Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.271
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(37): e2321021121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39236241

RESUMO

In the brain, a microvascular sensory web coordinates oxygen delivery to regions of neuronal activity. This involves a dense network of capillaries that send conductive signals upstream to feeding arterioles to promote vasodilation and blood flow. Although this process is critical to the metabolic supply of healthy brain tissue, it may also be a point of vulnerability in disease. Deterioration of capillary networks is a feature of many neurological disorders and injuries and how this web is engaged during vascular damage remains unknown. We performed in vivo two-photon microscopy on young adult mural cell reporter mice and induced focal capillary injuries using precise two-photon laser irradiation of single capillaries. We found that ~59% of the injuries resulted in regression of the capillary segment 7 to 14 d following injury, and the remaining repaired to reestablish blood flow within 7 d. Injuries that resulted in capillary regression induced sustained vasoconstriction in the upstream arteriole-capillary transition (ACT) zone at least 21 days postinjury in both awake and anesthetized mice. The degree of vasomotor dynamics was chronically attenuated in the ACT zone consequently reducing blood flow in the ACT zone and in secondary, uninjured downstream capillaries. These findings demonstrate how focal capillary injury and regression can impair the microvascular sensory web and contribute to cerebral hypoperfusion.


Assuntos
Capilares , Circulação Cerebrovascular , Animais , Camundongos , Capilares/fisiologia , Circulação Cerebrovascular/fisiologia , Vasoconstrição/fisiologia , Encéfalo/irrigação sanguínea , Arteríolas/fisiopatologia , Masculino , Vasodilatação/fisiologia , Camundongos Endogâmicos C57BL
2.
Kidney Int ; 106(3): 354-356, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39174194

RESUMO

The attenuation of glomerular hyperfiltration is posited to be a principal mechanism underlying the kidney protective effects of sodium-glucose cotransporter-2 (SGLT2) inhibitors in diabetic kidney disease. Notably, the impact of SGLT2 inhibitors on kidney hemodynamic function has been posited to vary between type 1 and type 2 diabetes. The study by Wada et al. documents that in an animal model of type 2 diabetes, SGLT2 inhibitors mitigate glomerular hyperfiltration predominantly through afferent arteriolar constriction, a process mediated by the adenosine/A1 receptor pathway. This observation is consistent with mechanisms identified in type 1 diabetes, arguing for similar methods in type 1 and 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Hemodinâmica , Inibidores do Transportador 2 de Sódio-Glicose , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/complicações , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/etiologia , Ratos , Hemodinâmica/efeitos dos fármacos , Taxa de Filtração Glomerular/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/fisiopatologia , Rim/irrigação sanguínea , Transportador 2 de Glucose-Sódio/metabolismo , Arteríolas/efeitos dos fármacos , Arteríolas/fisiopatologia , Pesquisa Translacional Biomédica
3.
Kidney Int ; 106(3): 408-418, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38801992

RESUMO

The mechanisms responsible for glomerular hemodynamic regulation with sodium-glucose co-transporter 2 (SGLT2) inhibitors in kidney disease due to type 2 diabetes remain unclear. Therefore, we investigated changes in glomerular hemodynamic function using an animal model of type 2 diabetes, treated with an SGLT2 inhibitor alone or in combination with a renin-angiotensin-aldosterone system inhibitor using male Zucker lean (ZL) and Zucker diabetic fatty (ZDF) rats. Afferent and efferent arteriolar diameter and single-nephron glomerular filtration rate (SNGFR) were evaluated in ZDF rats measured at 0, 30, 60, 90, and 120 minutes after the administration of a SGLT2 inhibitor (luseogliflozin). Additionally, we assessed these changes under the administration of the adenosine A1 receptor (A1aR) antagonist (8-cyclopentyl-1,3-dipropylxanthine), along with coadministration of luseogliflozin and an angiotensin II receptor blocker (ARB), telmisartan. ZDF rats had significantly increased SNGFR, and afferent and efferent arteriolar diameters compared to ZL rats, indicating glomerular hyperfiltration. Administration of luseogliflozin significantly reduced afferent vasodilatation and glomerular hyperfiltration, with no impact on efferent arteriolar diameter. Urinary adenosine levels were increased significantly in the SGLT2 inhibitor group compared to the vehicle group. A1aR antagonism blocked the effect of luseogliflozin on kidney function. Co-administration of the SGLT2 inhibitor and ARB decreased the abnormal expansion of glomerular afferent arterioles, whereas the efferent arteriolar diameter was not affected. Thus, regulation of afferent arteriolar vascular tone via the A1aR pathway is associated with glomerular hyperfiltration in type 2 diabetic kidney disease.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Taxa de Filtração Glomerular , Glomérulos Renais , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Masculino , Ratos , Antagonistas do Receptor A1 de Adenosina/farmacologia , Arteríolas/efeitos dos fármacos , Arteríolas/fisiopatologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/fisiopatologia , Taxa de Filtração Glomerular/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/fisiopatologia , Glomérulos Renais/patologia , Glomérulos Renais/irrigação sanguínea , Ratos Zucker , Sistema Renina-Angiotensina/efeitos dos fármacos , Transportador 2 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Sorbitol/análogos & derivados , Xantinas/farmacologia
4.
Microvasc Res ; 154: 104686, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38614154

RESUMO

Pulmonary hypertension (PH) is a chronic, progressive condition in which respiratory muscle dysfunction is a primary contributor to exercise intolerance and dyspnea in patients. Contractile function, blood flow distribution, and the hyperemic response are altered in the diaphragm with PH, and we sought to determine whether this may be attributed, in part, to impaired vasoreactivity of the resistance vasculature. We hypothesized that there would be blunted endothelium-dependent vasodilation and impaired myogenic responsiveness in arterioles from the diaphragm of PH rats. Female Sprague-Dawley rats were randomized into healthy control (HC, n = 9) and monocrotaline-induced PH rats (MCT, n = 9). Endothelium-dependent and -independent vasodilation and myogenic responses were assessed in first-order arterioles (1As) from the medial costal diaphragm in vitro. There was a significant reduction in endothelium-dependent (via acetylcholine; HC, 78 ± 15% vs. MCT, 47 ± 17%; P < 0.05) and -independent (via sodium nitroprusside; HC, 89 ± 10% vs. MCT, 66 ± 10%; P < 0.05) vasodilation in 1As from MCT rats. MCT-induced PH also diminished myogenic constriction (P < 0.05) but did not alter passive pressure responses. The diaphragmatic weakness, impaired hyperemia, and blood flow redistribution associated with PH may be due, in part, to diaphragm vascular dysfunction and thus compromised oxygen delivery which occurs through both endothelium-dependent and -independent mechanisms.


Assuntos
Diafragma , Hipertensão Pulmonar , Ratos Sprague-Dawley , Vasodilatação , Animais , Feminino , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/etiologia , Arteríolas/fisiopatologia , Diafragma/fisiopatologia , Diafragma/irrigação sanguínea , Modelos Animais de Doenças , Vasodilatadores/farmacologia , Endotélio Vascular/fisiopatologia , Vasoconstrição , Monocrotalina/toxicidade , Ratos
5.
J Cardiovasc Pharmacol ; 84(2): 250-260, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38922586

RESUMO

ABSTRACT: Thrombin is a coagulation factor increased in pregnancy and further increased in preeclampsia (PE), a hypertensive disorder. Thrombin is also expressed in the brain and may have a nonhemostatic role. We characterized thrombin expression and vasoactivity in brain cerebral parenchymal arterioles (PAs) in rat models of pregnancy and PE. PAs were isolated and pressurized from nonpregnant (NP) and late-pregnant (LP) rats and rats with experimental preeclampsia (ePE). Reactivity to thrombin (1-50 U/mL) was measured in the absence and presence of inhibition of cyclooxygenase and nitric oxide synthase. Plasma levels of prothrombin, thrombin-antithrombin (TAT), tissue plasminogen activator, and plasminogen activator inhibitor-1 (PAI-1) and cerebrospinal fluid levels of TAT were compared using enzyme-linked immunosorbent assay. Expression of protease-activated receptor types 1 and 2 in PAs were measured by Western blot and immunohistochemistry. Neuronal thrombin expression was quantified in brains from all groups by immunohistochemistry. Prothrombin and TAT were elevated in ePE plasma compared with NP and LP. TAT was detected in cerebrospinal fluid from all groups and significantly elevated in LP (NP: 0.137 ± 0.014 ng/mL, LP: 0.241 ± 0.015 ng/mL, ePE: 0.192 ± 0.028 ng/mL; P < 0.05). Thrombin caused modest vasoconstriction in PAs from all groups regardless of cyclooxygenase or nitric oxide synthase inhibition. PAR1 and PAR2 were found in PAs from all groups colocalized to smooth muscle. Thrombin expression in central neurons was decreased in both LP and ePE groups compared with NP. These findings suggest a role for thrombin and other hemostatic changes during pregnancy and PE beyond coagulation.


Assuntos
Encéfalo , Pré-Eclâmpsia , Ratos Sprague-Dawley , Trombina , Animais , Gravidez , Feminino , Trombina/metabolismo , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/fisiopatologia , Pré-Eclâmpsia/sangue , Ratos , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Modelos Animais de Doenças , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Antitrombina III/metabolismo , Receptor PAR-1/metabolismo , Microvasos/metabolismo , Microvasos/fisiopatologia , Microvasos/efeitos dos fármacos , Peptídeo Hidrolases
6.
Circ Res ; 128(7): 864-886, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793325

RESUMO

Arterial stiffness, a leading marker of risk in hypertension, can be measured at material or structural levels, with the latter combining effects of the geometry and composition of the wall, including intramural organization. Numerous studies have shown that structural stiffness predicts outcomes in models that adjust for conventional risk factors. Elastic arteries, nearer to the heart, are most sensitive to effects of blood pressure and age, major determinants of stiffness. Stiffness is usually considered as an index of vascular aging, wherein individuals excessively affected by risk factor exposure represent early vascular aging, whereas those resistant to risk factors represent supernormal vascular aging. Stiffness affects the function of the brain and kidneys by increasing pulsatile loads within their microvascular beds, and the heart by increasing left ventricular systolic load; excessive pressure pulsatility also decreases diastolic pressure, necessary for coronary perfusion. Stiffness promotes inward remodeling of small arteries, which increases resistance, blood pressure, and in turn, central artery stiffness, thus creating an insidious feedback loop. Chronic antihypertensive treatments can reduce stiffness beyond passive reductions due to decreased blood pressure. Preventive drugs, such as lipid-lowering drugs and antidiabetic drugs, have additional effects on stiffness, independent of pressure. Newer anti-inflammatory drugs also have blood pressure independent effects. Reduction of stiffness is expected to confer benefit beyond the lowering of pressure, although this hypothesis is not yet proven. We summarize different steps for making arterial stiffness measurement a keystone in hypertension management and cardiovascular prevention as a whole.


Assuntos
Hipertensão/fisiopatologia , Rigidez Vascular/fisiologia , Envelhecimento , Anti-Hipertensivos/farmacologia , Artérias/fisiopatologia , Arteríolas/fisiopatologia , Pressão Sanguínea/fisiologia , Encefalopatias/etiologia , Elasticidade/fisiologia , Produtos Finais de Glicação Avançada/efeitos dos fármacos , Insuficiência Cardíaca/etiologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Hipoglicemiantes/farmacologia , Nefropatias/etiologia , Análise de Onda de Pulso , Fatores de Risco , Calcificação Vascular/tratamento farmacológico , Resistência Vascular/fisiologia , Rigidez Vascular/efeitos dos fármacos
7.
Am J Physiol Heart Circ Physiol ; 322(2): H246-H259, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34951541

RESUMO

Diabetes mellitus (DM) is a leading risk factor for age-related dementia, but the mechanisms involved are not well understood. We previously discovered that hyperglycemia induced impaired myogenic response (MR) and cerebral blood flow (CBF) autoregulation in 18-mo-old DM rats associated with blood-brain barrier (BBB) leakage, impaired neurovascular coupling, and cognitive impairment. In the present study, we examined whether reducing plasma glucose with a sodium-glucose cotransporter-2 inhibitor (SGLT2i) luseogliflozin can ameliorate cerebral vascular and cognitive function in diabetic rats. Plasma glucose and HbA1c levels of 18-mo-old DM rats were reduced, and blood pressure was not altered after treatment with luseogliflozin. SGLT2i treatment restored the impaired MR of middle cerebral arteries (MCAs) and parenchymal arterioles and surface and deep cortical CBF autoregulation in DM rats. Luseogliflozin treatment also rescued neurovascular uncoupling, reduced BBB leakage and cognitive deficits in DM rats. However, SGLT2i did not have direct constrictive effects on vascular smooth muscle cells and MCAs isolated from normal rats, although it decreased reactive oxygen species production in cerebral vessels of DM rats. These results provide evidence that normalization of hyperglycemia with an SGLT2i can reverse cerebrovascular dysfunction and cognitive impairments in rats with long-standing hyperglycemia, possibly by ameliorating oxidative stress-caused vascular damage.NEW & NOTEWORTHY This study demonstrates that luseogliflozin, a sodium-glucose cotransporter-2 inhibitor, improved CBF autoregulation in association with reduced vascular oxidative stress and AGEs production in the cerebrovasculature of 18-mo-old DM rats. SGLT2i also prevented BBB leakage, impaired functional hyperemia, neurodegeneration, and cognitive impairment seen in DM rats. Luseogliflozin did not have direct constrictive effects on VSMCs and MCAs isolated from normal rats. These results provide evidence that normalization of hyperglycemia with an SGLT2i can reverse cerebrovascular dysfunction and cognitive impairments in rats with long-standing hyperglycemia, possibly by ameliorating oxidative stress-caused vascular damage.


Assuntos
Demência Vascular/tratamento farmacológico , Angiopatias Diabéticas/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Sorbitol/análogos & derivados , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/fisiopatologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiopatologia , Células Cultivadas , Circulação Cerebrovascular , Cognição , Masculino , Artéria Cerebral Média/efeitos dos fármacos , Artéria Cerebral Média/fisiopatologia , Ratos , Ratos Sprague-Dawley , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Sorbitol/farmacologia , Sorbitol/uso terapêutico
8.
PLoS Comput Biol ; 17(5): e1008861, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33956786

RESUMO

The relationship between regional variabilities in airflow (ventilation) and blood flow (perfusion) is a critical determinant of gas exchange efficiency in the lungs. Hypoxic pulmonary vasoconstriction is understood to be the primary active regulator of ventilation-perfusion matching, where upstream arterioles constrict to direct blood flow away from areas that have low oxygen supply. However, it is not understood how the integrated action of hypoxic pulmonary vasoconstriction affects oxygen transport at the system level. In this study we develop, and make functional predictions with a multi-scale multi-physics model of ventilation-perfusion matching governed by the mechanism of hypoxic pulmonary vasoconstriction. Our model consists of (a) morphometrically realistic 2D pulmonary vascular networks to the level of large arterioles and venules; (b) a tileable lumped-parameter model of vascular fluid and wall mechanics that accounts for the influence of alveolar pressure; (c) oxygen transport accounting for oxygen bound to hemoglobin and dissolved in plasma; and (d) a novel empirical model of hypoxic pulmonary vasoconstriction. Our model simulations predict that under the artificial test condition of a uniform ventilation distribution (1) hypoxic pulmonary vasoconstriction matches perfusion to ventilation; (2) hypoxic pulmonary vasoconstriction homogenizes regional alveolar-capillary oxygen flux; and (3) hypoxic pulmonary vasoconstriction increases whole-lobe oxygen uptake by improving ventilation-perfusion matching.


Assuntos
Hipóxia/fisiopatologia , Modelos Biológicos , Circulação Pulmonar/fisiologia , Relação Ventilação-Perfusão/fisiologia , Algoritmos , Animais , Arteríolas/fisiopatologia , Fenômenos Biofísicos , Biologia Computacional , Simulação por Computador , Humanos , Pulmão/irrigação sanguínea , Pulmão/fisiopatologia , Oxigênio/fisiologia , Troca Gasosa Pulmonar/fisiologia , Ratos , Vasoconstrição/fisiologia , Vênulas/fisiopatologia
9.
Arterioscler Thromb Vasc Biol ; 41(1): 446-457, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33232201

RESUMO

OBJECTIVE: Coronary artery disease (CAD) is associated with a compensatory switch in mechanism of flow-mediated dilation (FMD) from nitric oxide (NO) to H2O2. The underlying mechanism responsible for the pathological shift is not well understood, and recent reports directly implicate telomerase and indirectly support a role for autophagy. We hypothesize that autophagy is critical for shear stress-induced release of NO and is a crucial component of for the pathway by which telomerase regulates FMD. Approach and Results: Human left ventricular, atrial, and adipose resistance arterioles were collected for videomicroscopy and immunoblotting. FMD and autophagic flux were measured in arterioles treated with autophagy modulators alone, and in tandem with telomerase-activity modulators. LC3B II/I was higher in left ventricular tissue from patients with CAD compared with non-CAD (2.8±0.2 versus 1.0±0.2-fold change; P<0.05), although p62 was similar between groups. Shear stress increased Lysotracker fluorescence in non-CAD arterioles, with no effect in CAD arterioles. Inhibition of autophagy in non-CAD arterioles induced a switch from NO to H2O2, while activation of autophagy restored NO-mediated vasodilation in CAD arterioles. In the presence of an autophagy activator, telomerase inhibitor prevented the expected switch (Control: 82±4%; NG-Nitro-l-arginine methyl ester: 36±5%; polyethylene glycol catalase: 80±3). Telomerase activation was unable to restore NO-mediated FMD in the presence of autophagy inhibition in CAD arterioles (control: 72±7%; NG-Nitro-l-arginine methyl ester: 79±7%; polyethylene glycol catalase: 38±9%). CONCLUSIONS: We provide novel evidence that autophagy is responsible for the pathological switch in dilator mechanism in CAD arterioles, demonstrating that autophagy acts downstream of telomerase as a common denominator in determining the mechanism of FMD.


Assuntos
Tecido Adiposo/irrigação sanguínea , Arteríolas/enzimologia , Autofagia , Doença da Artéria Coronariana/enzimologia , Vasos Coronários/enzimologia , Telomerase/metabolismo , Vasodilatação , Adulto , Idoso , Arteríolas/patologia , Arteríolas/fisiopatologia , Estudos de Casos e Controles , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/patologia , Vasos Coronários/fisiopatologia , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Lisossomos/enzimologia , Lisossomos/patologia , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Transdução de Sinais
10.
Stroke ; 52(7): 2465-2477, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34102855

RESUMO

Cerebral infarction or ischemic death of brain tissue, most notably neurons, is a primary response to vascular occlusion that if minimized leads to better stroke outcome. However, many cell types are affected in the brain during ischemia and reperfusion, including vascular cells of the cerebral circulation. Importantly, the structure and function of all brain vascular segments are major determinants of the depth of ischemia during the occlusion, the extent of collateral flow (and therefore amount of potentially salvageable tissue) and the degree of reperfusion. Thus, appropriate function of the cerebral circulation can influence stroke outcome. The brain vasculature is also directly involved in secondary injury to ischemia, including edema, hemorrhage, and infarct expansion, and provides a key delivery route for neuroprotective agents. Therefore, the cerebral circulation provides a therapeutic target for multiple aspects of stroke injury, including aiding neuroprotection. Understanding how ischemia and reperfusion affect the brain vasculature is key to this therapeutic potential, that is, vascular protection. This report is focused on regional differences in the cerebral circulation, how ischemia and reperfusion differentially affects these segments, and how the response of large versus small vessels in the brain to ischemia and reperfusion can influence stroke outcome. Last, how chronic hypertension, a common comorbidity in patients with stroke, affects the brain microvasculature to worsen stroke outcome will be described.


Assuntos
Arteríolas/fisiopatologia , Circulação Cerebrovascular/fisiologia , Circulação Colateral/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Arteríolas/efeitos dos fármacos , Revascularização Cerebral/métodos , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Colateral/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Fármacos Neuroprotetores/administração & dosagem
11.
Am J Physiol Heart Circ Physiol ; 321(1): H29-H37, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34018853

RESUMO

Black Americans have an earlier onset, higher average blood pressure, and higher rates of hypertension-related mortality and morbidity, compared to whites. The racial difference may be related to microvasculature, the major regulatory site of blood pressure. The goal of this study was to compare the response of resistance vessels to high intraluminal pressure between black and white participants. A total of 38 vessels were obtained from human fat samples [21 black, 17 white; mean age 32 ± 12 yr and body mass index (BMI) 26.9 ± 4.9; between-group P ≥ 0.05] and included in this study. Internal diameter was measured in response to the flow induced by various pressure gradients (Δ10, Δ20, Δ40, Δ60, and Δ100 cmH2O), and flow-induced dilation (FID) was calculated before and after high intraluminal pressure (150 cmH2O). Before high intraluminal pressure, FID was not different between blacks and whites (P = 0.112). After exposure to high intraluminal pressure, FID was reduced at every pressure gradient in vessels from blacks (P < 0.001), whereas FID did not change in white participants except at Δ100 cmH2O. When incubated with the hydrogen peroxide (H2O2) scavenger polyethylene glycol-catalase (PEG-catalase), the FID response in vessels from black, but not white, individuals was significantly reduced and the magnitude was higher at normal pressure relative to high pressure. Our findings suggest that the vessels from self-identified black individuals are more susceptible to microvascular dysfunction following transient periods of high intraluminal pressure compared to whites and show greater dependence on H2O2 as a main contributor to FID at normal pressures.NEW & NOTEWORTHY Microvascular function regulates blood pressure and may contribute to racial differences in the incidence and prevalence of hypertension and other cardiovascular diseases. Here, we show that using an ex vivo model of resistance arterioles isolated from human gluteal fat tissue, flow-induced dilation is not different between black and white participants. However, when exposed to transient increases in intraluminal pressure, the flow-induced dilation in resistance arterioles from black participants demonstrated greater reductions relative to their white counterparts, indicating a higher sensitivity to pressure change in the microvasculature.


Assuntos
Arteríolas/fisiopatologia , Pressão Sanguínea/fisiologia , Endotélio Vascular/fisiopatologia , Hipertensão/fisiopatologia , Adulto , Negro ou Afro-Americano , Velocidade do Fluxo Sanguíneo/fisiologia , Feminino , Humanos , Masculino , Microcirculação/fisiologia , Pessoa de Meia-Idade , População Branca , Adulto Jovem
12.
Am J Physiol Heart Circ Physiol ; 320(2): H549-H562, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33306445

RESUMO

Diabetes mellitus (DM) is one of the primary pathological factors that contributes to aging-related cognitive impairments, but the underlying mechanisms remain unclear. We recently reported that old DM rats exhibited impaired myogenic responses of the cerebral arteries and arterioles, poor cerebral blood flow autoregulation, enhanced blood-brain barrier (BBB) leakage, and cognitive impairments. These changes were associated with diminished vascular smooth muscle cell contractile capability linked to elevated reactive oxygen species (ROS) and reduced ATP production. In the present study, using a nonobese T2DN DM rat, we isolated parenchymal arterioles (PAs), cultured cerebral microvascular pericytes, and examined whether cerebrovascular pericyte in DM is damaged and whether pericyte dysfunction may play a role in the regulation of cerebral hemodynamics and BBB integrity. We found that ROS and mitochondrial superoxide production were elevated in PAs isolated from old DM rats and in high glucose (HG)-treated α-smooth muscle actin-positive pericytes. HG-treated pericytes displayed decreased contractile capability in association with diminished mitochondrial respiration and ATP production. Additionally, the expression of advanced glycation end products, transforming growth factor-ß, vascular endothelial growth factor, and fibronectin were enhanced, but claudin 5 and integrin ß1 was reduced in the brain of old DM rats and HG-treated pericytes. Further, endothelial tight junction and pericyte coverage on microvessels were reduced in the cortex of old DM rats. These results demonstrate our previous findings that the impaired cerebral hemodynamics and BBB leakage and cognitive impairments in the same old DM model are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction.NEW & NOTEWORTHY This study demonstrates that the loss of contractile capability in pericytes in diabetes is associated with enhanced ROS and reduced ATP production. Enhanced advanced glycation end products (AGEs) in diabetes accompany with reduced pericyte and endothelial tight junction coverage in the cortical capillaries of old diabetic rats. These results suggest our previous findings that the impaired cerebral hemodynamics, BBB leakage, and cognitive impairments in old DM model are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction.


Assuntos
Envelhecimento/metabolismo , Diabetes Mellitus/metabolismo , Junções Comunicantes/metabolismo , Hiperglicemia/complicações , Pericitos/metabolismo , Trifosfato de Adenosina/metabolismo , Envelhecimento/patologia , Animais , Arteríolas/citologia , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Células Cultivadas , Diabetes Mellitus/etiologia , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Masculino , Pericitos/fisiologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Vasoconstrição
13.
Basic Res Cardiol ; 116(1): 35, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34018061

RESUMO

Impaired coronary microvascular function (e.g., reduced dilation and coronary flow reserve) predicts cardiac mortality in obesity, yet underlying mechanisms and potential therapeutic strategies remain poorly understood. Mineralocorticoid receptor (MR) antagonism improves coronary microvascular function in obese humans and animals. Whether MR blockade improves in vivo regulation of coronary flow, a process involving voltage-dependent K+ (Kv) channel activation, or reduces coronary structural remodeling in obesity is unclear. Thus, the goals of this investigation were to determine the effects of obesity on coronary responsiveness to reductions in arterial PO2 and potential involvement of Kv channels and whether the benefit of MR blockade involves improved coronary Kv function or altered passive structural properties of the coronary microcirculation. Hypoxemia increased coronary blood flow similarly in lean and obese swine; however, baseline coronary vascular resistance was significantly higher in obese swine. Inhibition of Kv channels reduced coronary blood flow and augmented coronary resistance under baseline conditions in lean but not obese swine and had no impact on hypoxemic coronary vasodilation. Chronic MR inhibition in obese swine normalized baseline coronary resistance, did not influence hypoxemic coronary vasodilation, and did not restore coronary Kv function (assessed in vivo, ex vivo, and via patch clamping). Lastly, MR blockade prevented obesity-associated coronary arteriolar stiffening independent of cardiac capillary density and changes in cardiac function. These data indicate that chronic MR inhibition prevents increased coronary resistance in obesity independent of Kv channel function and is associated with mitigation of obesity-mediated coronary arteriolar stiffening.


Assuntos
Aldosterona/farmacologia , Doença da Artéria Coronariana/prevenção & controle , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Obesidade/tratamento farmacológico , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Resistência Vascular/efeitos dos fármacos , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Feminino , Masculino , Microcirculação/efeitos dos fármacos , Obesidade/complicações , Obesidade/metabolismo , Obesidade/fisiopatologia , Sus scrofa , Rigidez Vascular/efeitos dos fármacos
14.
Basic Res Cardiol ; 116(1): 32, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33942194

RESUMO

Stroke remains one of the most common causes of death and disability worldwide. Several preclinical studies demonstrated that the brain can be effectively protected against ischaemic stroke by two seemingly distinct treatments: remote ischaemic conditioning (RIC), involving cycles of ischaemia/reperfusion applied to a peripheral organ or tissue, or by systemic administration of glucagon-like-peptide-1 (GLP-1) receptor (GLP-1R) agonists. The mechanisms underlying RIC- and GLP-1-induced neuroprotection are not completely understood. In this study, we tested the hypothesis that GLP-1 mediates neuroprotection induced by RIC and investigated the effect of GLP-1R activation on cerebral blood vessels, as a potential mechanism of GLP-1-induced protection against ischaemic stroke. A rat model of ischaemic stroke (90 min of middle cerebral artery occlusion followed by 24-h reperfusion) was used. RIC was induced by 4 cycles of 5 min left hind limb ischaemia interleaved with 5-min reperfusion periods. RIC markedly (by ~ 80%) reduced the cerebral infarct size and improved the neurological score. The neuroprotection established by RIC was abolished by systemic blockade of GLP-1R with a specific antagonist Exendin(9-39). In the cerebral cortex of GLP-1R reporter mice, ~ 70% of cortical arterioles displayed GLP-1R expression. In acute brain slices of the rat cerebral cortex, activation of GLP-1R with an agonist Exendin-4 had a strong dilatory effect on cortical arterioles and effectively reversed arteriolar constrictions induced by metabolite lactate or oxygen and glucose deprivation, as an ex vivo model of ischaemic stroke. In anaesthetised rats, Exendin-4 induced lasting increases in brain tissue PO2, indicative of increased cerebral blood flow. These results demonstrate that neuroprotection against ischaemic stroke established by remote ischaemic conditioning is mediated by a mechanism involving GLP-1R signalling. Potent dilatory effect of GLP-1R activation on cortical arterioles suggests that the neuroprotection in this model is mediated via modulation of cerebral blood flow and improved brain perfusion.


Assuntos
Arteríolas/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Membro Posterior/irrigação sanguínea , Incretinas/farmacologia , Infarto da Artéria Cerebral Média/prevenção & controle , Precondicionamento Isquêmico , AVC Isquêmico/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Modelos Animais de Doenças , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , AVC Isquêmico/metabolismo , AVC Isquêmico/fisiopatologia , Masculino , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional
15.
Alcohol Clin Exp Res ; 45(7): 1359-1369, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34120346

RESUMO

BACKGROUND: Prenatal exposure to alcohol leads to a greater incidence of many cardiovascular-related diseases, presumably via a mechanism that may involve increased oxidative stress. An agonist of peroxisome proliferator-activated receptor gamma (PPARγ; rosiglitazone) has been shown to suppress alcohol-induced neuroinflammation and oxidative stress. The goal of this study was to determine whether acute and chronic treatment with rosiglitazone could restore or prevent impaired nitric oxide synthase (NOS)-dependent responses of cerebral arterioles in male and female adult (14-16 weeks old) rats exposed to alcohol in utero. METHODS: We fed Sprague-Dawley dams a liquid diet with or without 3% ethanol for the duration of their pregnancy (21-23 days). In the first series of studies, we examined the reactivity of cerebral arterioles to eNOS- (ADP), nNOS-dependent (NMDA), and NOS-independent agonists in male and female adult rats before and during acute (1 hour) topical application of rosiglitazone (1 µM). In a second series of studies, we examined the influence of chronic treatment with rosiglitazone (3 mg/kg/day in drinking water for 2-3 weeks) on the responses of cerebral arterioles in male and female adult rats exposed to alcohol in utero. RESULTS: We found that in utero exposure to alcohol similarly reduced responses of cerebral arterioles to ADP and NMDA, but not to nitroglycerin in male and female adult rats. In addition, acute treatment of the male and female adult rats with rosiglitazone similarly restored this impairment in cerebral vascular function to that observed in controls. We also found that chronic treatment with rosiglitazone prevented impaired vascular function in male and female adult rats that were exposed to alcohol in utero. CONCLUSIONS: PPARγ activation may be an effective and relevant treatment to reverse or prevent cerebral vascular abnormalities associated with prenatal exposure to alcohol.


Assuntos
Arteríolas/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Etanol/administração & dosagem , Óxido Nítrico Sintase/fisiologia , Efeitos Tardios da Exposição Pré-Natal , Rosiglitazona/administração & dosagem , Animais , Arteríolas/patologia , Arteríolas/fisiopatologia , Transtornos Cerebrovasculares/induzido quimicamente , Transtornos Cerebrovasculares/fisiopatologia , Transtornos Cerebrovasculares/prevenção & controle , Etanol/efeitos adversos , Feminino , Masculino , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/agonistas , Gravidez , Ratos , Ratos Sprague-Dawley , Superóxidos/análise
16.
Arterioscler Thromb Vasc Biol ; 40(9): 2114-2126, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640902

RESUMO

OBJECTIVE: Quantitative relationships between the extent of injury and thrombus formation in vivo are not well understood. Moreover, it has not been investigated how increased injury severity translates to blood-flow modulation. Here, we investigated interconnections between injury length, clot growth, and blood flow in a mouse model of laser-induced thrombosis. Approach and Results: Using intravital microscopy, we analyzed 59 clotting events collected from the cremaster arteriole of 14 adult mice. We regarded injury length as a measure of injury severity. The injury caused transient constriction upstream and downstream of the injury site resulting in a 50% reduction in arteriole diameter. The amount of platelet accumulation and fibrin formation did not depend on arteriole diameter or deformation but displayed an exponentially increasing dependence on injury length. The height of the platelet clot depended linearly on injury length and the arteriole diameter. Upstream arteriolar constriction correlated with delayed upstream velocity increase, which, in turn, determined downstream velocity. Before clot formation, flow velocity positively correlated with the arteriole diameter. After the onset of thrombus growth, flow velocity at the injury site negatively correlated with the arteriole diameter and with the size of the above-clot lumen. CONCLUSIONS: Injury severity increased platelet accumulation and fibrin formation in a persistently steep fashion and, together with arteriole diameter, defined clot height. Arterial constriction and clot formation were characterized by a dynamic change in the blood flow, associated with increased flow velocity.


Assuntos
Músculos Abdominais/irrigação sanguínea , Arteríolas/patologia , Coagulação Sanguínea , Trombose/patologia , Lesões do Sistema Vascular/patologia , Animais , Arteríolas/lesões , Arteríolas/fisiopatologia , Velocidade do Fluxo Sanguíneo , Plaquetas/metabolismo , Constrição Patológica , Modelos Animais de Doenças , Fibrina/metabolismo , Microscopia Intravital , Masculino , Camundongos , Microscopia de Fluorescência , Índice de Gravidade de Doença , Trombose/sangue , Trombose/fisiopatologia , Fatores de Tempo , Lesões do Sistema Vascular/sangue , Lesões do Sistema Vascular/fisiopatologia
17.
Arterioscler Thromb Vasc Biol ; 40(5): 1400-1412, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32237907

RESUMO

OBJECTIVE: It remains to be elucidated whether and how endothelial functions are impaired in peripheral circulation of patients with coronary functional disorders, such as vasospastic angina (VSA) and microvascular angina (MVA). We simultaneously examined endothelial functions of peripheral conduit and resistance arteries in patients with coronary functional disorders, with a special reference to NO and endothelium-dependent hyperpolarization factors. Approach and Results: Based on the results of invasive coronary acetylcholine testing and coronary physiological measurements, we divided 43 patients into 3 groups; VSA, MVA, and VSA+MVA. Endothelium-dependent vasodilatations of the brachial artery and fingertip arterioles to intra-arterial infusion of bradykinin were simultaneously evaluated by ultrasonography and peripheral arterial tonometry, respectively. To assess NO and endothelium-dependent hyperpolarization factors, measurements were repeated after oral aspirin and intra-arterial infusion of NG-monomethyl-L-arginine. Additionally, endothelium-independent vasodilatations to sublingual nitroglycerin and plasma levels of biomarkers for endothelial functions were measured. Surprisingly, digital vasodilatations to bradykinin were almost absent in patients with MVA alone and those with VSA+MVA compared with those with VSA alone. Mechanistically, both NO- and endothelium-dependent hyperpolarization-mediated digital vasodilatations were markedly impaired in patients with MVA alone. In contrast, endothelium-independent vasodilatations to nitroglycerin were comparable among the 3 groups. Plasma levels of soluble VCAM (vascular cell adhesion molecule)-1 were significantly higher in patients with MVA alone compared with those with VSA alone. CONCLUSIONS: These results provide the first evidence that both NO- and endothelium-dependent hyperpolarization-mediated digital vasodilatations are markedly impaired in MVA patients, suggesting that MVA is a cardiac manifestation of the systemic small artery disease.


Assuntos
Arteríolas/fisiopatologia , Artéria Braquial/fisiopatologia , Endotélio Vascular/fisiopatologia , Dedos/irrigação sanguínea , Angina Microvascular/fisiopatologia , Doença Arterial Periférica/fisiopatologia , Vasodilatação , Idoso , Arteríolas/efeitos dos fármacos , Arteríolas/metabolismo , Fatores Biológicos/metabolismo , Artéria Braquial/efeitos dos fármacos , Artéria Braquial/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Feminino , Humanos , Masculino , Angina Microvascular/diagnóstico , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Doença Arterial Periférica/diagnóstico , Resistência Vascular , Vasodilatação/efeitos dos fármacos , Vasodilatadores/administração & dosagem
18.
Diabetologia ; 63(7): 1408-1417, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32385602

RESUMO

AIMS/HYPOTHESIS: Retinal microvascular diameters are biomarkers of cardio-metabolic risk. However, the association of (pre)diabetes with retinal microvascular diameters remains unclear. We aimed to investigate the association of prediabetes (impaired fasting glucose or impaired glucose tolerance) and type 2 diabetes with retinal microvascular diameters in a predominantly white population. METHODS: In a population-based cohort study with oversampling of type 2 diabetes (N = 2876; n = 1630 normal glucose metabolism [NGM], n = 433 prediabetes and n = 813 type 2 diabetes, 51.2% men, aged 59.8 ± 8.2 years; 98.6% white), we determined retinal microvascular diameters (measurement unit as measured by retinal health information and notification system [RHINO] software) and glucose metabolism status (using OGTT). Associations were assessed with multivariable regression analyses adjusted for age, sex, waist circumference, smoking, systolic blood pressure, lipid profile and the use of lipid-modifying and/or antihypertensive medication. RESULTS: Multivariable regression analyses showed a significant association for type 2 diabetes but not for prediabetes with arteriolar width (vs NGM; prediabetes: ß = 0.62 [95%CI -1.58, 2.83]; type 2 diabetes: 2.89 [0.69, 5.08]; measurement unit); however, there was a linear trend for the arteriolar width across glucose metabolism status (p for trend = 0.013). The association with wider venules was not statistically significant (prediabetes: 2.40 [-1.03, 5.84]; type 2 diabetes: 2.87 [-0.55, 6.29], p for trend = 0.083; measurement unit). Higher HbA1c levels were associated with wider retinal arterioles (standardised ß = 0.043 [95% CI 0.00002, 0.085]; p = 0.050) but the association with wider venules did not reach statistical significance (0.037 [-0.006, 0.080]; p = 0.092) after adjustment for potential confounders. CONCLUSIONS/INTERPRETATION: Type 2 diabetes, higher levels of HbA1c and, possibly, prediabetes, are independently associated with wider retinal arterioles in a predominantly white population. These findings indicate that microvascular dysfunction is an early phenomenon in impaired glucose metabolism.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Vasos Retinianos/patologia , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Pressão Sanguínea/fisiologia , Estudos de Coortes , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Masculino , Análise de Regressão
19.
Am J Physiol Renal Physiol ; 319(4): F624-F635, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830539

RESUMO

Recently, we reported a mutation in γ-adducin (ADD3) was associated with an impaired myogenic response of the afferent arteriole and hypertension-induced chronic kidney disease (CKD) in fawn hooded hypertensive (FHH) rats. However, the mechanisms by which altered renal blood flow (RBF) autoregulation promotes hypertension-induced renal injury remain to be determined. The present study compared the time course of changes in renal hemodynamics and the progression of CKD during the development of DOCA-salt hypertension in FHH 1BN congenic rats [wild-type (WT)] with an intact myogenic response versus FHH 1BNAdd3KO (Add3KO) rats, which have impaired myogenic response. RBF was well autoregulated in WT rats but not in Add3KO rats. Glomerular capillary pressure rose by 6 versus 14 mmHg in WT versus Add3KO rats when blood pressure increased from 100 to 150 mmHg. After 1 wk of hypertension, glomerular filtration rate increased by 38% and glomerular nephrin expression decreased by 20% in Add3KO rats. Neither were altered in WT rats. Proteinuria doubled in WT rats versus a sixfold increase in Add3KO rats. The degree of renal injury was greater in Add3KO than WT rats after 3 wk of hypertension. RBF, glomerular filtration rate, and glomerular capillary pressure were lower by 20%, 28%, and 19% in Add3KO rats than in WT rats, which was associated with glomerular matrix expansion and loss of capillary filtration area. The results indicated that impaired RBF autoregulation and eutrophic remodeling of preglomerular arterioles increase the transmission of pressure to glomeruli, which induces podocyte loss and accelerates the progression of CKD in hypertensive Add3KO rats.


Assuntos
Pressão Sanguínea , Taxa de Filtração Glomerular , Hipertensão/complicações , Glomérulos Renais/irrigação sanguínea , Proteinúria/etiologia , Circulação Renal , Insuficiência Renal Crônica/etiologia , Animais , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Acetato de Desoxicorticosterona , Modelos Animais de Doenças , Progressão da Doença , Homeostase , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Desenvolvimento Muscular , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Proteinúria/genética , Proteinúria/metabolismo , Proteinúria/fisiopatologia , Ratos Transgênicos , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Cloreto de Sódio na Dieta , Remodelação Vascular
20.
Am J Physiol Renal Physiol ; 318(6): F1400-F1408, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32308022

RESUMO

In ANG II-dependent hypertension, ANG II activates ANG II type 1 receptors (AT1Rs), elevating blood pressure and increasing renal afferent arteriolar resistance (AAR). The increased arterial pressure augments interstitial ATP concentrations activating purinergic P2X receptors (P2XRs) also increasing AAR. Interestingly, P2X1R and P2X7R inhibition reduces AAR to the normal range, raising the conundrum regarding the apparent disappearance of AT1R influence. To evaluate the interactions between P2XRs and AT1Rs in mediating the increased AAR elicited by chronic ANG II infusions, experiments using the isolated blood perfused juxtamedullary nephron preparation allowed visualization of afferent arteriolar diameters (AAD). Normotensive and ANG II-infused hypertensive rats showed AAD responses to increases in renal perfusion pressure from 100 to 140 mmHg by decreasing AAD by 26 ± 10% and 19 ± 4%. Superfusion with the inhibitor P2X1Ri (NF4490; 1 µM) increased AAD. In normotensive kidneys, superfusion with ANG II (1 nM) decreased AAD by 16 ± 4% and decreased further by 19 ± 5% with an increase in renal perfusion pressure. Treatment with P2X1Ri increased AAD by 30 ± 6% to values higher than those at 100 mmHg plus ANG II. In hypertensive kidneys, the inhibitor AT1Ri (SML1394; 1 µM) increased AAD by 10 ± 7%. In contrast, treatment with P2X1Ri increased AAD by 21 ± 14%; combination with P2X1Ri plus P2X7Ri (A438079; 1 µM) increased AAD further by 25 ± 8%. The results indicate that P2X1R, P2X7R, and AT1R actions converge at receptor or postreceptor signaling pathways, but P2XR exerts a dominant influence abrogating the actions of AT1Rs on AAR in ANG II-dependent hypertension.


Assuntos
Arteríolas/metabolismo , Pressão Sanguínea , Hipertensão/metabolismo , Rim/irrigação sanguínea , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores Purinérgicos P2X1/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Angiotensina II , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Arteríolas/efeitos dos fármacos , Arteríolas/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Masculino , Antagonistas do Receptor Purinérgico P2X/farmacologia , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptores Purinérgicos P2X1/efeitos dos fármacos , Receptores Purinérgicos P2X7/efeitos dos fármacos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA