D, with four events (two of fever, and one each of diarrhoea and febrile neutropenia) potentially related to the vaccination. There were no vaccine-related deaths. INTERPRETATION: Most patients with cancer develop, while receiving chemotherapy, immunotherapy, or both for a solid tumour, an adequate antibody response to vaccination with the mRNA-1273 COVID-19 vaccine. The vaccine is also safe in these patients. The minority of patients with an inadequate response after two vaccinations might benefit from a third vaccination. FUNDING: ZonMw, The Netherlands Organisation for Health Research and Development.
Assuntos
Vacina de mRNA-1273 contra 2019-nCoV/efeitos adversos , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Antineoplásicos/imunologia , Imunoterapia , Neoplasias/terapia , Vacinação/efeitos adversos , Vacina de mRNA-1273 contra 2019-nCoV/administração & dosagem , Idoso , Anticorpos Antivirais/sangue , Antineoplásicos/uso terapêutico , COVID-19/prevenção & controle , Estudos de Coortes , Terapia Combinada , Feminino , Humanos , Imunogenicidade da Vacina , Imunomodulação , Injeções Intramusculares , Interferon gama/metabolismo , Masculino , Pessoa de Meia-Idade , Neoplasias/imunologia , Países Baixos , Estudos Prospectivos , SARS-CoV-2/imunologia , Inquéritos e QuestionáriosRESUMO
Advances in immunotherapy, most notably antibodies targeting the inhibitory immune receptors cytotoxic T-lymphocyte associated protein 4 (CTLA-4/CD152), programmed death protein 1 (PD-1/CD279) and programmed death-ligand 1 (PD-L1/B7H1/CD274) have become effective standard therapies in advanced malignancies including melanoma,1-4 merkel cell carcinoma5, urological cancers6-8, non-small cell lung cancer9-11, mis-match repair (MMR) deficient tumors12, and Hodgkin lymphoma with response rates ranging from 25 to 60% in the first and second line settings13,14. FDA approval has also been given for treatment for hepatocellular carcinoma, gastric cancer, triple negative breast cancer, cervical and head and neck cancers with response rates closer to 15 %15. Additionally, some clinical efficacy has been observed in ovarian cancer, mesothelioma, prostate cancer, diffuse large B cell lymphoma, follicular lymphoma, and both cutaneous and peripheral T-cell lymphoma. However, despite these successes, most patients will initially fail to respond to treatment and almost half of initial responders will develop secondary resistance to immunotherapy and progress. Moreover, many prevalent solid organ tumors remain resistant to immunotherapy including colorectal, pancreatic and hepatobiliary cancers. Therefore, new therapies are needed to increase both initial and durable response rates and to develop new mechanistic insights into pathways of immune resistance so that immunotherapy may become more widely available as a therapeutic option in common malignancies.
Assuntos
Antineoplásicos/uso terapêutico , Epigênese Genética/imunologia , Repressão Epigenética/imunologia , Neoplasias/terapia , Antineoplásicos/imunologia , Antígeno B7-H1/efeitos adversos , Antígeno B7-H1/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Terapia Combinada , Humanos , Imunoterapia/efeitos adversos , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologiaRESUMO
Tumor-associated glycolipids such as NeuGc GM3 are auspicious molecular targets in antineoplastic therapies and vaccine strategies. 14F7 is a monoclonal IgG1 with high clinical potential in cancer immunotherapy as it displays extraordinary specificity for NeuGc GM3, while it does not recognize the very similar, ubiquitous NeuAc GM3. Here we present the 2.3 Å crystal structure of the 14F7 antigen-binding domain (14F7 scFv) in complex with the NeuGc GM3 trisaccharide. Modeling analysis and previous mutagenesis data suggest that 14F7 may also bind to an alternative NeuGc GM3 conformation, not observed in the crystal structure. The most intriguing finding, however, was that a water molecule centrally placed in the complementarity-determining region directly mediates the specificity of 14F7 to NeuGc GM3. This has profound impact on the complexity of engineering in the binding site and provides an excellent example of the importance in understanding the water structure in antibody-antigen interactions.
Assuntos
Anticorpos Monoclonais/imunologia , Antineoplásicos/imunologia , Gangliosídeo G(M3)/imunologia , Água/química , Anticorpos Monoclonais/isolamento & purificação , Especificidade de Anticorpos , Reações Antígeno-Anticorpo , Gangliosídeo G(M3)/síntese química , Gangliosídeo G(M3)/química , Modelos Moleculares , Estrutura MolecularRESUMO
As an immune checkpoint, programmed cell death 1 (PD-1) and its ligand (PD-L1) pathway plays a crucial role in CD8+ cytotoxic T lymphocytes (CTL) activation and provides antitumor responses. The N-glycans of PD-1 and PD-L1 are highly core fucosylated, which are solely catalyzed by the core fucosyltransferase (Fut8). However, the precise biological mechanisms underlying effects of core fucosylation of PD-1 and PD-L1 on CTL activation have not been fully understood. In this study, we found that core fucosylation was significantly upregulated in lung adenocarcinoma. Compared to those of Fut8+/+ OT-I mice, the lung adenocarcinoma formation induced by urethane was markedly reduced in Fut8-/- OT-I mice. De-core fucosylation of PD-1 compromised its expression on Fut8-/- CTL, resulted in enhanced Fut8-/- CTL activation and cytotoxicity, leading to more efficient tumor eradication. Indeed, loss of core fucosylation significantly enhanced the PD-1 ubiquitination and in turn led to the degradation of PD-1 in the proteasome. Our current work indicates that inhibition of core fucosylation is a unique strategy to reduce PD-1 expression for the antilung adenocarcinoma immune therapy in the future.
Assuntos
Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/terapia , Antineoplásicos/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T Citotóxicos/imunologia , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Fucosiltransferases/imunologia , Glicosilação , Células HEK293 , Humanos , Ativação Linfocitária/imunologia , Camundongos , Transdução de Sinais/imunologia , Regulação para Cima/imunologiaRESUMO
Debate is around the optimal immunization regimen for cancer vaccines since too intense vaccination schedules may exhaust reactive lymphocytes. GX301 is a telomerase-based cancer vaccine whose safety and immunological effects were tested in a phase I trial applying an eight administrations schedule. Main objective of this study was to comparatively analyse safety and immunological response to three GX301 regimens in metastatic castration-resistant prostate cancer patients with response/disease stability after docetaxel chemotherapy. This was a multicentre, randomized, parallel-group, open-label trial registered with EudraCT (2014-000095-26) and ClinicalTrials.gov (NCT02293707, 2014). Ninety-eight patients were randomized to receive either eight (regimen 1), four (regimen 2) or two (regimen 3) vaccine administrations. Sixty-three patients were assessable for the primary immunological end-point. Vaccine-specific immune responses were evaluated by intracellular staining for IFN, elispot and cytotoxic assay at 90 and 180 days from baseline. No major side effects were recorded. A 54% overall immune responder rate was observed with 95% of patients showing at least one vaccine-specific immune response. Rate of immunological responders and number of immunizations were proportionally related, suggesting superiority of regimens 1 and 2 over regimen 3. Overall survival did not differ among regimens in both immunological responders and non-responders and was inversely associated (P = 0.002) with increase in the number of circulating CD8 + T regulatory cells at 180 days. These data indicate that GX301 cancer vaccine is safe and immunogenic in metastatic castration-resistant prostate cancer patients. Schedules with high number of administrations should be preferred in future studies due to their better immunological outcome.
Assuntos
Vacinas Anticâncer/imunologia , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/terapia , Telomerase/imunologia , Idoso , Antineoplásicos/imunologia , Linfócitos T CD8-Positivos/imunologia , Intervalo Livre de Doença , Docetaxel/imunologia , Humanos , Imunidade/imunologia , Imunização/métodos , Masculino , Antígeno Prostático Específico/imunologia , Linfócitos T Reguladores/imunologiaRESUMO
Background Anaplastic thyroid cancer (ATC) is aggressive with a poor prognosis, partly because of the immunosuppressive microenvironment created by tumor-associated macrophages (TAMs). Purpose To understand the relationship between TAM infiltration, tumor vascularization, and corresponding drug delivery by using ferumoxytol-enhanced MRI and macrin in an ATC mouse model. Materials and Methods ATC tumors were generated in 6-8-week-old female B6129SF1/J mice through intrathyroid injection to model orthotopic tumors, or intravenously to model hematogenous metastasis, and prospectively enrolled randomly into treatment cohorts (n = 94 total; August 1, 2018, to January 15, 2020). Mice were treated with vehicle or combined serine/threonine-protein kinase B-Raf (BRAF) kinase inhibitor (BRAFi) and anti-PDL1 antibody (aPDL1). A subset was cotreated with therapies, including an approximately 70-nm model drug delivery nanoparticle (DDNP) to target TAM, and an antibody-neutralizing colony stimulating factor 1 receptor (CSF1R). Imaging was performed at the macroscopic level with ferumoxytol-MRI and microscopically with macrin. Genetically engineered BrafV600E/WT p53-null allografts were used and complemented by a GFP-transgenic derivative and human xenografts. Tumor-bearing organs were processed by using tissue clearing and imaged with confocal microscopy and MRI. Two-tailed Wilcoxon tests were used for comparison (≥five per group). Results TAM levels were higher in orthotopic thyroid tumors compared with pulmonary metastatic lesions by 79% ± 23 (standard deviation; P < .001). These findings were concordant with ferumoxytol MRI, which showed 136% ± 88 higher uptake in thyroid lesions (P = .02) compared with lung lesions. BRAFi and aPDL1 combination therapy resulted in higher tumor DDNP delivery by 39% ± 14 in pulmonary lesions (P = .004). Compared with the untreated group, tumors following BRAFi, aPDL1, and CSF1R-blocking antibody combination therapy did not show greater levels of TAM or DDNP (P = .82). Conclusion In a mouse model of anaplastic thyroid cancer, ferumoxytol MRI showed 136% ± 88 greater uptake in orthotopic thyroid tumors compared with pulmonary lesions, which reflected high vascularization and greater tumor-associated macrophage (TAM) levels. Serine/threonine-protein kinase B-Raf inhibitor and anti-programmed death ligand 1 antibody elicited higher local TAM levels and 43% ± 20 greater therapeutic nanoparticle delivery but not higher vascularization in pulmonary tumors. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Luker in this issue.
Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Carcinoma Anaplásico da Tireoide/diagnóstico por imagem , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Animais , Anticorpos Monoclonais Humanizados/imunologia , Antineoplásicos/imunologia , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Óxido Ferroso-Férrico , Imunidade/imunologia , Camundongos , Nanopartículas , Proteínas Proto-Oncogênicas B-raf/imunologia , Carcinoma Anaplásico da Tireoide/imunologia , Macrófagos Associados a Tumor/imunologiaRESUMO
Antitumor rejection by the immune system is a complex process that is regulated by several factors. Among these factors are the quality and quantity of mutational events that occur in cancer cells. Perhaps one of the most important types of mutations that influence antitumor immunity is the neoantigen, that is, a non-self-antigen that arises as a result of somatic mutation. Recent work has demonstrated that neoantigens hold significant promise for developing new diagnostic and therapeutic modalities. Therapeutic targeting of neoantigens is important for achieving benefit following therapy with immune checkpoint blockade agents or for cancer vaccines targeting mutations. Here, we review our understanding of neoantigens and discuss new developments in the quest to use them in cancer immunotherapy.
Assuntos
Antineoplásicos/imunologia , Vacinas Anticâncer/imunologia , Neoplasias/imunologia , Animais , Antígenos de Neoplasias/imunologia , Humanos , Imunoterapia/métodos , Neoplasias/terapiaRESUMO
The efficacy of chimeric antigen receptor T (CAR-T) cell therapy in solid tumors is far from satisfactory. In this study, we investigated the influence of epithelial-mesenchymal transition (EMT) on the antitumor effect of CAR-T cells and explored the potential efficacy of combining CAR-T cells with inhibitors targeting EMT. We successfully induced EMT in tumor cells with TGF-ß1, and the antitumor effect of HER2-directed CAR-T cells was significantly suppressed by EMT. Upregulation of PD-L1 was observed in tumor cells undergoing EMT, and change in PD-L1 expression during the EMT process was dependent on the MEK/ERK and PI3K/Akt pathways. Inhibition of the TGF-ß1 pathway could block the EMT process in tumor cells and restore their susceptibility to HER2-directed CAR-T cells in vitro. In addition, targeting the TGF-ß1 pathway significantly enhanced the antitumor effect of HER2-directed CAR-T cells in vivo. Our findings suggest that blocking EMT could potently enhance the antitumor effect of CAR-T cells, which provides a promising approach to improving the therapeutic efficacy of CAR-T cell therapy in solid tumors.
Assuntos
Antineoplásicos/imunologia , Transição Epitelial-Mesenquimal/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Receptor ErbB-2/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Células A549 , Animais , Antígeno B7-H1/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta1/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
BACKGROUND: Oxaliplatin, a third-generation platinum derivative is commonly used in combination treatment of metastatic colorectal cancer. Since 2008, it is the second most common cause of drug-induced immune hemolytic anemia (DIIHA) investigated in our laboratory. STUDY DESIGN AND METHODS: Samples from fifteen patients including nine (60%) with intravascular hemolysis, suspected of having DIIHA were studied for the presence of anti-oxaliplatin. Direct antiglobulin tests (DATs) and tests with oxaliplatin-treated red blood cells (RBCs) or untreated and enzyme-treated RBCs in the presence of oxaliplatin were performed. A pool of normal AB sera with no unexpected antibodies was used as a control for nonimmunologic protein adsorption (NIPA). RESULTS: Eleven (73%) of the fifteen patients had antibodies to oxaliplatin that reacted with drug-treated RBCs and untreated RBCs in the presence of drug by tube and/or gel method. Lower-titer reactivity (<20) obtained with four patients' sera and the corresponding pooled normal sera was most likely due to NIPA. Eighty seven percent (13/15) of the patients had positive DAT either with anti-IgG only (33%), IgG + C3d (40%), or C3d only (13%). Two patients had a negative DAT. No directly agglutinating antibody was observed with the pools of normal donor's sera in the presence of oxaliplatin. CONCLUSION: Anti-oxaliplatin can cause severe intravascular hemolysis. Complement can usually be detected on the patient's RBCs and anti-oxaliplatin can be detected in the patient's serum. RBC-bound albumin detection with anti-human albumin needs to be performed to confirm NIPA which could have contributed to the patient's hemolytic anemia.