RESUMO
BACKGROUND: Among patients with pulmonary arterial hypertension (PAH), acute vasoreactivity testing during right heart catheterization may identify acute vasoresponders, for whom treatment with high-dose calcium channel blockers (CCBs) is recommended. However, long-term outcomes in the current era remain largely unknown. We sought to evaluate the implications of acute vasoreactivity response for long-term response to CCBs and other outcomes. METHODS: Patients diagnosed with PAH between January 1999 and December 2018 at 15 pulmonary hypertension centers were included and analyzed retrospectively. In accordance with current guidelines, acute vasoreactivity response was defined by a decrease of mean pulmonary artery pressure by ≥10 mm Hg to reach <40 mm Hg, without a decrease in cardiac output. Long-term response to CCBs was defined as alive with unchanged initial CCB therapy with or without other initial PAH therapy and World Health Organization functional class I/II and/or low European Society of Cardiology/European Respiratory Society risk status at 12 months after initiation of CCBs. Patients were followed for up to 5 years; clinical measures, outcome, and subsequent treatment patterns were captured. RESULTS: Of 3702 patients undergoing right heart catheterization for PAH diagnosis, 2051 had idiopathic, heritable, or drug-induced PAH, of whom 1904 (92.8%) underwent acute vasoreactivity testing. A total of 162 patients fulfilled acute vasoreactivity response criteria and received an initial CCB alone (n=123) or in combination with another PAH therapy (n=39). The median follow-up time was 60.0 months (interquartile range, 30.8-60.0), during which overall survival was 86.7%. At 12 months, 53.2% remained on CCB monotherapy, 14.7% on initial CCB plus another initial PAH therapy, and the remaining patients had the CCB withdrawn and/or PAH therapy added. CCB long-term response was found in 54.3% of patients. Five-year survival was 98.5% in long-term responders versus 73.0% in nonresponders. In addition to established vasodilator responder criteria, pulmonary artery compliance at acute vasoreactivity testing, low risk status and NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels at early follow-up correlated with long-term response and predicted survival. CONCLUSIONS: Our data display heterogeneity within the group of vasoresponders, with a large subset failing to show a sustained satisfactory clinical response to CCBs. This highlights the necessity for comprehensive reassessment during early follow-up. The use of pulmonary artery compliance in addition to current measures may better identify those likely to have a good long-term response.
Assuntos
Bloqueadores dos Canais de Cálcio , Cateterismo Cardíaco , Hipertensão Arterial Pulmonar , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/mortalidade , Resultado do Tratamento , Bloqueadores dos Canais de Cálcio/uso terapêutico , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/efeitos dos fármacos , Adulto , Idoso , Anti-Hipertensivos/uso terapêuticoRESUMO
BACKGROUND: Integrative multiomics can elucidate pulmonary arterial hypertension (PAH) pathobiology, but procuring human PAH lung samples is rare. METHODS: We leveraged transcriptomic profiling and deep phenotyping of the largest multicenter PAH lung biobank to date (96 disease and 52 control) by integration with clinicopathologic data, genome-wide association studies, Bayesian regulatory networks, single-cell transcriptomics, and pharmacotranscriptomics. RESULTS: We identified 2 potentially protective gene network modules associated with vascular cells, and we validated ASPN, coding for asporin, as a key hub gene that is upregulated as a compensatory response to counteract PAH. We found that asporin is upregulated in lungs and plasma of multiple independent PAH cohorts and correlates with reduced PAH severity. We show that asporin inhibits proliferation and transforming growth factor-ß/phosphorylated SMAD2/3 signaling in pulmonary artery smooth muscle cells from PAH lungs. We demonstrate in Sugen-hypoxia rats that ASPN knockdown exacerbated PAH and recombinant asporin attenuated PAH. CONCLUSIONS: Our integrative systems biology approach to dissect the PAH lung transcriptome uncovered asporin as a novel protective target with therapeutic potential in PAH.
Assuntos
Proteínas da Matriz Extracelular , Pulmão , Hipertensão Arterial Pulmonar , Humanos , Animais , Pulmão/metabolismo , Pulmão/patologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Ratos , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Masculino , Estudo de Associação Genômica Ampla , Redes Reguladoras de Genes , Transdução de Sinais , Perfilação da Expressão Gênica , Proteína Smad3/metabolismo , Proteína Smad3/genética , Feminino , Ratos Sprague-Dawley , Proteína Smad2/metabolismo , Proteína Smad2/genética , Transcriptoma , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Pessoa de Meia-Idade , MultiômicaRESUMO
Platelet-derived growth factor (PDGF) is one of the most important cytokines associated with pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). PDGF receptor (PDGFR) inhibition exerted therapeutic effects on PAH in clinical trials, but serious side effects warrant the withdrawal of existing drugs. In this study, a novel highly selective PDGFR inhibitor WQ-C-401 was developed, and its effects on PDGFR signaling pathway and pulmonary vascular remodeling in PAH were investigated. Cell proliferation assays and Western blot analysis of PDGFRα/ß phosphorylation showed that WQ-C-401 inhibited PDGFR-mediated cell proliferation assay and suppressed PDGFR phosphorylation in a concentration-dependent manner. DiscoverX's KinomeScanTM technology confirmed the good kinome selectivity of WQ-C-401 (S score (1) of PDGFR = (0.01)). In monocrotaline (MCT)-induced PAH rats, intragastric administration of WQ-C-401 (25, 50, 100 mg/kg/d) or imatinib (50 mg/kg/d, positive control) significantly decreased right ventricular systolic pressure (RVSP). Histological analysis demonstrated that WQ-C-401 inhibited pulmonary vascular remodeling by reducing muscularization and fibrosis, as well as alleviated right ventricular hypertrophy in MCT-treated rats. In addition, WQ-C-401 suppressed MCT-induced cell hyperproliferation and CD68+ macrophage infiltration around the pulmonary artery. In vitro, WQ-C-401 inhibited PDGF-BB-induced proliferation and migration of human pulmonary arterial smooth muscle cells (PASMCs). Moreover, Western blot analysis showed that WQ-C-401 concertration-dependently inhibited PDGF-BB-induced phosphorylation of ERK1/2 and PDGFRß Y751, decreased collagen â synthesis and increased alpha smooth muscle actin (α-SMA) expression in PASMCs. Collectively, our results suggest that WQ-C-401 is a selective and potent PDGFR inhibitor which could be a promising drug for the therapeutics of PAH by preventing pulmonary vascular remodeling.
Assuntos
Proliferação de Células , Monocrotalina , Hipertensão Arterial Pulmonar , Ratos Sprague-Dawley , Remodelação Vascular , Animais , Remodelação Vascular/efeitos dos fármacos , Ratos , Proliferação de Células/efeitos dos fármacos , Masculino , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Humanos , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Fosforilação/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Transdução de Sinais/efeitos dos fármacos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/prevenção & controle , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidoresRESUMO
Rationale: The ubiquitous polyamine spermidine is essential for cell survival and proliferation. One important function of spermidine is to serve as a substrate for hypusination, a posttranslational modification process that occurs exclusively on eukaryotic translation factor 5A (eIF5A) and ensures efficient translation of various gene products. Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by progressive obliteration of the small pulmonary arteries (PAs) caused by excessive proliferation of PA smooth muscle cells (PASMCs) and suppressed apoptosis. Objectives: To characterize the role of hypusine signaling in PAH. Methods: Molecular, genetic, and pharmacological approaches were used both in vitro and in vivo to investigate the role of hypusine signaling in pulmonary vascular remodeling. Measurements and Main Results: Hypusine forming enzymes-deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH)-and hypusinated eukaryotic translation factor 5A are overexpressed in distal PAs and isolated PASMCs from PAH patients and animal models. In vitro, inhibition of DHPS using N1-guanyl-1,7-diaminoheptane or shRNA resulted in a decrease in PAH-PASMC resistance to apoptosis and proliferation. In vivo, inactivation of one allele of Dhps targeted to smooth muscle cells alleviates PAH in mice, and its pharmacological inhibition significantly decreases pulmonary vascular remodeling and improves hemodynamics and cardiac function in two rat models of established PAH. With mass spectrometry, hypusine signaling is shown to promote the expression of a broad array of proteins involved in oxidative phosphorylation, thus supporting the bioenergetic requirements of cell survival and proliferation. Conclusions: These findings support inhibiting hypusine signaling as a potential treatment for PAH.
Assuntos
Hipertensão Arterial Pulmonar , Transdução de Sinais , Remodelação Vascular , Animais , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/fisiologia , Ratos , Humanos , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Masculino , Modelos Animais de Doenças , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/efeitos dos fármacos , Camundongos , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A , Proliferação de Células/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/metabolismo , Lisina/análogos & derivadosRESUMO
Pulmonary hypertension (PH) is characterized by excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), in which inflammatory signaling caused by activation of the NF-κB pathway plays an important role. A20 is an important negative regulator of the NF-κB pathway, and zinc promotes the expression of A20 and exerts a protective effect against various diseases (e.g. COVID19) by inhibiting the inflammatory signaling. The role of A20 and intracellular zinc signaling in PH has been explored, but the extracellular zinc signaling is not well understood, and whether zinc has protective effects on PH is still elusive. Using inductively coupled plasma mass spectrometry (ICP-MS), we studied the alteration of trace elements during the progression of monocrotaline (MCT)-induced PH and found that serum zinc concentration was decreased with the onset of PH accompanied by abnormalities of other three elements, including copper, chromium, and magnesium. Zinc chloride injection with the dosage of 5 mg/kg intraperitoneally partially corrected this abnormality and inhibited the progression of PH. Zinc supplementation induced the expression of A20 in lung tissue and reduce the inflammatory responses. In vitro, zinc supplementation time-dependently upregulated the expression of A20 in PASMCs, therefore correcting the excessive proliferation and migration of cells caused by hypoxia. Using genetically encoded-FRET based zinc probe, we found that these effects of zinc ions are not achieved by entering cells, but most likely by activating cell surface zinc receptor (ZnR/GPR39). These results provide the first evidence of the effectiveness of zinc supplementation in the treatment of PH.
Assuntos
Hipertensão Pulmonar , Monocrotalina , Miócitos de Músculo Liso , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Regulação para Cima , Zinco , Animais , Monocrotalina/toxicidade , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Zinco/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Ratos , Masculino , Regulação para Cima/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ratos Sprague-Dawley , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacosRESUMO
Small muscular pulmonary artery remodeling is a dominant feature of pulmonary arterial hypertension (PAH). PSEN1 affects angiogenesis, cancer, and Alzheimer's disease. We aimed to determine the role of PSEN1 in the pathogenesis of vascular remodeling in pulmonary hypertension (PH). Hemodynamics and vascular remodeling in the Psen1-knockin and smooth muscle-specific Psen1-knockout mice were assessed. The functional partners of PSEN1 were predicted by bioinformatics analysis and biochemical experiments. The therapeutic effect of PH was evaluated by administration of the PSEN1-specific inhibitor ELN318463. We discovered that both the mRNA and protein levels of PSEN1 were increased over time in hypoxic rats, monocrotaline rats, and Su5416/hypoxia mice. Psen1 transgenic mice were highly susceptible to PH, whereas smooth muscle-specific Psen1-knockout mice were resistant to hypoxic PH. STRING analysis showed that Notch1/2/3, ß-catenin, Cadherin-1, DNER (delta/notch-like epidermal growth factor-related receptor), TMP10, and ERBB4 appeared to be highly correlated with PSEN1. Immunoprecipitation confirmed that PSEN1 interacts with ß-catenin and DNER, and these interactions were suppressed by the catalytic PSEN1 mutations D257A, D385A, and C410Y. PSEN1 was found to mediate the nuclear translocation of the Notch1 intracellular domains and activated RBP-Jκ. Octaarginine-coated liposome-mediated pharmacological inhibition of PSEN1 significantly prevented and reversed the pathological process in hypoxic and monocrotaline-induced PH. PSEN1 essentially drives the pathogenesis of PAH and interacted with the noncanonical Notch ligand DNER. PSEN1 can be used as a promising molecular target for treating PAH. PSEN1 inhibitor ELN318463 can prevent and reverse the progression of PH and can be developed as a potential anti-PAH drug.
Assuntos
Hipertensão Pulmonar , Presenilina-1 , Remodelação Vascular , Animais , Humanos , Masculino , Camundongos , Ratos , Modelos Animais de Doenças , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Indóis , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monocrotalina , Presenilina-1/efeitos dos fármacos , Presenilina-1/genética , Presenilina-1/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/efeitos dos fármacos , Pirróis/farmacologia , Ratos Sprague-Dawley , Remodelação Vascular/efeitos dos fármacosRESUMO
Pulmonary arterial (PA) hypertension (PAH) is a severe cardiopulmonary disease that may be triggered by exposure to drugs such as dasatinib or facilitated by genetic predispositions. The incidence of dasatinib-associated PAH is estimated at 0.45%, suggesting individual predispositions. The mechanisms of dasatinib-associated PAH are still incomplete. We discovered a KCNK3 gene (Potassium channel subfamily K member 3; coding for outward K+ channel) variant in a patient with dasatinib-associated PAH and investigated the impact of this variant on KCNK3 function. Additionally, we assessed the effects of dasatinib exposure on KCNK3 expression. In control human PA smooth muscle cells (hPASMCs) and human pulmonary endothelial cells (hPECs), we evaluated the consequences of KCNK3 knockdown on cell migration, mitochondrial membrane potential, ATP production, and in vitro tube formation. Using mass spectrometry, we determined the KCNK3 interactome. Patch-clamp experiments revealed that the KCNK3 variant represents a loss-of-function variant. Dasatinib contributed to PA constriction by decreasing KCNK3 function and expression. In control hPASMCs, KCNK3 knockdown promotes mitochondrial membrane depolarization and glycolytic shift. Dasatinib exposure or KCNK3 knockdown reduced the number of caveolae in hPECs. Moreover, KCNK3 knockdown in control hPECs reduced migration, proliferation, and in vitro tubulogenesis. Using proximity labeling and mass spectrometry, we identified the KCNK3 interactome, revealing that KCNK3 interacts with various proteins across different cellular compartments. We identified a novel pathogenic variant in KCNK3 and showed that dasatinib downregulates KCNK3, emphasizing the relationship between dasatinib-associated PAH and KCNK3 dysfunction. We demonstrated that a loss of KCNK3-dependent signaling contributes to endothelial dysfunction in PAH and glycolytic switch of hPASMCs.
Assuntos
Dasatinibe , Células Endoteliais , Canais de Potássio de Domínios Poros em Tandem , Dasatinibe/farmacologia , Dasatinibe/efeitos adversos , Humanos , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Movimento Celular/efeitos dos fármacos , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Masculino , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/efeitos dos fármacos , Proteínas do Tecido NervosoRESUMO
Bronchopulmonary dysplasia (BPD) is characterized by impaired lung alveolar and vascular growth. We investigated the hypothesis that neonatal exposure to hyperoxia leads to persistent BPD phenotype caused by decreased expression of liver kinase B1 (LKB1), a key regulator of mitochondrial function. We exposed mouse pups from Postnatal Day (P)1 through P10 to 21% or 75% oxygen. Half of the pups in each group received metformin or saline intraperitoneally from P1 to P10. Pups were killed at P4 or P10 or recovered in 21% O2 until euthanasia at P21. Lung histology and morphometry, immunofluorescence, and immunoblots were performed to detect changes in lung structure and expression of LKB1; downstream targets AMPK, PGC-1α, and electron transport chain (ETC) complexes; and Notch ligands Jagged 1 and delta-like 4. LKB1 signaling and in vitro angiogenesis were assessed in human pulmonary artery endothelial cells (exposed to 21% or 95% O2 for 36 hours. Levels of LKB1, phosphorylated AMPK, PGC-1α, and ETC complexes were decreased in lungs at P10 and P21 in hyperoxia. Metformin increased LKB1, phosphorylated AMPK, PGC-1α, and ETC complexes at P10 and P21 in pups exposed to hyperoxia. Radial alveolar count was decreased, and mean linear intercept increased in pups exposed to hyperoxia at P10 and P21; these were improved by metformin. Lung capillary density was decreased in hyperoxia at P10 and P21 and was increased by metformin. In vitro angiogenesis was decreased in human pulmonary artery endothelial cells by 95% O2 and was improved by metformin. Decreased LKB1 signaling may contribute to decreased alveolar and vascular growth in a mouse model of BPD.
Assuntos
Animais Recém-Nascidos , Displasia Broncopulmonar , Modelos Animais de Doenças , Hiperóxia , Proteínas Serina-Treonina Quinases , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Displasia Broncopulmonar/patologia , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/enzimologia , Humanos , Hiperóxia/metabolismo , Hiperóxia/patologia , Pulmão/patologia , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/enzimologia , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Metformina/farmacologia , Transdução de Sinais , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Neovascularização Patológica/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Fosforilação , AngiogêneseRESUMO
An increased intracellular Ca2+ concentration ([Ca2+]i) is a key trigger for pulmonary arterial smooth muscle cell (PASMC) proliferation and contributes greatly to pulmonary hypertension (PH). Extracellular Ca2+ influx via a store-operated Ca2+ channel, termed store-operated Ca2+ entry (SOCE), is a crucial mechanism for [Ca2+]i increase in PASMCs. Calcium release-activated calcium modulator (Orai) proteins, consisting of three members (Orai1-3), are the main components of the store-operated Ca2+ channel. Sodium houttuyfonate (SH) is a product of the addition reaction of sodium bisulfite and houttuynin and has antibacterial, antiinflammatory, and other properties. In this study, we assessed the contributions of Orai proteins to monocrotaline (MCT)-enhanced SOCE, [Ca2+]i, and cell proliferation in PASMCs and determined the effect of SH on MCT-PH and the underlying mechanism, focusing on Orai proteins, SOCE, and [Ca2+]i in PASMCs. Our results showed that: 1) Orai1 and Orai2 were selectively upregulated in the distal pulmonary arteries and the PASMCs of MCT-PH rats; 2) knockdown of Orai1 or Orai2 reduced SOCE, [Ca2+]i, and cell proliferation without affecting their expression in PASMCs in MCT-PH rats; 3) SH significantly normalized the characteristic parameters in a dose-dependent manner in the MCT-PH rat model; and 4) SH decreased MCT-enhanced SOCE, [Ca2+]i, and PASMC proliferation via Orai1 or Orai2. These results indicate that SH likely exerts its protective role in MCT-PH by inhibiting the Orai1,2-SOCE-[Ca2+]i signaling pathway.
Assuntos
Proliferação de Células , Hipertensão Pulmonar , Monocrotalina , Miócitos de Músculo Liso , Proteína ORAI1 , Proteína ORAI2 , Artéria Pulmonar , Sulfitos , Animais , Monocrotalina/toxicidade , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/tratamento farmacológico , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Sulfitos/farmacologia , Ratos , Masculino , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/patologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Proteína ORAI2/metabolismo , Ratos Sprague-Dawley , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , AlcanosRESUMO
Pulmonary arterial hypertension (PAH) is a debilitating vascular disorder characterized by abnormal pulmonary artery smooth muscle cell (PASMC) proliferation and collagen synthesis, contributing to vascular remodeling and elevated pulmonary vascular resistance. This study investigated the critical role of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC) in cell proliferation and collagen synthesis in PASMCs in PAH. Here we show that ATIC levels are significantly increased in the lungs of monocrotaline (MCT)-induced PAH rat model, hypoxia-induced PAH mouse model, and platelet-derived growth factor (PDGF)-stimulated PASMCs. Inhibition of ATIC attenuated PDGF-induced cell proliferation and collagen I synthesis in PASMCs. Conversely, overexpression or knockdown of ATIC causes a significant promotion or inhibition of Ras and ERK activation, cell proliferation, and collagen synthesis in PASMCs. Moreover, ATIC deficiency attenuated Ras activation in the lungs of hypoxia-induced PAH mice. Furthermore, Ras inhibition attenuates ATIC overexpression- and PDGF-induced collagen synthesis and PASMC proliferation. Notably, we identified that transcription factors MYC, early growth response protein 1 (EGR1), and specificity protein 1 (SP1) directly binds to promoters of Atic gene and regulate ATIC expression. These results provide the first evidence that ATIC promotes PASMC proliferation in pulmonary vascular remodeling through the Ras signaling pathway.NEW & NOTEWORTHY Our findings highlight the important role of ATIC in the PASMC proliferation of pulmonary vascular remodeling through its modulation of the Ras signaling pathway and its regulation by transcription factors MYC, EGR1, and SP1. ATIC's modulation of Ras signal pathway represents a novel mechanism contributing to PAH development.
Assuntos
Proliferação de Células , Músculo Liso Vascular , Miócitos de Músculo Liso , Artéria Pulmonar , Transdução de Sinais , Animais , Masculino , Camundongos , Ratos , Células Cultivadas , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Hidroximetil e Formil Transferases/metabolismo , Hidroximetil e Formil Transferases/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/enzimologia , Camundongos Endogâmicos C57BL , Monocrotalina/toxicidade , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/efeitos dos fármacos , Proteínas ras/metabolismo , Proteínas ras/genética , Ratos Sprague-Dawley , Remodelação Vascular/efeitos dos fármacosRESUMO
Conduit pulmonary arterial stiffening and the resultant increase in pulmonary vascular impedance have emerged as an important underlying driver of pulmonary arterial hypertension (PAH). Given that matrix deposition is central to vascular remodeling, we evaluated the role of the collagen cross-linking enzyme lysyl oxidase like 2 (LOXL2) in this study. Human pulmonary artery smooth muscle cells (PASMCs) subjected to hypoxia showed increased LOXL2 secretion. LOXL2 activity and expression were markedly higher in primary PASMCs isolated from the pulmonary arteries of the rat Sugen 5416 + hypoxia (SuHx) model of severe pulmonary hypertension (PH). Similarly, LOXL2 protein and mRNA levels were increased in the pulmonary arteries (PA) and lungs of rats with PH (SuHx and monocrotaline (MCT) models). Pulmonary arteries (PAs) isolated from the rats with PH exhibited hypercontractility to phenylephrine and attenuated vasorelaxation elicited by acetylcholine, indicating severe endothelial dysfunction. Tensile testing revealed a significant increase in PA stiffness in PH. Treatment with PAT-1251, a novel small-molecule LOXL2 inhibitor, improved active and passive properties of the PA ex vivo. There was an improvement in right heart function as measured by right ventricular pressure volume loops in vivo with PAT-1251. Importantly, PAT-1251 treatment ameliorated PH, resulting in improved pulmonary artery pressures, right ventricular remodeling, and survival. Hypoxia-induced LOXL2 activation is a causal mechanism in pulmonary artery stiffening in PH and pulmonary artery mechanical and functional decline. LOXL2 inhibition with PAT-1251 could be a promising approach to improve pulmonary artery pressures, right ventricular elastance, cardiac relaxation, and survival in PAH.NEW & NOTEWORTHY Pulmonary arterial stiffening contributes to the progression of PAH and the deterioration of right heart function. This study shows that LOXL2 is upregulated in rat models of PH. LOXL2 inhibition halts pulmonary vascular remodeling and improves PA contractility, endothelial function, and PA pressure, resulting in prolonged survival. Thus, LOXL2 is an important mediator of PA remodeling and stiffening in PH and a promising target to improve PA pressures and survival in PH.
Assuntos
Aminoácido Oxirredutases , Hipertensão Pulmonar , Artéria Pulmonar , Ratos Sprague-Dawley , Remodelação Vascular , Animais , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Aminoácido Oxirredutases/metabolismo , Aminoácido Oxirredutases/antagonistas & inibidores , Aminoácido Oxirredutases/genética , Remodelação Vascular/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Ratos , Humanos , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Modelos Animais de DoençasRESUMO
Chronic lung disease, also known as bronchopulmonary dysplasia, affects thousands of infants worldwide each year. The impact on resources is second only to bronchial asthma, with lung function affected well into adolescence. Diagnostic and therapeutic constructs have almost exclusively focused on pulmonary architecture (alveoli/airways) and pulmonary hypertension. Information on systemic hemodynamics indicates major artery thickness/stiffness, elevated systemic afterload, and/or primary left ventricular dysfunction may play a part in a subset of infants with severe neonatal-pediatric lung disease. Understanding the underlying principles with attendant effectors would aid in identifying the pathophysiological course where systemic afterload reduction with angiotensin-converting enzyme inhibitors could become the preferred treatment strategy over conventional pulmonary artery vasodilatation.NEW & NOTEWORTHY Extremely preterm infants are at a higher risk of developing severe bronchopulmonary dysplasia. In a subset of infants, diuretic and pulmonary vasodilator therapy is ineffective. Recent information points toward systemic hemodynamic disease (systemic arterial stiffness and left ventricular dysfunction) as a contributor via back-pressure changes. Mechanistic links include heightened renin angiotensin aldosterone system activity, inflammation, and oxygen toxicity. Angiotensin-converting enzyme inhibition may be operationally more suited compared with induced pulmonary artery vasodilatation.
Assuntos
Displasia Broncopulmonar , Hemodinâmica , Humanos , Displasia Broncopulmonar/fisiopatologia , Displasia Broncopulmonar/tratamento farmacológico , Displasia Broncopulmonar/metabolismo , Criança , Recém-Nascido , Lactente , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Pulmão/fisiopatologia , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Animais , Sistema Renina-Angiotensina/efeitos dos fármacos , Rigidez Vascular , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/efeitos dos fármacos , Pré-EscolarRESUMO
Nitric oxide (NO) inhalation improves pulmonary hemodynamics in participants with pulmonary arterial hypertension (PAH). Although it can reduce pulmonary vascular resistance (PVR) in PAH, its impact on the dynamic mechanics of pulmonary arteries and its potential difference between control and participants with PAH remain unclear. PA impedance provides a comprehensive description of PA mechanics. With an arterial model, PA impedance can be parameterized into peripheral pulmonary resistance (Rp), arterial compliance (Cp), characteristic impedance of the proximal arteries (Zc), and transmission time from the main PA to the reflection site. This study investigated the effects of inhaled NO on PA impedance and its associated parameters in control and monocrotaline-induced pulmonary arterial hypertension (MCT-PAH) male rats (6/group). Measurements were obtained at baseline and during NO inhalation at 40 and 80 ppm. In both groups, NO inhalation decreased PVR and increased the left atrial pressure. Notably, its impact on PA impedance was frequency dependent, as revealed by reduced PA impedance modulus in the low-frequency range below 10 Hz, with little effect on the high-frequency range. Furthermore, NO inhalation attenuated Rp, increased Cp, and prolonged transmission time without affecting Zc. It reduced Rp more pronouncedly in MCT-PAH rats, whereas it increased Cp and delayed transmission time more effectively in control rats. In conclusion, the therapeutic effects of inhaled NO on PA impedance were frequency dependent and may differ between the control and MCT-PAH groups, suggesting that the effect on the mechanics differs depending on the pathological state.NEW & NOTEWORTHY Nitric oxide inhalation decreased pulmonary arterial impedance in the low-frequency range (<10 Hz) with little impact on the high-frequency range. It reduced peripheral pulmonary resistance more pronouncedly in pulmonary hypertension rats, whereas it increased arterial compliance and transmission time in control rats. Its effect on the mechanics of the pulmonary arteries may differ depending on the pathological status.
Assuntos
Óxido Nítrico , Artéria Pulmonar , Resistência Vascular , Animais , Masculino , Óxido Nítrico/metabolismo , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/efeitos dos fármacos , Administração por Inalação , Resistência Vascular/efeitos dos fármacos , Monocrotalina , Ratos , Ratos Sprague-Dawley , Modelos Animais de Doenças , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/induzido quimicamente , Pressão Arterial/efeitos dos fármacosRESUMO
Right ventricular failure (RVF) is a major cause of early mortality after heart transplantation (HT). Isoproterenol (Iso) has chronotropic, inotropic, and vasodilatory properties, which might improve right ventricle function in this setting. We aimed to investigate the hemodynamic effects of isoproterenol on patients with post-HT RVF. We conducted a 1-yr retrospective observational study including patients receiving isoproterenol (Iso) and dobutamine for early RVF after HT. A comprehensive multiparametric hemodynamic evaluation was performed successively three times: no isoproterenol, low doses: 0.025 µg/kg/min, and high doses: 0.05 µg/kg/min (henceforth, respectively, called no Iso, low Iso, and high Iso). From June 2022 to June 2023, 25 patients, median [interquartile range (IQR) 25-75] age 54 [38-61] yr, were included. Before isoproterenol was introduced, all patients received dobutamine, and 15 (60%) were on venoarterial extracorporeal membrane oxygenation (VA-ECMO). Isoproterenol significantly increased heart rate from 84 [77-99] (no Iso) to 91 [88-106] (low Iso) and 102 [90-122] beats/min (high Iso, P < 0.001). Similarly, cardiac index rose from 2.3 [1.4-3.1] to 2.7 [1.8-3.4] and 3 [1.9-3.7] L/min/m2 (P < 0.001) with a concomitant increase in indexed stroke volume (28 [17-34] to 31 [20-34] and 33 [23-35] mL/m2, P < 0.05). Effective pulmonary arterial elastance and pressures were not modified by isoproterenol. Pulmonary vascular resistance (PVR) tended to decrease from 2.9 [1.4-3.6] to 2.3 [1.3-3.5] wood units (WU), P = 0.06. Right ventricular ejection fraction/systolic pulmonary artery pressure (sPAP) evaluating right ventricle-pulmonary artery (RV-PA) coupling increased after isoproterenol from 0.8 to 0.9 and 1%·mmHg-1 (P = 0.001). In conclusion, in post-HT RVF, isoproterenol exhibits chronotropic and inotropic effects, thereby improving RV-PA coupling and resulting in a clinically relevant increase in the cardiac index.NEW & NOTEWORTHY This study offers a detailed and comprehensive hemodynamic investigation at the bedside, illustrating the favorable impact of isoproterenol on right ventricular-pulmonary arterial coupling and global hemodynamics. It elucidates the physiological effects of an underused inotropic strategy in a critical clinical scenario. By enhancing cardiac hemodynamics, isoproterenol has the potential to expedite right ventricular recovery and mitigate primary graft dysfunction, thereby reducing the duration of mechanical support and intensive care unit stay posttransplantation.
Assuntos
Transplante de Coração , Hemodinâmica , Isoproterenol , Artéria Pulmonar , Disfunção Ventricular Direita , Função Ventricular Direita , Humanos , Isoproterenol/farmacologia , Transplante de Coração/efeitos adversos , Pessoa de Meia-Idade , Masculino , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/efeitos dos fármacos , Feminino , Função Ventricular Direita/efeitos dos fármacos , Estudos Retrospectivos , Adulto , Hemodinâmica/efeitos dos fármacos , Idoso , Disfunção Ventricular Direita/fisiopatologia , Disfunção Ventricular Direita/etiologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/tratamento farmacológico , Dobutamina/farmacologia , Resultado do Tratamento , Frequência Cardíaca/efeitos dos fármacos , Recuperação de Função Fisiológica , Cardiotônicos/farmacologiaRESUMO
Pulmonary arterial hypertension (PAH) is characterized by the severe obstruction of the small pulmonary arteries and concomitant high pulmonary arterial pressure, resulting in progressive right ventricular failure. Previously, we demonstrated that long-term interleukin (IL)-33 administration in mice induces severe occlusive medial hypertrophy of pulmonary arteries (PA) in the lungs, which is mediated by group 2 innate lymphoid cells (ILC2s). In response to IL-33, ILC2s accumulate around the blood vessels and produce IL-5, leading to perivascular eosinophil recruitment. In this study, we characterized IL-33-induced medial hypertrophy of PA. We demonstrated that long-term IL-33 administration causes an increase in right ventricular pressure. In IL-33-deficient mice, medial hypertrophy of PA mediated by eggs of Schistosoma mansoni was attenuated, accompanied by a partial reduction in ILC2s, eosinophils, and CD4+ T cells. In addition, proteomic analysis revealed dramatic changes in the urine samples from mice treated with IL-33 or S. mansoni eggs. Resistin-like alpha (RELMα), a pulmonary hypertension-related molecule, was commonly detected in the urine in both treatments. Large amounts of RELMα were observed in the lungs of the IL-33-treated mice. These observations suggest that IL-33-induced medial hypertrophy of PA is a useful model for studying the mechanism underlying the development of PAH and finding biomarkers to indicate the onset of PAH.
Assuntos
Modelos Animais de Doenças , Interleucina-33 , Hipertensão Arterial Pulmonar , Animais , Masculino , Camundongos , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/imunologia , Hipertensão Pulmonar/metabolismo , Interleucina-33/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Pulmão/imunologia , Linfócitos/imunologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismoRESUMO
Pulmonary arterial hypertension (PAH) is an obstructive vasculopathy that, if not promptly treated, culminates in right heart failure. Therefore, pre-clinical studies are needed to support and optimize therapeutic approaches of PAH. Here, we explore a prospective function of sevoflurane in experimental PAH through regulating TRAF6. Monocrotaline (MCT)-induced PAH rats were subjected to sevoflurane inhalation and intratracheal instillation of lentivirus overexpressing TRAF6. Platelet-derived growth factor (PDGF)-treated pulmonary artery smooth muscle cells (PASMCs) were exposed to sevoflurane and genetically manipulated for TRAF6 overexpression. It was found that MCT and PDGF challenge upregulated the levels of TRAF6 in rat lung tissues and PASMCs, but sevoflurane treatment led to reduced TRAF6 expression. Sevoflurane inhalation in MCT-induced rats resulted in alleviative pulmonary vascular remodeling, mitigated right ventricular dysfunction and hypertrophy, improved mitochondrial function and dynamics, and inactivation of NF-κB pathway. In vitro studies confirmed that exposure to sevoflurane repressed PDGF-induced proliferation, migration, and phenotype switching of PASMCs, and suppressed mitochondrial dysfunction and NF-κB activation in PDGF-stimulated PASMCs. The beneficial impact of sevoflurane on pathological changes of lung and cell phenotype of PASMCs were reversed by overexpression of TRAF6. In summary, our study suggested the protective properties of sevoflurane in targeting PAH by downregulating TRAF6 expression, providing a novel avenue for the management of PAH.
Assuntos
Regulação para Baixo , Miócitos de Músculo Liso , Hipertensão Arterial Pulmonar , Artéria Pulmonar , Ratos Sprague-Dawley , Sevoflurano , Fator 6 Associado a Receptor de TNF , Animais , Sevoflurano/farmacologia , Sevoflurano/toxicidade , Regulação para Baixo/efeitos dos fármacos , Ratos , Masculino , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Monocrotalina/toxicidade , NF-kappa B/metabolismo , Proliferação de Células/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Células CultivadasRESUMO
BACKGROUND: As one of the most common traffic-related pollutants, diesel exhaust (DE) confers high risk for cardiovascular and respiratory diseases. However, its impact on pulmonary vessels is still unclear. METHODS: To explore the effects of DE exposure on pulmonary vascular remodeling, our study analyzed the number and volume of small pulmonary vessels in the diesel engine testers (the DET group) from Luoyang Diesel Engine Factory and the controls (the non-DET group) from the local water company, using spirometry and carbon content in airway macrophage (CCAM) in sputum. And then we constructed a rat model of chronic DE exposure, in which 12 rats were divided into the DE group (6 rats with 16-week DE exposure) and the control group (6 rats with 16-week clean air exposure). During right heart catheterization, right ventricular systolic pressure (RVSP) was assessed by manometry. Macrophage migration inhibitory factor (MIF) in lung tissues and bronchoalveolar lavage fluid (BALF) were measured by qRT-PCR and ELISA, respectively. Histopathological analysis for cardiovascular remodeling was also performed. RESULTS: In DET cohort, the number and volume of small pulmonary vessels in CT were positively correlated with CCAM in sputum (P<0.05). Rat model revealed that chronic DE-exposed rats had elevated RVSP, along with increased wall thickness of pulmonary small vessels and right the ventricle. What's more, the MIF levels in BALF and lung tissues were higher in DE-exposed rats than the controls. CONCLUSION: Apart from airway remodeling, DE also induces pulmonary vascular remodeling, which will lead to cardiopulmonary dysfunction.
Assuntos
Hipertensão Pulmonar , Ratos Sprague-Dawley , Remodelação Vascular , Emissões de Veículos , Emissões de Veículos/toxicidade , Animais , Remodelação Vascular/fisiologia , Remodelação Vascular/efeitos dos fármacos , Ratos , Masculino , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/efeitos adversos , Adulto , Exposição Ocupacional/efeitos adversos , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Exposição por Inalação/efeitos adversos , FemininoRESUMO
BACKGROUND: Mitogen-activated protein kinase (MAPK)signaling-mediated smoking-associated pulmonary vascular remodeling (PVR) plays an important role in the pathogenesis of group 3 pulmonary hypertension (PH). And G protein pathway suppressor 2 (GPS2) could suppress G-protein signaling such as Ras and MAPK, but its role in cigarette smoking -induced PVR (CS-PVR) is unclear. METHODS: An in vivo model of smoke-exposed rats was constructed to assess the role of GPS2 in smoking-induced PH and PVR. In vitro, the effects of GPS2 overexpression and silencing on the function of human pulmonary arterial smooth cells (HPASMCs) and the underlying mechanisms were explored. RESULTS: GPS2 expression was downregulated in rat pulmonary arteries (PAs) and HPASMCs after CS exposure. More importantly, CS-exposed rats with GPS2 overexpression had lower right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), and wall thickness (WT%) than those without. And enhanced proliferation and migration of HPASMCs induced by cigarette smoking extract (CSE) can be evidently inhibited by overexpressed GPS2. Besides, GPS2siRNA significantly enhanced the proliferation, and migration of HPASMCs as well as activated Ras and Raf/ERK signaling, while these effects were inhibited by zoledronic acid (ZOL). In addition, GPS2 promoter methylation level in rat PAs and HPASMCs was increased after CS exposure, and 5-aza-2-deoxycytidine (5-aza) inhibited CSE-induced GPS2 hypermethylation and downregulation in vitro. CONCLUSIONS: GPS2 overexpression could improve the CS-PVR, suggesting that GPS2 might serve as a novel therapeutic target for PH-COPD in the future.
Assuntos
Fumar Cigarros , Sistema de Sinalização das MAP Quinases , Ratos Sprague-Dawley , Remodelação Vascular , Animais , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/fisiologia , Ratos , Masculino , Humanos , Fumar Cigarros/efeitos adversos , Sistema de Sinalização das MAP Quinases/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Cultivadas , Proteínas ras/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Quinases raf/metabolismo , Quinases raf/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/induzido quimicamente , MAP Quinases Reguladas por Sinal Extracelular/metabolismoRESUMO
BACKGROUND: Pulmonary hypertension (PH) is a long-term disease that impacts approximately 1% of the world's population. Currently, levosimendan (Lev) is proposed for PH treatment. However, the mechanism of Lev in the treatment of PH is unknown. METHODS: We used hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) to establish a PH cell model. A number of cell biology methods were performed to assay alterations in cell proliferation, migration and apoptosis after Lev treatment. qRT-PCR and WB were performed to test the levels of circUSP34 and miR-1298, and BMP/Smad protein respectively. In addition, the regulatory relationship between circUSP34 or BMPR2 with miR-1298 was verified through the use of double luciferase as well as RIP assay. In addition, we explored the regulatory effect of Lev on the circUSP34/miR-1298/BMP/Smad axis using a rat PH model. RESULTS: Our results demonstrate that Lev inhibited PASMCs cell proliferation, migration and promoted apoptosis exposed to hypoxia. In hypoxia-treated PASMCs, circUSP34 expression got downregulated while miR-1298 upregulated, whereas the addition with Lev resulted in upregulation of circUSP34 expression and downregulation of miR-1298 expression, indicating that circUSP34 can target and regulate miR-1298. In addition, miR-1298 targets and regulates the expression of BMPR2. In a rat PH model induced by hypoxia combined with SU5416, Lev upregulated circUSP34 targeting miR-1298-mediated BMP/Smad axis to alleviate the PH phenotype. CONCLUSION: We have shown that Lev can be used as a therapeutic drug for PH patients, which works through the circUSP34/miR-1298/BMP/Smad axis to alleviate PH symptoms.
Assuntos
Hipertensão Pulmonar , MicroRNAs , Ratos Sprague-Dawley , Simendana , Regulação para Cima , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Ratos , Regulação para Cima/efeitos dos fármacos , Simendana/farmacologia , Masculino , Células Cultivadas , Proteínas Smad/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Apoptose/efeitos dos fármacosRESUMO
ABSTRACT: Angiomotin-like 2 (AMOTL2) is related to numerous physiological and pathological conditions by affecting signal transduction. However, whether AMOTL2 is linked to pulmonary arterial hypertension (PAH) has not been addressed. This work aimed to investigate the potential role of AMOTL2 in PAH. A decrease in AMOTL2 abundance was observed in the lungs of PAH rats. The upregulation of AMOTL2 significantly decreased right ventricle systolic pressure and right ventricular hypertrophy in PAH rats. Overexpression of AMOTL2 also led to a noteworthy decrease in vascular wall thickness, pulmonary artery area, and collagen deposition in rats with PAH. AMOTL2 was downregulated in hypoxia-stimulated pulmonary arterial smooth muscle cells (PASMCs). Moreover, AMOTL2 overexpression impeded hypoxia-evoked proliferation, migration, and phenotypic transformation in rat PASMCs. Mechanistic investigation revealed that Yes-associated protein 1 (YAP1) activation in PAH rats or hypoxia-stimulated PASMCs was markedly inhibited by AMOTL2 overexpression, which was associated with increased large tumor suppressor 1/2 phosphorylation. The inhibition of large tumor suppressor 1/2 reversed the AMOTL2-mediated inactivation of YAP1. Restoring the activity of YAP1 reversed the inhibitory effect of AMOTL2 on hypoxia-evoked proliferation, migration, and phenotypic transformation of PASMCs. Collectively, these results suggest that AMOTL2 can ameliorate PAH in a rat model by interfering with pulmonary arterial remodeling via the inactivation of YAP1 signaling. Our work indicates that AMOTL2 may be a candidate target for novel drug development for the treatment of PAH.