Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(21): 3980-3991.e18, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36182704

RESUMO

Simian arteriviruses are endemic in some African primates and can cause fatal hemorrhagic fevers when they cross into primate hosts of new species. We find that CD163 acts as an intracellular receptor for simian hemorrhagic fever virus (SHFV; a simian arterivirus), a rare mode of virus entry that is shared with other hemorrhagic fever-causing viruses (e.g., Ebola and Lassa viruses). Further, SHFV enters and replicates in human monocytes, indicating full functionality of all of the human cellular proteins required for viral replication. Thus, simian arteriviruses in nature may not require major adaptations to the human host. Given that at least three distinct simian arteriviruses have caused fatal infections in captive macaques after host-switching, and that humans are immunologically naive to this family of viruses, development of serology tests for human surveillance should be a priority.


Assuntos
Arterivirus , Febres Hemorrágicas Virais , Animais , Arterivirus/fisiologia , Febres Hemorrágicas Virais/veterinária , Febres Hemorrágicas Virais/virologia , Humanos , Macaca , Primatas , Zoonoses Virais , Internalização do Vírus , Replicação Viral
2.
Emerg Infect Dis ; 30(4): 721-731, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526136

RESUMO

Genetically diverse simian arteriviruses (simarteriviruses) naturally infect geographically and phylogenetically diverse monkeys, and cross-species transmission and emergence are of considerable concern. Characterization of most simarteriviruses beyond sequence analysis has not been possible because the viruses fail to propagate in the laboratory. We attempted to isolate 4 simarteriviruses, Kibale red colobus virus 1, Pebjah virus, simian hemorrhagic fever virus, and Southwest baboon virus 1, by inoculating an immortalized grivet cell line (known to replicate simian hemorrhagic fever virus), primary macaque cells, macrophages derived from macaque induced pluripotent stem cells, and mice engrafted with macaque CD34+-enriched hematopoietic stem cells. The combined effort resulted in successful virus isolation; however, no single approach was successful for all 4 simarteriviruses. We describe several approaches that might be used to isolate additional simarteriviruses for phenotypic characterization. Our results will expedite laboratory studies of simarteriviruses to elucidate virus-host interactions, assess zoonotic risk, and develop medical countermeasures.


Assuntos
Arterivirus , Animais , Camundongos , Arterivirus/genética , Macaca , Macrófagos , Linhagem Celular
3.
Emerg Infect Dis ; 27(2): 578-581, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496231

RESUMO

In the fall of 2019, a fatal encephalitis outbreak led to the deaths of >200 European hedgehogs (Erinaceus europaeus) in England. We used next-generation sequencing to identify a novel arterivirus with a genome coding sequence of only 43% similarity to existing GenBank arterivirus sequences.


Assuntos
Arterivirus , Encefalite , Animais , Surtos de Doenças , Inglaterra/epidemiologia , Ouriços
4.
J Gen Virol ; 102(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34356005

RESUMO

The family Arteriviridae comprises enveloped RNA viruses with a linear, positive-sense genome of approximately 12.7 to 15.7 kb. The spherical, pleomorphic virions have a median diameter of 50-74 nm and include eight to eleven viral proteins. Arteriviruses infect non-human mammals in a vector-independent manner. Infections are often persistent and can either be asymptomatic or produce overt disease. Some arteriviruses are important veterinary pathogens while others infect particular species of wild rodents or African non-human primates. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Arteriviridae, which is available at ictv.global/report/arteriviridae.


Assuntos
Arteriviridae/classificação , Arteriviridae/genética , Filogenia , Animais , Arteriviridae/ultraestrutura , Arterivirus/classificação , Arterivirus/genética , Endocitose , Genoma Viral , Primatas , Infecções por Vírus de RNA , Proteínas Virais/genética , Vírion/classificação , Vírion/genética , Vírion/ultraestrutura , Ligação Viral , Replicação Viral
5.
J Virol ; 93(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31167906

RESUMO

The -2/-1 programmed ribosomal frameshifting (-2/-1 PRF) mechanism in porcine reproductive and respiratory syndrome virus (PRRSV) leads to the translation of two additional viral proteins, nonstructural protein 2TF (nsp2TF) and nsp2N. This -2/-1 PRF mechanism is transactivated by a viral protein, nsp1ß, and cellular poly(rC) binding proteins (PCBPs). Critical elements for -2/-1 PRF, including a slippery sequence and a downstream C-rich motif, were also identified in 11 simarteriviruses. However, the slippery sequences (XXXUCUCU instead of XXXUUUUU) in seven simarteriviruses can only facilitate -2 PRF to generate nsp2TF. The nsp1ß of simian hemorrhagic fever virus (SHFV) was identified as a key factor that transactivates both -2 and -1 PRF, and the universally conserved Tyr111 and Arg114 in nsp1ß are essential for this activity. In vitro translation experiments demonstrated the involvement of PCBPs in simarterivirus -2/-1 PRF. Using SHFV reverse genetics, we confirmed critical roles of nsp1ß, slippery sequence, and C-rich motif in -2/-1 PRF in SHFV-infected cells. Attenuated virus growth ability was observed in SHFV mutants with impaired expression of nsp2TF and nsp2N. Comparative genomic sequence analysis showed that key elements of -2/-1 PRF are highly conserved in all known arteriviruses except equine arteritis virus (EAV) and wobbly possum disease virus (WPDV). Furthermore, -2/-1 PRF with SHFV PRF signal RNA can be stimulated by heterotypic nsp1ßs of all non-EAV arteriviruses tested. Taken together, these data suggest that -2/-1 PRF is an evolutionarily conserved mechanism employed in non-EAV/-WPDV arteriviruses for the expression of additional viral proteins that are important for viral replication.IMPORTANCE Simarteriviruses are a group of arteriviruses infecting nonhuman primates, and a number of new species have been established in recent years. Although these arteriviruses are widely distributed among African nonhuman primates of different species, and some of them cause lethal hemorrhagic fever disease, this group of viruses has been undercharacterized. Since wild nonhuman primates are historically important sources or reservoirs of human pathogens, there is concern that simarteriviruses may be preemergent zoonotic pathogens. Thus, molecular characterization of simarteriviruses is becoming a priority in arterivirology. In this study, we demonstrated that an evolutionarily conserved ribosomal frameshifting mechanism is used by simarteriviruses and other distantly related arteriviruses for the expression of additional viral proteins. This mechanism is unprecedented in eukaryotic systems. Given the crucial role of ribosome function in all living systems, the potential impact of the in-depth characterization of this novel mechanism reaches beyond the field of virology.


Assuntos
Evolução Biológica , Mudança da Fase de Leitura do Gene Ribossômico , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Arterivirus/genética , Linhagem Celular , Expressão Gênica , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
6.
J Virol ; 93(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31243130

RESUMO

Previously, the cyclophilin inhibitors cyclosporine (CsA) and alisporivir (ALV) were shown to inhibit the replication of diverse RNA viruses, including arteriviruses and coronaviruses, which both belong to the order Nidovirales In this study, we aimed to identify arterivirus proteins involved in the mode of action of cyclophilin inhibitors and to investigate how these compounds inhibit arterivirus RNA synthesis in the infected cell. Repeated passaging of the arterivirus prototype equine arteritis virus (EAV) in the presence of CsA revealed that reduced drug sensitivity is associated with the emergence of adaptive mutations in nonstructural protein 5 (nsp5), one of the transmembrane subunits of the arterivirus replicase polyprotein. Introduction of singular nsp5 mutations (nsp5 Q21R, Y113H, or A134V) led to an ∼2-fold decrease in sensitivity to CsA treatment, whereas combinations of mutations further increased EAV's CsA resistance. The detailed experimental characterization of engineered EAV mutants harboring CsA resistance mutations implicated nsp5 in arterivirus RNA synthesis. Particularly, in an in vitro assay, EAV RNA synthesis was far less sensitive to CsA treatment when nsp5 contained the adaptive mutations mentioned above. Interestingly, for increased sensitivity to the closely related drug ALV, CsA-resistant nsp5 mutants required the incorporation of an additional adaptive mutation, which resided in nsp2 (H114R), another transmembrane subunit of the arterivirus replicase. Our study provides the first evidence for the involvement of nsp2 and nsp5 in the mechanism underlying the inhibition of arterivirus replication by cyclophilin inhibitors.IMPORTANCE Currently, no approved treatments are available to combat infections with nidoviruses, a group of positive-stranded RNA viruses, including important zoonotic and veterinary pathogens. Previously, the cyclophilin inhibitors cyclosporine (CsA) and alisporivir (ALV) were shown to inhibit the replication of diverse nidoviruses (both arteriviruses and coronaviruses), and they may thus represent a class of pan-nidovirus inhibitors. In this study, using the arterivirus prototype equine arteritis virus, we have established that resistance to CsA and ALV treatment is associated with adaptive mutations in two transmembrane subunits of the viral replication machinery, nonstructural proteins 2 and 5. This is the first evidence for the involvement of specific replicase subunits of arteriviruses in the mechanism underlying the inhibition of their replication by cyclophilin inhibitors. Understanding this mechanism of action is of major importance to guide future drug design, both for nidoviruses and for other RNA viruses inhibited by these compounds.


Assuntos
Equartevirus/genética , RNA Polimerase Dependente de RNA/genética , Proteínas não Estruturais Virais/metabolismo , Arterivirus/genética , Linhagem Celular , Ciclofilinas/metabolismo , Ciclosporina/antagonistas & inibidores , Equartevirus/metabolismo , Células HEK293 , Humanos , Mutação , Nidovirales/genética , Nidovirales/metabolismo , Inibidores da Síntese de Ácido Nucleico/metabolismo , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral
7.
J Virol ; 93(12)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30944180

RESUMO

Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) represent two members of the family Arteriviridae and pose major threats for the horse- and swine-breeding industries worldwide. A previous study suggested that PRRSV nsp4, a 3C-like protease, antagonizes interferon beta (IFN-ß) production by cleaving the NF-κB essential modulator (NEMO) at a single site, glutamate 349 (E349). Here, we demonstrated that EAV nsp4 also inhibited virus-induced IFN-ß production by targeting NEMO for proteolytic cleavage and that the scission occurred at four sites: E166, E171, glutamine 205 (Q205), and E349. Additionally, we found that, besides the previously reported cleavage site E349 in NEMO, scission by PRRSV nsp4 took place at two additional sites, E166 and E171. These results imply that while cleaving NEMO is a common strategy utilized by EAV and PRRSV nsp4 to antagonize IFN induction, EAV nsp4 adopts a more complex substrate recognition mechanism to target NEMO. By analyzing the abilities of the eight different NEMO fragments resulting from EAV or PRRSV nsp4 scission to induce IFN-ß production, we serendipitously found that a NEMO fragment (residues 1 to 349) could activate IFN-ß transcription more robustly than full-length NEMO, whereas all other NEMO cleavage products were abrogated for the IFN-ß-inducing capacity. Thus, NEMO cleavage at E349 alone may not be sufficient to completely inactivate the IFN response via this signaling adaptor. Altogether, our findings suggest that EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is critical for disarming the innate immune response for viral survival.IMPORTANCE The arterivirus nsp4-encoded 3C-like protease (3CLpro) plays an important role in virus replication and immune evasion, making it an attractive target for antiviral therapeutics. Previous work suggested that PRRSV nsp4 suppresses type I IFN production by cleaving NEMO at a single site. In contrast, the present study demonstrates that both EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is essential for disruption of type I IFN production. Moreover, we reveal that EAV nsp4 also cleaves NEMO at glutamine 205 (Q205), which is not targeted by PRRSV nsp4. Notably, targeting a glutamine in NEMO for cleavage has been observed only with picornavirus 3C proteases (3Cpro) and coronavirus 3CLpro In aggregate, our work expands knowledge of the innate immune evasion mechanisms associated with NEMO cleavage by arterivirus nsp4 and describes a novel substrate recognition characteristic of EAV nsp4.


Assuntos
Equartevirus/metabolismo , Interferon beta/biossíntese , Proteínas não Estruturais Virais/metabolismo , Animais , Arteriviridae/metabolismo , Arterivirus/metabolismo , Linhagem Celular , Equartevirus/fisiologia , Células HEK293 , Cavalos , Humanos , Quinase I-kappa B/metabolismo , Quinase I-kappa B/fisiologia , Evasão da Resposta Imune , Imunidade Inata , Interferon beta/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Proteólise , Transdução de Sinais , Suínos , Replicação Viral
8.
J Biol Chem ; 293(31): 12054-12067, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29887523

RESUMO

Nidovirus endoribonucleases (NendoUs) include nonstructural protein 15 (nsp15) from coronaviruses and nsp11 from arteriviruses, both of which have been reported to participate in the viral replication process and in the evasion of the host immune system. Results from a previous study of coronaviruses SARS-CoV, HCoV-229E, and MHV nsp15 indicate that it mainly forms a functional hexamer, whereas nsp11 from the arterivirus PRRSV is a dimer. Here, we found that porcine Deltacoronavirus (PDCoV) nsp15 primarily exists as dimers and monomers in vitro Biological experiments reveal that a PDCoV nsp15 mutant lacking the first 27 amino acids of the N-terminal domain (Asn-1-Asn-27) forms more monomers and displays decreased enzymatic activity, indicating that this region is important for its dimerization. Moreover, multiple sequence alignments and three-dimensional structural analysis indicated that the C-terminal region (His-251-Val-261) of PDCoV nsp15 is 10 amino acids shorter and forms a shorter loop than that formed by the equivalent sequence (Gln-259-Phe-279) of SARS-CoV nsp15. This result may explain why PDCoV nsp15 failed to form hexamers. We speculate that NendoUs may have originated from XendoU endoribonucleases (XendoUs) forming monomers in eukaryotic cells, that NendoU from arterivirus gained the ability to form dimers, and that the coronavirus variants then evolved the capacity to assemble into hexamers. We further propose that PDCoV nsp15 may be an intermediate in this evolutionary process. Our findings provide a theoretical basis for improving our understanding of NendoU evolution and offer useful clues for designing drugs and vaccines against nidoviruses.


Assuntos
Coronavirus/química , Endorribonucleases/química , Nidovirales/química , Subunidades Proteicas/química , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Arterivirus/química , Arterivirus/classificação , Arterivirus/genética , Arterivirus/metabolismo , Sítios de Ligação , Clonagem Molecular , Coronavirus/classificação , Coronavirus/genética , Coronavirus/metabolismo , Cristalografia por Raios X , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Nidovirales/classificação , Nidovirales/genética , Nidovirales/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/classificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
9.
Arch Virol ; 164(10): 2593-2597, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31270606

RESUMO

Trionyx sinensis hemorrhagic syndrome virus (TSHSV) is a newly discovered lethal arterivirus that causes serious disease in Trionyx sinensis in China. In this study, the complete genome sequence of TSHSV was determined by RACE cloning, and the functions of the predicted proteins were predicted. The complete genome of TSHSV was found to be 17,875 bp in length, and a 3'-end poly(A) tail was detected. Eight TSHSV hypothetical proteins (TSHSV-HPs) were predicted by gene model identification. TSHSV-HP2, 3 and 4 were associated with replicase activity, since papain-like protease (PLPs), serine-type endopeptidase, P-loop-containing nucleoside triphosphate hydrolase, and EndoU-like endoribonuclease motifs were detected. Phylogenetic analysis showed that TSHSV clusters with an arterivirus from a Chinese broad-headed pond turtle.


Assuntos
Infecções por Arterivirus/veterinária , Arterivirus/classificação , Arterivirus/isolamento & purificação , Filogenia , Tartarugas/virologia , Animais , Arterivirus/genética , Infecções por Arterivirus/virologia , China , Genoma Viral , RNA Mensageiro , Análise de Sequência de DNA , Proteínas Virais/genética
10.
J Virol ; 91(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28053107

RESUMO

In five experimentally characterized arterivirus species, the 5'-end genome coding region encodes the most divergent nonstructural proteins (nsp's), nsp1 and nsp2, which include papain-like proteases (PLPs) and other poorly characterized domains. These are involved in regulation of transcription, polyprotein processing, and virus-host interaction. Here we present results of a bioinformatics analysis of this region of 14 arterivirus species, including that of the most distantly related virus, wobbly possum disease virus (WPDV), determined by a modified 5' rapid amplification of cDNA ends (RACE) protocol. By combining profile-profile comparisons and phylogeny reconstruction, we identified an association of the four distinct domain layouts of nsp1-nsp2 with major phylogenetic lineages, implicating domain gain, including duplication, and loss in the early nsp1 evolution. Specifically, WPDV encodes highly divergent homologs of PLP1a, PLP1b, PLP1c, and PLP2, with PLP1a lacking the catalytic Cys residue, but does not encode nsp1 Zn finger (ZnF) and "nuclease" domains, which are conserved in other arteriviruses. Unexpectedly, our analysis revealed that the only catalytically active nsp1 PLP of equine arteritis virus (EAV), known as PLP1b, is most similar to PLP1c and thus is likely to be a PLP1b paralog. In all non-WPDV arteriviruses, PLP1b/c and PLP1a show contrasting patterns of conservation, with the N- and C-terminal subdomains, respectively, being enriched with conserved residues, which is indicative of different functional specializations. The least conserved domain of nsp2, the hypervariable region (HVR), has its size varied 5-fold and includes up to four copies of a novel PxPxPR motif that is potentially recognized by SH3 domain-containing proteins. Apparently, only EAV lacks the signal that directs -2 ribosomal frameshifting in the nsp2 coding region.IMPORTANCE Arteriviruses comprise a family of mammalian enveloped positive-strand RNA viruses that include some of the most economically important pathogens of swine. Most of our knowledge about this family has been obtained through characterization of viruses from five species: Equine arteritis virus, Simian hemorrhagic fever virus, Lactate dehydrogenase-elevating virus, Porcine respiratory and reproductive syndrome virus 1, and Porcine respiratory and reproductive syndrome virus 2 Here we present the results of comparative genomics analyses of viruses from all known 14 arterivirus species, including the most distantly related virus, WPDV, whose genome sequence was completed in this study. Our analysis focused on the multifunctional 5'-end genome coding region that encodes multidomain nonstructural proteins 1 and 2. Using diverse bioinformatics techniques, we identified many patterns of evolutionary conservation that are specific to members of distinct arterivirus species, both characterized and novel, or their groups. They are likely associated with structural and functional determinants important for virus replication and virus-host interaction.


Assuntos
Arterivirus/classificação , Arterivirus/genética , Evolução Molecular , Genes Virais , Genoma Viral , Domínios Proteicos , Proteínas não Estruturais Virais/genética , Biologia Computacional , Variação Genética , Filogenia
11.
J Virol ; 91(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974564

RESUMO

Simian arteriviruses are a diverse clade of viruses infecting captive and wild nonhuman primates. We recently reported that Kibale red colobus virus 1 (KRCV-1) causes a mild and self-limiting disease in experimentally infected crab-eating macaques, while simian hemorrhagic fever virus (SHFV) causes lethal viral hemorrhagic fever. Here we characterize how these viruses evolved during replication in cell culture and in experimentally infected macaques. During passage in cell culture, 68 substitutions that were localized in open reading frames (ORFs) likely associated with host cell entry and exit became fixed in the KRCV-1 genome. However, we did not detect any strong signatures of selection during replication in macaques. We uncovered patterns of evolution that were distinct from those observed in surveys of wild red colobus monkeys, suggesting that these species may exert different adaptive challenges for KRCV-1. During SHFV infection, we detected signatures of selection on ORF 5a and on a small subset of sites in the genome. Overall, our data suggest that patterns of evolution differ markedly among simian arteriviruses and among host species. IMPORTANCE: Certain RNA viruses can cross species barriers and cause disease in new hosts. Simian arteriviruses are a diverse group of related viruses that infect captive and wild nonhuman primates, with associated disease severity ranging from apparently asymptomatic infections to severe, viral hemorrhagic fevers. We infected nonhuman primate cell cultures and then crab-eating macaques with either simian hemorrhagic fever virus (SHFV) or Kibale red colobus virus 1 (KRCV-1) and assessed within-host viral evolution. We found that KRCV-1 quickly acquired a large number of substitutions in its genome during replication in cell culture but that evolution in macaques was limited. In contrast, we detected selection focused on SHFV ORFs 5a and 5, which encode putative membrane proteins. These patterns suggest that in addition to diverse pathogenic phenotypes, these viruses may also exhibit distinct patterns of within-host evolution both in vitro and in vivo.


Assuntos
Infecções por Arterivirus/veterinária , Arterivirus/fisiologia , Evolução Biológica , Interações Hospedeiro-Patógeno , Doenças dos Macacos/virologia , Animais , Interações Hospedeiro-Patógeno/genética , Macaca fascicularis , Doenças dos Macacos/genética , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , RNA Viral , Seleção Genética , Internalização do Vírus , Replicação Viral
12.
J Virol ; 90(2): 630-5, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26559828

RESUMO

Wild nonhuman primates are immediate sources and long-term reservoirs of human pathogens. However, ethical and technical challenges have hampered the identification of novel blood-borne pathogens in these animals. We recently examined RNA viruses in plasma from wild African monkeys and discovered several novel, highly divergent viruses belonging to the family Arteriviridae. Close relatives of these viruses, including simian hemorrhagic fever virus, have caused sporadic outbreaks of viral hemorrhagic fever in captive macaque monkeys since the 1960s. However, arterivirus infection in wild nonhuman primates had not been described prior to 2011. The arteriviruses recently identified in wild monkeys have high sequence and host species diversity, maintain high viremia, and are prevalent in affected populations. Taken together, these features suggest that the simian arteriviruses may be "preemergent" zoonotic pathogens. If not, this would imply that biological characteristics of RNA viruses thought to facilitate zoonotic transmission may not, by themselves, be sufficient for such transmission to occur.


Assuntos
Infecções por Arterivirus/transmissão , Infecções por Arterivirus/veterinária , Arterivirus/fisiologia , Doenças dos Primatas/transmissão , Doenças dos Primatas/virologia , Zoonoses/transmissão , Zoonoses/virologia , Animais , Arterivirus/genética , Infecções por Arterivirus/virologia , Haplorrinos , Humanos
13.
J Virol ; 90(15): 6724-6737, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27170760

RESUMO

UNLABELLED: Nonhuman primates (NHPs) are a historically important source of zoonotic viruses and are a gold-standard model for research on many human pathogens. However, with the exception of simian immunodeficiency virus (SIV) (family Retroviridae), the blood-borne viruses harbored by these animals in the wild remain incompletely characterized. Here, we report the discovery and characterization of two novel simian pegiviruses (family Flaviviridae) and two novel simian arteriviruses (family Arteriviridae) in wild African green monkeys from Zambia (malbroucks [Chlorocebus cynosuros]) and South Africa (vervet monkeys [Chlorocebus pygerythrus]). We examine several aspects of infection, including viral load, genetic diversity, evolution, and geographic distribution, as well as host factors such as age, sex, and plasma cytokines. In combination with previous efforts to characterize blood-borne RNA viruses in wild primates across sub-Saharan Africa, these discoveries demonstrate that in addition to SIV, simian pegiviruses and simian arteriviruses are widespread and prevalent among many African cercopithecoid (i.e., Old World) monkeys. IMPORTANCE: Primates are an important source of viruses that infect humans and serve as an important laboratory model of human virus infection. Here, we discover two new viruses in African green monkeys from Zambia and South Africa. In combination with previous virus discovery efforts, this finding suggests that these virus types are widespread among African monkeys. Our analysis suggests that one of these virus types, the simian arteriviruses, may have the potential to jump between different primate species and cause disease. In contrast, the other virus type, the pegiviruses, are thought to reduce the disease caused by human immunodeficiency virus (HIV) in humans. However, we did not observe a similar protective effect in SIV-infected African monkeys coinfected with pegiviruses, possibly because SIV causes little to no disease in these hosts.


Assuntos
Infecções por Arterivirus/epidemiologia , Evolução Biológica , Infecções por Flaviviridae/epidemiologia , Variação Genética , Infecções por Lentivirus/epidemiologia , Carga Viral , África/epidemiologia , Animais , Animais Selvagens , Arterivirus/genética , Arterivirus/patogenicidade , Infecções por Arterivirus/genética , Infecções por Arterivirus/virologia , Flaviviridae/genética , Flaviviridae/patogenicidade , Infecções por Flaviviridae/genética , Infecções por Flaviviridae/virologia , Genoma Viral , Haplorrinos , Humanos , Lentivirus/genética , Lentivirus/patogenicidade , Infecções por Lentivirus/genética , Infecções por Lentivirus/virologia , Filogenia , Prevalência
14.
J Virol ; 89(15): 8082-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25972539

RESUMO

Simian hemorrhagic fever (SHF) is lethal for macaques. Based on clinical presentation and serological diagnosis, all reported SHF outbreaks were thought to be caused by different strains of the same virus, simian hemorrhagic fever virus (SHFV; Arteriviridae). Here we show that the SHF outbreaks in Sukhumi in 1964 and in Alamogordo in 1989 were caused not by SHFV but by two novel divergent arteriviruses. Our results indicate that multiple divergent simian arteriviruses can cause SHF.


Assuntos
Infecções por Arterivirus/veterinária , Arterivirus/isolamento & purificação , Febres Hemorrágicas Virais/veterinária , Macaca/virologia , Doenças dos Primatas/virologia , Sequência de Aminoácidos , Animais , Arterivirus/classificação , Arterivirus/genética , Arterivirus/fisiologia , Infecções por Arterivirus/história , Infecções por Arterivirus/virologia , Evolução Molecular , Febres Hemorrágicas Virais/história , Febres Hemorrágicas Virais/virologia , História do Século XX , Humanos , Dados de Sequência Molecular , Filogenia , Doenças dos Primatas/história , Homologia de Sequência de Aminoácidos , Proteínas Virais/química , Proteínas Virais/genética
15.
J Virol ; 89(1): 844-56, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25355889

RESUMO

UNLABELLED: Simian hemorrhagic fever virus (SHFV) causes a severe and almost uniformly fatal viral hemorrhagic fever in Asian macaques but is thought to be nonpathogenic for humans. To date, the SHFV life cycle is almost completely uncharacterized on the molecular level. Here, we describe the first steps of the SHFV life cycle. Our experiments indicate that SHFV enters target cells by low-pH-dependent endocytosis. Dynamin inhibitors, chlorpromazine, methyl-ß-cyclodextrin, chloroquine, and concanamycin A dramatically reduced SHFV entry efficiency, whereas the macropinocytosis inhibitors EIPA, blebbistatin, and wortmannin and the caveolin-mediated endocytosis inhibitors nystatin and filipin III had no effect. Furthermore, overexpression and knockout study and electron microscopy results indicate that SHFV entry occurs by a dynamin-dependent clathrin-mediated endocytosis-like pathway. Experiments utilizing latrunculin B, cytochalasin B, and cytochalasin D indicate that SHFV does not hijack the actin polymerization pathway. Treatment of target cells with proteases (proteinase K, papain, α-chymotrypsin, and trypsin) abrogated entry, indicating that the SHFV cell surface receptor is a protein. Phospholipases A2 and D had no effect on SHFV entry. Finally, treatment of cells with antibodies targeting CD163, a cell surface molecule identified as an entry factor for the SHFV-related porcine reproductive and respiratory syndrome virus, diminished SHFV replication, identifying CD163 as an important SHFV entry component. IMPORTANCE: Simian hemorrhagic fever virus (SHFV) causes highly lethal disease in Asian macaques resembling human illness caused by Ebola or Lassa virus. However, little is known about SHFV's ecology and molecular biology and the mechanism by which it causes disease. The results of this study shed light on how SHFV enters its target cells. Using electron microscopy and inhibitors for various cellular pathways, we demonstrate that SHFV invades cells by low-pH-dependent, actin-independent endocytosis, likely with the help of a cellular surface protein.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Arterivirus/fisiologia , Endocitose , Interações Hospedeiro-Patógeno , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Chlorocebus aethiops
16.
J Gen Virol ; 96(9): 2643-2655, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26041874

RESUMO

The 3'-terminal domain of the most conserved ORF1b in three of the four families of the order Nidovirales (except for the family Arteriviridae) encodes a (putative) 2'-O-methyltransferase (2'-O-MTase), known as non structural protein (nsp) 16 in the family Coronaviridae and implicated in methylation of the 5' cap structure of nidoviral mRNAs. As with coronavirus transcripts, arterivirus mRNAs are assumed to possess a 5' cap although no candidate MTases have been identified thus far. To address this knowledge gap, we analysed the uncharacterized nsp12 of arteriviruses, which occupies the ORF1b position equivalent to that of the nidovirus 2'-O-MTase (coronavirus nsp16). In our in-depth bioinformatics analysis of nsp12, the protein was confirmed to be family specific whilst having diverged much further than other nidovirus ORF1b-encoded proteins, including those of the family Coronaviridae. Only one invariant and several partially conserved, predominantly aromatic residues were identified in nsp12, which may adopt a structure with alternating α-helices and ß-strands, an organization also found in known MTases. However, no statistically significant similarity was found between nsp12 and the twofold larger coronavirus nsp16, nor could we detect MTase activity in biochemical assays using recombinant equine arteritis virus (EAV) nsp12. Our further analysis established that this subunit is essential for replication of this prototypic arterivirus. Using reverse genetics, we assessed the impact of 25 substitutions at 14 positions, yielding virus phenotypes ranging from WT-like to non-viable. Notably, replacement of the invariant phenylalanine 109 with tyrosine was lethal. We concluded that nsp12 plays an essential role during EAV replication, possibly by acting as a co-factor for another enzyme.


Assuntos
Proteínas Arqueais/metabolismo , Coronavirus/enzimologia , Equartevirus/metabolismo , Metiltransferases/metabolismo , Poliproteínas/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Arterivirus/química , Arterivirus/enzimologia , Arterivirus/genética , Coronavirus/química , Coronavirus/genética , Equartevirus/química , Equartevirus/genética , Metilação , Metiltransferases/química , Metiltransferases/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Poliproteínas/química , Poliproteínas/genética , Processamento de Proteína Pós-Traducional , RNA Viral/genética , RNA Viral/metabolismo , Alinhamento de Sequência , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
17.
J Virol ; 88(16): 9129-40, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24899184

RESUMO

UNLABELLED: The N-terminal region of simian hemorrhagic fever virus (SHFV) nonstructural polyprotein 1a is predicted to encode three papain-like proteases (PLP1α, PLP1ß, and PLP1γ). Catalytic residues and cleavage sites for each of the SHFV PLP1s were predicted by alignment of the SHFV PLP1 region sequences with each other as well as with those of other arteriviruses, and the predicted catalytic residues were shown to be proximal by homology modeling of the SHFV nsp1s on porcine respiratory and reproductive syndrome virus (PRRSV) nsp1 crystal structures. The functionality of the predicted catalytic Cys residues and cleavage sites was tested by analysis of the autoproteolytic products generated in in vitro transcription/translation reactions done with wild-type or mutant SHFV nsp1 constructs. Cleavage sites were also analyzed by mass spectroscopy analysis of selected immunoprecipitated cleavage products. The data showed that each of the three SHFV PLP1s is an active protease. Cys63 was identified as the catalytic Cys of SHFV PLP1α and is adjacent to an Ala instead of the canonical Tyr observed in other arterivirus PLP1s. SHFV PLP1γ is able to cleave at both downstream and upstream nsp1 junction sites. Although intermediate precursor polyproteins as well as alternative products generated by each of the SHFV PLP1s cleaving at sites within the N-terminal region of nsp1ß were produced in the in vitro reactions, Western blotting of SHFV-infected, MA104 cell lysates with SHFV nsp1 protein-specific antibodies detected only the three mature nsp1 proteins. IMPORTANCE: SHFV is unique among arteriviruses in having three N-terminal papain-like protease 1 (PLP1) domains. Other arteriviruses encode one or two active PLP1s. This is the first functional study of the SHFV PLP1s. Analysis of the products of in vitro autoprocessing of an N-terminal SHFV nonstructural 1a polypeptide fragment showed that each of the three SHFV PLP1s is active, and the predicted catalytic Cys residues and cleavage sites for each PLP1 were confirmed by testing mutant constructs. Several unique features of the SHFV PLP1s were discovered. The SHFV PLP1α catalytic Cys63 is unique among arterivirus PLP1s in being adjacent to an Ala instead of a Trp. Other arterivirus PLP1s cleave only in cis at a single downstream site, but SHFV PLP1γ can cleave at both the downstream nsp1γ-nsp2 and upstream nsp1ß-nsp1γ junctions. The three mature nsp1 proteins were produced both in the in vitro reactions and in infected cells.


Assuntos
Arterivirus/genética , Papaína/genética , Papaína/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Animais , Arterivirus/metabolismo , Infecções por Arterivirus/virologia , Catálise , Linhagem Celular , Dados de Sequência Molecular , Poliproteínas/genética , Poliproteínas/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Alinhamento de Sequência , Suínos/virologia
18.
J Virol ; 88(4): 2095-106, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24335289

RESUMO

Simian hemorrhagic fever virus (SHFV) causes a fatal hemorrhagic fever in macaques but an asymptomatic, persistent infection in baboons. To investigate factors contributing to this differential infection outcome, the targets of SHFV infection, macrophages (MΦs) and myeloid dendritic cells (mDCs), were differentiated from macaque and baboon peripheral blood monocytes and used to compare viral replication and cell responses. SHFV replicated in >90% of macaque MΦs but in only ∼10% of baboon MΦs. Although SHFV infected ∼50% of macaque and baboon mDCs, virus replication was efficient in macaque but not in baboon mDCs. Both types of macaque cultures produced higher virus yields than baboon cultures. A more efficient type I interferon response and the production of proinflammatory cytokines, including interleukin-1ß (IL-1ß), IL-6, IL-12/23(p40), tumor necrosis factor alpha (TNF-α), and macrophage inflammatory protein 1α (MIP-1α), in response to SHFV infection were observed in macaque but not baboon cultures, suggesting less efficient counteraction of these responses by viral proteins in macaque cells. Baboon cultures produced higher levels of IL-10 than macaque cultures both prior to and after SHFV infection. In baboon but not macaque cell cultures, SHFV infection upregulated IL-10R1, a subunit of the IL-10 receptor (IL-10R), and also SOCS3, a negative regulator of proinflammatory cytokine production. Incubation of macaque cultures with human IL-10 before and/or after SHFV infection decreased production of IL-6, IL-1ß, and MIP-1α but not TNF-α, suggesting a role for IL-10 in suppressing SHFV-induced proinflammatory cytokine production in macaques.


Assuntos
Infecções por Arterivirus/imunologia , Arterivirus , Células Dendríticas/virologia , Resistência à Doença/imunologia , Macrófagos/virologia , Células Mieloides/virologia , Animais , Western Blotting , Citocinas/sangue , Primers do DNA/genética , Humanos , Macaca mulatta , Microscopia Confocal , Papio , Reação em Cadeia da Polimerase em Tempo Real , Especificidade da Espécie , Replicação Viral/fisiologia
19.
Proc Natl Acad Sci U S A ; 109(43): E2920-8, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23043113

RESUMO

Programmed -1 ribosomal frameshifting (-1 PRF) is a gene-expression mechanism used to express many viral and some cellular genes. In contrast, efficient natural utilization of -2 PRF has not been demonstrated previously in eukaryotic systems. Like all nidoviruses, members of the Arteriviridae (a family of positive-stranded RNA viruses) express their replicase polyproteins pp1a and pp1ab from two long ORFs (1a and 1b), where synthesis of pp1ab depends on -1 PRF. These polyproteins are posttranslationally cleaved into at least 13 functional nonstructural proteins. Here we report that porcine reproductive and respiratory syndrome virus (PRRSV), and apparently most other arteriviruses, use an additional PRF mechanism to access a conserved alternative ORF that overlaps the nsp2-encoding region of ORF1a in the +1 frame. We show here that this ORF is translated via -2 PRF at a conserved G_GUU_UUU sequence (underscores separate ORF1a codons) at an estimated efficiency of around 20%, yielding a transframe fusion (nsp2TF) with the N-terminal two thirds of nsp2. Expression of nsp2TF in PRRSV-infected cells was verified using specific Abs, and the site and direction of frameshifting were determined via mass spectrometric analysis of nsp2TF. Further, mutagenesis showed that the frameshift site and an unusual frameshift-stimulatory element (a conserved CCCANCUCC motif 11 nucleotides downstream) are required to direct efficient -2 PRF. Mutations preventing nsp2TF expression impair PRRSV replication and produce a small-plaque phenotype. Our findings demonstrate that -2 PRF is a functional gene-expression mechanism in eukaryotes and add another layer to the complexity of arterivirus genome expression.


Assuntos
Arterivirus/metabolismo , Mutação da Fase de Leitura , Ribossomos/metabolismo , Proteínas Virais/biossíntese , Sequência de Aminoácidos , Animais , Sequência de Bases , Compartimento Celular , Códon , Mamíferos , Espectrometria de Massas , Dados de Sequência Molecular , Mutagênese , Fases de Leitura Aberta , Homologia de Sequência do Ácido Nucleico , Proteínas Virais/genética
20.
Vopr Virusol ; 60(1): 5-11, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26021065

RESUMO

The results of the study of SHF and virus SHF for the last period since their discovery are summed up. It was established that the source of this infection fatal for Asian macaques are African monkeys--virus carriers. There is still a danger of the occurrence of epizootics in Primatological Centers at the importation of these monkeys for research. The importance of the obtained experimental SHF in macaques was emphasized. This model is unique, safe and adequate. It is necessary for further study of pathogenesis and evaluation of the means of pathogenetic therapy of HF dangerous to human health.


Assuntos
Infecções por Arterivirus/história , Arterivirus/isolamento & purificação , Animais , Aniversários e Eventos Especiais , Arterivirus/patogenicidade , História do Século XX , História do Século XXI , Macaca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA