Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49.386
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 36: 73-101, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29144836

RESUMO

The cellular degradative pathway of autophagy has a fundamental role in immunity. Here, we review the function of autophagy and autophagy proteins in inflammation. We discuss how the autophagy machinery controls the burden of infectious agents while simultaneously limiting inflammatory pathologies, which often involves processes that are distinct from conventional autophagy. Among the newly emerging processes we describe are LC3-associated phagocytosis and targeting by autophagy proteins, both of which require many of the same proteins that mediate conventional autophagy. We also discuss how autophagy contributes to differentiation of myeloid and lymphoid cell types, coordinates multicellular immunity, and facilitates memory responses. Together, these functions establish an intimate link between autophagy, mucosal immunity, and chronic inflammatory diseases. Finally, we offer our perspective on current challenges and barriers to translation.


Assuntos
Autofagia , Suscetibilidade a Doenças , Inflamação/etiologia , Animais , Biomarcadores , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunomodulação , Inflamação/diagnóstico , Inflamação/metabolismo , Transdução de Sinais
2.
Annu Rev Biochem ; 93(1): 367-387, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594929

RESUMO

Lysosomes are the degradative endpoints of material delivered by endocytosis and autophagy and are therefore particularly prone to damage. Membrane permeabilization or full rupture of lysosomal or late endosomal compartments is highly deleterious because it threatens cellular homeostasis and can elicit cell death and inflammatory signaling. Cells have developed a complex response to endo-lysosomal damage that largely consists of three branches. Initially, a number of repair pathways are activated to restore the integrity of the lysosomal membrane. If repair fails or if damage is too extensive, lysosomes are isolated and degraded by a form of selective autophagy termed lysophagy. Meanwhile, an mTORC1-governed signaling cascade drives biogenesis and regeneration of new lysosomal components to reestablish the full lysosomal capacity of the cell. This damage response is vital to counteract the effects of various conditions, including neurodegeneration and infection, and can constitute a critical vulnerability in cancer cells.


Assuntos
Autofagia , Endossomos , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais , Lisossomos/metabolismo , Humanos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Endossomos/metabolismo , Endocitose , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética
3.
Cell ; 187(14): 3619-3637.e27, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38851188

RESUMO

Mitochondrial dynamics play a critical role in cell fate decisions and in controlling mtDNA levels and distribution. However, the molecular mechanisms linking mitochondrial membrane remodeling and quality control to mtDNA copy number (CN) regulation remain elusive. Here, we demonstrate that the inner mitochondrial membrane (IMM) protein mitochondrial fission process 1 (MTFP1) negatively regulates IMM fusion. Moreover, manipulation of mitochondrial fusion through the regulation of MTFP1 levels results in mtDNA CN modulation. Mechanistically, we found that MTFP1 inhibits mitochondrial fusion to isolate and exclude damaged IMM subdomains from the rest of the network. Subsequently, peripheral fission ensures their segregation into small MTFP1-enriched mitochondria (SMEM) that are targeted for degradation in an autophagic-dependent manner. Remarkably, MTFP1-dependent IMM quality control is essential for basal nucleoid recycling and therefore to maintain adequate mtDNA levels within the cell.


Assuntos
DNA Mitocondrial , Mitocôndrias , Dinâmica Mitocondrial , Membranas Mitocondriais , Proteínas Mitocondriais , DNA Mitocondrial/metabolismo , DNA Mitocondrial/genética , Proteínas Mitocondriais/metabolismo , Humanos , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Animais , Células HeLa , Camundongos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Autofagia
4.
Cell ; 187(15): 4043-4060.e30, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38878778

RESUMO

Inflammation-induced neurodegeneration is a defining feature of multiple sclerosis (MS), yet the underlying mechanisms remain unclear. By dissecting the neuronal inflammatory stress response, we discovered that neurons in MS and its mouse model induce the stimulator of interferon genes (STING). However, activation of neuronal STING requires its detachment from the stromal interaction molecule 1 (STIM1), a process triggered by glutamate excitotoxicity. This detachment initiates non-canonical STING signaling, which leads to autophagic degradation of glutathione peroxidase 4 (GPX4), essential for neuronal redox homeostasis and thereby inducing ferroptosis. Both genetic and pharmacological interventions that target STING in neurons protect against inflammation-induced neurodegeneration. Our findings position STING as a central regulator of the detrimental neuronal inflammatory stress response, integrating inflammation with glutamate signaling to cause neuronal cell death, and present it as a tractable target for treating neurodegeneration in MS.


Assuntos
Inflamação , Proteínas de Membrana , Esclerose Múltipla , Neurônios , Animais , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Camundongos , Humanos , Inflamação/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Transdução de Sinais , Autofagia , Camundongos Endogâmicos C57BL , Ácido Glutâmico/metabolismo , Ferroptose , Modelos Animais de Doenças , Feminino , Masculino
5.
Cell ; 187(10): 2446-2464.e22, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38582079

RESUMO

Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to a lack of appropriate human models. Here, we engineered human induced pluripotent stem cell (hiPSC)-derived neuronal lines to express 4R Tau and 4R Tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes including shared transcriptomic signatures, autophagic body accumulation, and reduced neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of seeding-induced Tau propagation, including retromer VPS29 and genes in the UFMylation cascade. In progressive supranuclear palsy (PSP) and Alzheimer's Disease (AD) brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade in vitro and in vivo suppressed seeding-induced Tau propagation. This model provides a robust platform to identify novel therapeutic strategies for 4R tauopathy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neurônios , Tauopatias , Proteínas tau , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas tau/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia , Neurônios/metabolismo , Neurônios/patologia , Animais , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Encéfalo/metabolismo , Encéfalo/patologia , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/patologia , Paralisia Supranuclear Progressiva/genética , Diferenciação Celular , Mutação , Autofagia
6.
Cell ; 185(22): 4082-4098.e22, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36198318

RESUMO

The mechanism that initiates autophagosome formation on the ER in multicellular organisms is elusive. Here, we showed that autophagy stimuli trigger Ca2+ transients on the outer surface of the ER membrane, whose amplitude, frequency, and duration are controlled by the metazoan-specific ER transmembrane autophagy protein EPG-4/EI24. Persistent Ca2+ transients/oscillations on the cytosolic ER surface in EI24-depleted cells cause accumulation of FIP200 autophagosome initiation complexes on the ER. This defect is suppressed by attenuating ER Ca2+ transients. Multi-modal SIM analysis revealed that Ca2+ transients on the ER trigger the formation of dynamic and fusion-prone liquid-like FIP200 puncta. Starvation-induced Ca2+ transients on lysosomes also induce FIP200 puncta that further move to the ER. Multiple FIP200 puncta on the ER, whose association depends on the ER proteins VAPA/B and ATL2/3, assemble into autophagosome formation sites. Thus, Ca2+ transients are crucial for triggering phase separation of FIP200 to specify autophagosome initiation sites in metazoans.


Assuntos
Autofagossomos , Cálcio , Animais , Autofagossomos/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Proteínas de Ciclo Celular/metabolismo
7.
Cell ; 185(8): 1325-1345.e22, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35366418

RESUMO

Protein aggregation is a hallmark of multiple human pathologies. Autophagy selectively degrades protein aggregates via aggrephagy. How selectivity is achieved has been elusive. Here, we identify the chaperonin subunit CCT2 as an autophagy receptor regulating the clearance of aggregation-prone proteins in the cell and the mouse brain. CCT2 associates with aggregation-prone proteins independent of cargo ubiquitination and interacts with autophagosome marker ATG8s through a non-classical VLIR motif. In addition, CCT2 regulates aggrephagy independently of the ubiquitin-binding receptors (P62, NBR1, and TAX1BP1) or chaperone-mediated autophagy. Unlike P62, NBR1, and TAX1BP1, which facilitate the clearance of protein condensates with liquidity, CCT2 specifically promotes the autophagic degradation of protein aggregates with little liquidity (solid aggregates). Furthermore, aggregation-prone protein accumulation induces the functional switch of CCT2 from a chaperone subunit to an autophagy receptor by promoting CCT2 monomer formation, which exposes the VLIR to ATG8s interaction and, therefore, enables the autophagic function.


Assuntos
Chaperonina com TCP-1 , Macroautofagia , Agregados Proteicos , Animais , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Proteínas de Transporte/metabolismo , Chaperonina com TCP-1/metabolismo , Proteína Sequestossoma-1/metabolismo
8.
Nat Rev Mol Cell Biol ; 25(3): 223-245, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38001393

RESUMO

Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.


Assuntos
Lisossomos , Transdução de Sinais , Humanos , Transdução de Sinais/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Lisossomos/metabolismo , Homeostase/fisiologia , Autofagia/fisiologia
9.
Cell ; 184(1): 33-63, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33340459

RESUMO

Health is usually defined as the absence of pathology. Here, we endeavor to define health as a compendium of organizational and dynamic features that maintain physiology. The biological causes or hallmarks of health include features of spatial compartmentalization (integrity of barriers and containment of local perturbations), maintenance of homeostasis over time (recycling and turnover, integration of circuitries, and rhythmic oscillations), and an array of adequate responses to stress (homeostatic resilience, hormetic regulation, and repair and regeneration). Disruption of any of these interlocked features is broadly pathogenic, causing an acute or progressive derailment of the system coupled to the loss of numerous stigmata of health.


Assuntos
Saúde , Autofagia , Senescência Celular , Ritmo Circadiano/fisiologia , Humanos , Imunidade , Especificidade de Órgãos
10.
Cell ; 184(1): 226-242.e21, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417860

RESUMO

Cancer cells enter a reversible drug-tolerant persister (DTP) state to evade death from chemotherapy and targeted agents. It is increasingly appreciated that DTPs are important drivers of therapy failure and tumor relapse. We combined cellular barcoding and mathematical modeling in patient-derived colorectal cancer models to identify and characterize DTPs in response to chemotherapy. Barcode analysis revealed no loss of clonal complexity of tumors that entered the DTP state and recurred following treatment cessation. Our data fit a mathematical model where all cancer cells, and not a small subpopulation, possess an equipotent capacity to become DTPs. Mechanistically, we determined that DTPs display remarkable transcriptional and functional similarities to diapause, a reversible state of suspended embryonic development triggered by unfavorable environmental conditions. Our study provides insight into how cancer cells use a developmentally conserved mechanism to drive the DTP state, pointing to novel therapeutic opportunities to target DTPs.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Diapausa , Resistencia a Medicamentos Antineoplásicos , Animais , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Células Clonais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heterogeneidade Genética/efeitos dos fármacos , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cell ; 184(24): 5950-5969.e22, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34741801

RESUMO

The biogenesis of mammalian autophagosomes remains to be fully defined. Here, we used cellular and in vitro membrane fusion analyses to show that autophagosomes are formed from a hitherto unappreciated hybrid membrane compartment. The autophagic precursors emerge through fusion of FIP200 vesicles, derived from the cis-Golgi, with endosomally derived ATG16L1 membranes to generate a hybrid pre-autophagosomal structure, HyPAS. A previously unrecognized apparatus defined here controls HyPAS biogenesis and mammalian autophagosomal precursor membranes. HyPAS can be modulated by pharmacological agents whereas its formation is inhibited upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or by expression of SARS-CoV-2 nsp6. These findings reveal the origin of mammalian autophagosomal membranes, which emerge via convergence of secretory and endosomal pathways, and show that this process is targeted by microbial factors such as coronaviral membrane-modulating proteins.


Assuntos
Autofagossomos/virologia , COVID-19/virologia , Autofagia , COVID-19/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Endossomos/fisiologia , Endossomos/virologia , Complexo de Golgi/fisiologia , Células HEK293 , Células HeLa , Humanos , Fusão de Membrana , Microscopia Confocal , Fagossomos/metabolismo , Fagossomos/virologia , Proteínas Qa-SNARE/biossíntese , Receptores sigma/biossíntese , SARS-CoV-2 , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , Sinaptotagminas/biossíntese , Receptor Sigma-1
12.
Cell ; 184(17): 4547-4563.e17, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34314701

RESUMO

Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.


Assuntos
Cérebro/patologia , Proteína Semelhante a ELAV 4/genética , Ácido Glutâmico/metabolismo , Mutação/genética , Neurônios/patologia , Organoides/metabolismo , Splicing de RNA/genética , Proteínas tau/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Biomarcadores/metabolismo , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Hidrazonas/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Morfolinas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Organoides/efeitos dos fármacos , Organoides/ultraestrutura , Fosforilação/efeitos dos fármacos , Pirimidinas/farmacologia , Splicing de RNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Grânulos de Estresse/efeitos dos fármacos , Grânulos de Estresse/metabolismo , Sinapses/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
13.
Cell ; 184(1): 133-148.e20, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33338421

RESUMO

Flaviviruses pose a constant threat to human health. These RNA viruses are transmitted by the bite of infected mosquitoes and ticks and regularly cause outbreaks. To identify host factors required for flavivirus infection, we performed full-genome loss of function CRISPR-Cas9 screens. Based on these results, we focused our efforts on characterizing the roles that TMEM41B and VMP1 play in the virus replication cycle. Our mechanistic studies on TMEM41B revealed that all members of the Flaviviridae family that we tested require TMEM41B. We tested 12 additional virus families and found that SARS-CoV-2 of the Coronaviridae also required TMEM41B for infection. Remarkably, single nucleotide polymorphisms present at nearly 20% in East Asian populations reduce flavivirus infection. Based on our mechanistic studies, we propose that TMEM41B is recruited to flavivirus RNA replication complexes to facilitate membrane curvature, which creates a protected environment for viral genome replication.


Assuntos
Infecções por Flavivirus/genética , Flavivirus/fisiologia , Proteínas de Membrana/metabolismo , Animais , Povo Asiático/genética , Autofagia , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Sistemas CRISPR-Cas , Linhagem Celular , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/metabolismo , Infecções por Flavivirus/virologia , Técnicas de Inativação de Genes , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/fisiologia , Replicação Viral , Vírus da Febre Amarela/fisiologia , Zika virus/fisiologia
14.
Annu Rev Cell Dev Biol ; 38: 241-262, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35587265

RESUMO

While cellular proteins were initially thought to be stable, research over the last decades has firmly established that intracellular protein degradation is an active and highly regulated process: Lysosomal, proteasomal, and mitochondrial degradation systems were identified and found to be involved in a staggering number of biological functions. Here, we provide a global overview of the diverse roles of cellular protein degradation using seven categories: homeostasis, regulation, quality control, stoichiometry control, proteome remodeling, immune surveillance, and baseline turnover. Using selected examples, we outline how proteins are degraded and why this is functionally relevant.


Assuntos
Autofagia , Proteoma , Autofagia/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteoma/metabolismo , Ubiquitinação
15.
Nat Rev Mol Cell Biol ; 24(3): 186-203, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36097284

RESUMO

'Autophagy' refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevailing categories of autophagy in mammalian cells are macroautophagy, microautophagy and chaperone-mediated autophagy. The molecular mechanisms and biological functions of macroautophagy and chaperone-mediated autophagy have been extensively studied, but microautophagy has received much less attention. In recent years, there has been a growth in research on microautophagy, first in yeast and then in mammalian cells. Here we review this form of autophagy, focusing on selective forms of microautophagy. We also discuss the upstream regulatory mechanisms, the crosstalk between macroautophagy and microautophagy, and the functional implications of microautophagy in diseases such as cancer and neurodegenerative disorders in humans. Future research into microautophagy will provide opportunities to develop novel interventional strategies for autophagy- and lysosome-related diseases.


Assuntos
Autofagia , Microautofagia , Animais , Humanos , Lisossomos/metabolismo , Comunicação Celular , Macroautofagia , Mamíferos
16.
Nat Rev Mol Cell Biol ; 24(8): 560-575, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36864290

RESUMO

Maintenance of protein homeostasis and organelle integrity and function is critical for cellular homeostasis and cell viability. Autophagy is the principal mechanism that mediates the delivery of various cellular cargoes to lysosomes for degradation and recycling. A myriad of studies demonstrate important protective roles for autophagy against disease. However, in cancer, seemingly opposing roles of autophagy are observed in the prevention of early tumour development versus the maintenance and metabolic adaptation of established and metastasizing tumours. Recent studies have addressed not only the tumour cell intrinsic functions of autophagy, but also the roles of autophagy in the tumour microenvironment and associated immune cells. In addition, various autophagy-related pathways have been described, which are distinct from classical autophagy, that utilize parts of the autophagic machinery and can potentially contribute to malignant disease. Growing evidence on how autophagy and related processes affect cancer development and progression has helped guide efforts to design anticancer treatments based on inhibition or promotion of autophagy. In this Review, we discuss and dissect these different functions of autophagy and autophagy-related processes during tumour development, maintenance and progression. We outline recent findings regarding the role of these processes in both the tumour cells and the tumour microenvironment and describe advances in therapy aimed at autophagy processes in cancer.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Autofagia/fisiologia , Lisossomos , Microambiente Tumoral
17.
Nat Rev Mol Cell Biol ; 24(3): 167-185, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36302887

RESUMO

Autophagy is a process that targets various intracellular elements for degradation. Autophagy can be non-selective - associated with the indiscriminate engulfment of cytosolic components - occurring in response to nutrient starvation and is commonly referred to as bulk autophagy. By contrast, selective autophagy degrades specific targets, such as damaged organelles (mitophagy, lysophagy, ER-phagy, ribophagy), aggregated proteins (aggrephagy) or invading bacteria (xenophagy), thereby being importantly involved in cellular quality control. Hence, not surprisingly, aberrant selective autophagy has been associated with various human pathologies, prominently including neurodegeneration and infection. In recent years, considerable progress has been made in understanding mechanisms governing selective cargo engulfment in mammals, including the identification of ubiquitin-dependent selective autophagy receptors such as p62, NBR1, OPTN and NDP52, which can bind cargo and ubiquitin simultaneously to initiate pathways leading to autophagy initiation and membrane recruitment. This progress opens the prospects for enhancing selective autophagy pathways to boost cellular quality control capabilities and alleviate pathology.


Assuntos
Macroautofagia , Proteínas , Animais , Humanos , Proteínas/metabolismo , Autofagia , Ubiquitina/metabolismo , Mamíferos/metabolismo
18.
Cell ; 181(5): 1176-1187.e16, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32437660

RESUMO

Dysfunctional mitochondria accumulate in many human diseases. Accordingly, mitophagy, which removes these mitochondria through lysosomal degradation, is attracting broad attention. Due to uncertainties in the operational principles of conventional mitophagy probes, however, the specificity and quantitativeness of their readouts are disputable. Thorough investigation of the behaviors and fates of fluorescent proteins inside and outside lysosomes enabled us to develop an indicator for mitophagy, mito-SRAI. Through strict control of its mitochondrial targeting, we were able to monitor mitophagy in fixed biological samples more reproducibly than before. Large-scale image-based high-throughput screening led to the discovery of a hit compound that induces selective mitophagy of damaged mitochondria. In a mouse model of Parkinsons disease, we found that dopaminergic neurons selectively failed to execute mitophagy that promoted their survival within lesions. These results show that mito-SRAI is an essential tool for quantitative studies of mitochondrial quality control.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Lisossomos/metabolismo , Mitofagia/fisiologia , Animais , Autofagia/fisiologia , Imunofluorescência/métodos , Corantes Fluorescentes/química , Humanos , Lisossomos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitofagia/genética
19.
Cell ; 181(3): 748-748.e1, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32359442

RESUMO

In addition to their well-defined recycling function, lysosomes act as metabolic signaling hubs that adjust cellular metabolism according to the availability of nutrients and growth factors by regulating metabolic kinases and transcription factors on their surface. Moreover, lysosomal hydrolases and ions released to cytosol or extracellular space have recently emerged as important regulators of various cellular processes from cell death to cell division. To view this SnapShot, open or download the PDF.


Assuntos
Lisossomos/metabolismo , Lisossomos/fisiologia , Autofagia/fisiologia , Citosol/metabolismo , Espaço Extracelular/metabolismo , Humanos , Hidrolases/metabolismo , Fosfotransferases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
20.
Cell ; 180(3): 602-602.e1, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32032518

RESUMO

Lysosomal storage diseases (LSDs) represent a group of monogenic inherited metabolic disorders characterized by the progressive accumulation of undegraded substrates inside lysosomes, resulting in aberrant lysosomal activity and homeostasis. This SnapShot summarizes the intracellular localization and function of proteins implicated in LSDs. Common aspects of LSD pathogenesis and the major current therapeutic approaches are noted. To view this SnapShot, open or download the PDF.


Assuntos
Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/metabolismo , Animais , Autofagia , Enzimas/metabolismo , Células Eucarióticas/metabolismo , Homeostase , Humanos , Doenças por Armazenamento dos Lisossomos/classificação , Doenças por Armazenamento dos Lisossomos/terapia , Proteínas de Membrana Lisossomal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA