Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 413
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39101501

RESUMO

Engineering enzyme-substrate binding pockets is the most efficient approach for modifying catalytic activity, but is limited if the substrate binding sites are indistinct. Here, we developed a 3D convolutional neural network for predicting protein-ligand binding sites. The network was integrated by DenseNet, UNet, and self-attention for extracting features and recovering sample size. We attempted to enlarge the dataset by data augmentation, and the model achieved success rates of 48.4%, 35.5%, and 43.6% at a precision of ≥50% and 52%, 47.6%, and 58.1%. The distance of predicted and real center is ≤4 Å, which is based on SC6K, COACH420, and BU48 validation datasets. The substrate binding sites of Klebsiella variicola acid phosphatase (KvAP) and Bacillus anthracis proline 4-hydroxylase (BaP4H) were predicted using DUnet, showing high competitive performance of 53.8% and 56% of the predicted binding sites that critically affected the catalysis of KvAP and BaP4H. Virtual saturation mutagenesis was applied based on the predicted binding sites of KvAP, and the top-ranked 10 single mutations contributed to stronger enzyme-substrate binding varied while the predicted sites were different. The advantage of DUnet for predicting key residues responsible for enzyme activity further promoted the success rate of virtual mutagenesis. This study highlighted the significance of correctly predicting key binding sites for enzyme engineering.


Assuntos
Aprendizado de Máquina , Sítios de Ligação , Engenharia de Proteínas/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfatase Ácida/química , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Especificidade por Substrato , Bacillus anthracis/genética , Bacillus anthracis/enzimologia , Klebsiella/genética , Klebsiella/enzimologia , Ligantes , Ligação Proteica , Modelos Moleculares , Redes Neurais de Computação
2.
Ecotoxicol Environ Saf ; 280: 116540, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833982

RESUMO

The widespread utilization of polyethylene terephthalate (PET) has caused a variety of environmental and health problems. Compared with traditional thermomechanical or chemical PET cycling, the biodegradation of PET may offer a more feasible solution. Though the PETase from Ideonalla sakaiensis (IsPETase) displays interesting PET degrading performance under mild conditions; the relatively low thermal stability of IsPETase limits its practical application. In this study, enzyme-catalysed PET degradation was investigated with the promising IsPETase mutant HotPETase (HP). On this basis, a carbohydrate-binding module from Bacillus anthracis (BaCBM) was fused to the C-terminus of HP to construct the PETase mutant (HLCB) for increased PET degradation. Furthermore, to effectively improve PET accessibility and PET-degrading activity, the truncated outer membrane hybrid protein (FadL) was used to expose PETase and BaCBM on the surface of E. coli (BL21with) to develop regenerable whole-cell biocatalysts (D-HLCB). Results showed that, among the tested small-molecular weight ester compounds (p-nitrophenyl phosphate (pNPP), p-Nitrophenyl acetate (pNPA), 4-Nitrophenyl butyrate (pNPB)), PETase displayed the highest hydrolysing activity against pNPP. HP displayed the highest catalytic activity (1.94 µM(p-NP)/min) at 50 °C and increased longevity at 40 °C. The fused BaCBM could clearly improve the catalytic performance of PETase by increasing the optimal reaction temperature and improving the thermostability. When HLCB was used for PET degradation, the yield of monomeric products (255.7 µM) was ∼25.5 % greater than that obtained after 50 h of HP-catalysed PET degradation. Moreover, the highest yield of monomeric products from the D-HLCB-mediated system reached 1.03 mM. The whole-cell catalyst D-HLCB displayed good reusability and stability and could maintain more than 54.6 % of its initial activity for nine cycles. Finally, molecular docking simulations were utilized to investigate the binding mechanism and the reaction mechanism of HLCB, which may provide theoretical evidence to further increase the PET-degrading activities of PETases through rational design. The proposed strategy and developed variants show potential for achieving complete biodegradation of PET under mild conditions.


Assuntos
Biodegradação Ambiental , Burkholderiales , Escherichia coli , Polietilenotereftalatos , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Burkholderiales/enzimologia , Escherichia coli/genética , Bacillus anthracis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Engenharia de Proteínas
3.
J Bacteriol ; 203(24): e0041521, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34570623

RESUMO

Anthrax disease is caused by infection with the bacteria Bacillus anthracis which, if left untreated, can result in fatal bacteremia and toxemia. Current treatment for infection requires prolonged administration of antibiotics. Despite this, inhalational and gastrointestinal anthrax still result in lethal disease. By identifying key metabolic steps that B. anthracis uses to grow in host-like environments, new targets for antibacterial strategies can be identified. Here, we report that the ilvD gene, which encodes dihydroxyacid dehydratase in the putative pathway for synthesizing branched chain amino acids, is necessary for B. anthracis to synthesize isoleucine de novo in an otherwise limiting microenvironment. We observed that ΔilvD B. anthracis cannot grow in media lacking isoleucine, but growth is restored when exogenous isoleucine is added. In addition, ΔilvD bacilli are unable to utilize human hemoglobin or serum albumin to overcome isoleucine auxotrophy, but can when provided with the murine forms. This species-specific effect is due to the lack of isoleucine in human hemoglobin. Furthermore, even when supplemented with physiological levels of human serum albumin, apotransferrin, fibrinogen, and IgG, the ilvD knockout strain grew poorly relative to nonsupplemented wild type. In addition, comparisons upon infecting humanized mice suggest that murine hemoglobin is a key source of isoleucine for both WT and ΔilvD bacilli. Further growth comparisons in murine and human blood show that the auxotrophy is detrimental for growth in human blood, not murine. This report identifies ilvD as necessary for isoleucine production in B. anthracis, and that it plays a key role in allowing the bacilli to effectively grow in isoleucine poor hosts. IMPORTANCE Anthrax disease, caused by B. anthracis, can cause lethal bacteremia and toxemia, even following treatment with antibiotics. This report identifies the ilvD gene, which encodes a dihydroxyacid dehydratase, as necessary for B. anthracis to synthesize the amino acid isoleucine in a nutrient-limiting environment, such as its mammalian host. The use of this strain further demonstrated a unique species-dependent utilization of hemoglobin as an exogenous source of extracellular isoleucine. By identifying mechanisms that B. anthracis uses to grow in host-like environments, new targets for therapeutic intervention are revealed.


Assuntos
Bacillus anthracis/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Hidroliases/metabolismo , Animais , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Meios de Cultura/química , Deleção de Genes , Hemoglobinas/química , Hemoglobinas/metabolismo , Humanos , Hidroliases/genética , Camundongos , Mutação
4.
J Infect Dis ; 221(4): 660-667, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31574153

RESUMO

BACKGROUND: Lethal and edema toxins are critical virulence factors of Bacillus anthracis. Few data are available on their presence in the early stage of intranasal infection. METHODS: To investigate the diffusion of edema factor (EF) and lethal factor (LF), we use sensitive quantitative methods to measure their enzymatic activities in mice intranasally challenged with a wild-type B anthracis strain or with an isogenic mutant deficient for the protective antigen. RESULTS: One hour after mouse challenge, although only 7% of mice presented bacteremia, LF and EF were detected in the blood of 100% and 42% of mice, respectively. Protective antigen facilitated the diffusion of LF and EF into the blood compartment. Toxins played a significant role in the systemic dissemination of B anthracis in the blood, spleen, and liver. A mouse model of intoxination further confirmed that LT and ET could diffuse rapidly in the circulation, independently of bacteria. CONCLUSIONS: In this inhalational model, toxins have disseminated rapidly in the blood, playing a significant and novel role in the early systemic diffusion of bacteria, demonstrating that they may represent a very early target for the diagnosis and the treatment of anthrax.


Assuntos
Antraz/metabolismo , Antígenos de Bactérias/sangue , Bacillus anthracis/patogenicidade , Toxinas Bacterianas/sangue , Absorção Nasal , Fatores de Virulência/sangue , Animais , Animais não Endogâmicos , Antraz/microbiologia , Bacillus anthracis/enzimologia , Bacteriemia , Biomarcadores/sangue , Modelos Animais de Doenças , Ativação Enzimática , Ensaios Enzimáticos , Feminino , Camundongos , Virulência
5.
J Biol Chem ; 294(22): 8930-8941, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-30952697

RESUMO

Bacillus anthracis is the causative agent of anthrax in humans, bovine, and other animals. B. anthracis pathogenesis requires differentiation of dormant spores into vegetative cells. The spores inherit cellular components as phenotypic memory from the parent cell, and this memory plays a critical role in facilitating the spores' revival. Because metabolism initiates at the beginning of spore germination, here we metabolically reprogrammed B. anthracis cells to understand the role of glycolytic enzymes in this process. We show that increased expression of enolase (Eno) in the sporulating mother cell decreases germination efficiency. Eno is phosphorylated by the conserved Ser/Thr protein kinase PrkC which decreases the catalytic activity of Eno. We found that phosphorylation also regulates Eno expression and localization, thereby controlling the overall spore germination process. Using MS analysis, we identified the sites of phosphorylation in Eno, and substitution(s) of selected phosphorylation sites helped establish the functional correlation between phosphorylation and Eno activity. We propose that PrkC-mediated regulation of Eno may help sporulating B. anthracis cells in adapting to nutrient deprivation. In summary, to the best of our knowledge, our study provides the first evidence that in sporulating B. anthracis, PrkC imprints phenotypic memory that facilitates the germination process.


Assuntos
Bacillus anthracis/fisiologia , Proteínas de Bactérias/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Esporos Bacterianos/metabolismo , Bacillus anthracis/enzimologia , Proteínas de Bactérias/genética , Cinética , Magnésio/metabolismo , Mutagênese Sítio-Dirigida , Fosfopiruvato Hidratase/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
6.
Proteins ; 88(11): 1394-1400, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32501594

RESUMO

Sortases are a group of enzymes displayed on the cell-wall of Gram-positive bacteria. They are responsible for the attachment of virulence factors onto the peptidoglycan in a transpeptidation reaction through recognition of a pentapeptide substrate. Most housekeeping sortases recognize one specific pentapeptide motif; however, Streptococcus pyogenes sortase A (SpSrtA WT) recognizes LPETG, LPETA and LPKLG motifs. Here, we examined SpSrtA's flexible substrate specificity by investigating the role of the ß7/ß8 loop in determining substrate specificity. We exchanged the ß7/ß8 loop in SpSrtA with corresponding ß7/ß8 loops from Staphylococcus aureus (SaSrtA WT) and Bacillus anthracis (BaSrtA WT). While the BaSrtA-derived variant showed no enzymatic activity toward either LPETG or LPETA substrates, the activity of the SaSrtA-derived mutant toward the LPETA substrate was completely abolished. Instead, the mutant had an improved activity toward LPETG, the preferred substrate of SaSrtA WT.


Assuntos
Aminoaciltransferases/química , Bacillus anthracis/enzimologia , Proteínas de Bactérias/química , Cisteína Endopeptidases/química , Oligopeptídeos/química , Engenharia de Proteínas/métodos , Staphylococcus aureus/enzimologia , Streptococcus pyogenes/enzimologia , Motivos de Aminoácidos , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Bacillus anthracis/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Oligopeptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Staphylococcus aureus/química , Streptococcus pyogenes/química , Especificidade por Substrato
7.
Mol Microbiol ; 112(2): 515-531, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31063630

RESUMO

A challenge common to all bacterial pathogens is to acquire nutrients from hostile host environments. Iron is an important cofactor required for essential cellular processes such as DNA repair, energy production and redox balance. Within a mammalian host, most iron is sequestered within heme, which in turn is predominantly bound by hemoglobin. While little is understood about the mechanisms by which bacterial hemophores attain heme from host-hemoglobin, even less is known about intracellular heme processing. Bacillus anthracis, the causative agent of anthrax, displays a remarkable ability to grow in mammalian hosts. Hypothesizing this pathogen harbors robust ways to catabolize heme, we characterize two new intracellular heme-binding proteins that are distinct from the previously described IsdG heme monooxygenase. The first of these, HmoA, binds and degrades heme, is necessary for heme detoxification and facilitates growth on heme iron sources. The second protein, HmoB, binds and degrades heme too, but is not necessary for heme utilization or virulence. The loss of both HmoA and IsdG renders B. anthracis incapable of causing anthrax disease. The additional loss of HmoB in this background increases clearance of bacilli in lungs, which is consistent with this protein being important for survival in alveolar macrophages.


Assuntos
Antraz/microbiologia , Bacillus anthracis/metabolismo , Heme/metabolismo , Antraz/metabolismo , Bacillus anthracis/enzimologia , Bacillus anthracis/genética , Bacillus anthracis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ligação Proteica
8.
J Biol Inorg Chem ; 25(4): 571-582, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32296998

RESUMO

Correct protein metallation in the complex mixture of the cell is a prerequisite for metalloprotein function. While some metals, such as Cu, are commonly chaperoned, specificity towards metals earlier in the Irving-Williams series is achieved through other means, the determinants of which are poorly understood. The dimetal carboxylate family of proteins provides an intriguing example, as different proteins, while sharing a common fold and the same 4-carboxylate 2-histidine coordination sphere, are known to require either a Fe/Fe, Mn/Fe or Mn/Mn cofactor for function. We previously showed that the R2lox proteins from this family spontaneously assemble the heterodinuclear Mn/Fe cofactor. Here we show that the class Ib ribonucleotide reductase R2 protein from Bacillus anthracis spontaneously assembles a Mn/Mn cofactor in vitro, under both aerobic and anoxic conditions, when the metal-free protein is subjected to incubation with MnII and FeII in equal concentrations. This observation provides an example of a protein scaffold intrinsically predisposed to defy the Irving-Williams series and supports the assumption that the Mn/Mn cofactor is the biologically relevant cofactor in vivo. Substitution of a second coordination sphere residue changes the spontaneous metallation of the protein to predominantly form a heterodinuclear Mn/Fe cofactor under aerobic conditions and a Mn/Mn metal center under anoxic conditions. Together, the results describe the intrinsic metal specificity of class Ib RNR and provide insight into control mechanisms for protein metallation.


Assuntos
Bacillus anthracis/enzimologia , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Ferro/química , Manganês/química , Modelos Moleculares , Conformação Proteica , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/genética
9.
Biochemistry ; 58(44): 4447-4455, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31617352

RESUMO

Gyrase and topoisomerase IV are the targets of fluoroquinolone antibacterials. However, the rise in antimicrobial resistance has undermined the clinical use of this important drug class. Therefore, it is critical to identify new agents that maintain activity against fluoroquinolone-resistant strains. One approach is to develop non-fluoroquinolone drugs that also target gyrase and topoisomerase IV but interact differently with the enzymes. This has led to the development of the "novel bacterial topoisomerase inhibitor" (NBTI) class of antibacterials. Despite the clinical potential of NBTIs, there is a relative paucity of data describing their mechanism of action against bacterial type II topoisomerases. Consequently, we characterized the activity of GSK126, a naphthyridone/aminopiperidine-based NBTI, against a variety of Gram-positive and Gram-negative bacterial type II topoisomerases, including gyrase from Mycobacterium tuberculosis and gyrase and topoisomerase IV from Bacillus anthracis and Escherichia coli. GSK126 enhanced single-stranded DNA cleavage and suppressed double-stranded cleavage mediated by these enzymes. It was also a potent inhibitor of gyrase-catalyzed DNA supercoiling and topoisomerase IV-catalyzed decatenation. Thus, GSK126 displays a similar bimodal mechanism of action across a variety of species. In contrast, GSK126 displayed a variable ability to overcome fluoroquinolone resistance mutations across these same species. Our results suggest that NBTIs elicit their antibacterial effects by two different mechanisms: inhibition of gyrase/topoisomerase IV catalytic activity or enhancement of enzyme-mediated DNA cleavage. Furthermore, the relative importance of these two mechanisms appears to differ from species to species. Therefore, we propose that the mechanistic basis for the antibacterial properties of NBTIs is bimodal in nature.


Assuntos
Antibacterianos/química , Clivagem do DNA/efeitos dos fármacos , Indóis/química , Naftiridinas/química , Piperidinas/química , Piridonas/química , Inibidores da Topoisomerase II/química , Bacillus anthracis/enzimologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , DNA Girase/química , DNA Topoisomerase IV/antagonistas & inibidores , DNA Bacteriano/efeitos dos fármacos , DNA de Cadeia Simples/efeitos dos fármacos , Escherichia coli/enzimologia , Mycobacterium tuberculosis/enzimologia
10.
Anal Chem ; 91(3): 2392-2400, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30580515

RESUMO

Molecular recognition between a receptor and ligand is a fundamental event in bioanalytical assays, which guarantees the sensitivity and specificity of an assay for the detection of the target of interest. An intensive understanding of the interaction mechanism could be useful for desirable hapten design, directed antibody evolution in vitro, and assay improvement. To illustrate the structural information on class-specific monoclonal antibodies (mAbs) and dihydropteroate synthase (DHPS) against sulfonamides (SAs) we have previously prepared, we initially measured the kinetic parameters of mAb 4C7, 4D11, and DHPS, which showed that the affinities of 4C7 and 4D11 were in the pM to µM range, while DHPS was uniformly in the µM range. Three-dimensional quantitative structure-activity relationship analysis for 4C7 and 4D11 then revealed that the contributions from the stereochemical structure and electron density of the SAs were comparable to binding with mAb. To acquire insights into the structural basis of mAbs and DHPS during the recognition process, the crystal structures of 4C7 and its complex with sulfathiazole were determined using X-ray crystallography. The results showed the SAs orientation and hydrogen bonding interactions mainly contributed to the diverse SAs-mAb affinities. However, for DHPS, a nucleophilic substitution reaction occurred during the recognition process with the SAs, which contributed to the surprisingly uniform affinity for all the SAs tested. This study verified the previous hypotheses on antibody production against SAs and enhanced our understanding of antibody-SAs interactions, which provided useful information toward the rational design of novel haptens and directed evolution to produce class-specific antibodies as DHPS.


Assuntos
Antibacterianos/metabolismo , Anticorpos Monoclonais/metabolismo , Di-Hidropteroato Sintase/metabolismo , Sulfonamidas/metabolismo , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Bacillus anthracis/enzimologia , Sítios de Ligação , Di-Hidropteroato Sintase/química , Escherichia coli/enzimologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Sulfonamidas/química , Sulfonamidas/imunologia , Yersinia pestis/enzimologia
11.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30658980

RESUMO

Acylation of epsilon amino groups of lysyl side chains is a widespread modification of proteins and small molecules in cells of all three domains of life. Recently, we showed that Bacillus subtilis and Bacillus anthracis encode the GCN5-related N-acetyltransferase (GNAT) SatA that can acetylate and inactivate streptothricin, which is a broad-spectrum antibiotic produced by actinomycetes in the soil. To determine functionally relevant residues of B. subtilis SatA (BsSatA), a mutational screen was performed, highlighting the importance of a conserved area near the C terminus. Upon inspection of the crystal structure of the B. anthracis Ames SatA (BaSatA; PDB entry 3PP9), this area appears to form a pocket with multiple conserved aromatic residues; we hypothesized this region contains the streptothricin-binding site. Chemical and site-directed mutagenesis was used to introduce missense mutations into satA, and the functionality of the variants was assessed using a heterologous host (Salmonella enterica). Results of isothermal titration calorimetry experiments showed that residue Y164 of BaSatA was important for binding streptothricin. Results of size exclusion chromatography analyses showed that residue D160 was important for dimerization. Together, these data advance our understanding of how SatA interacts with streptothricin.IMPORTANCE This work provides insights into how an abundant antibiotic found in soil is bound to the enzyme that inactivates it. This work identifies residues for the binding of the antibiotic and probes the contributions of substituting side chains for those in the native protein, providing information regarding hydrophobicity, size, and flexibility of the antibiotic binding site.


Assuntos
Acetiltransferases/metabolismo , Antibacterianos/metabolismo , Bacillus anthracis/enzimologia , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Estreptotricinas/metabolismo , Acetilação , Acetiltransferases/química , Acetiltransferases/genética , Antibacterianos/química , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Estreptotricinas/química
12.
J Biol Inorg Chem ; 24(6): 849-861, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31410573

RESUMO

Class Ib ribonucleotide reductases (RNR) utilize a di-nuclear manganese or iron cofactor for reduction of superoxide or molecular oxygen, respectively. This generates a stable tyrosyl radical (Y·) in the R2 subunit (NrdF), which is further used for ribonucleotide reduction in the R1 subunit of RNR. Here, we report high-resolution crystal structures of Bacillus anthracis NrdF in the metal-free form (1.51 Å) and in complex with manganese (MnII/MnII, 1.30 Å). We also report three structures of the protein in complex with iron, either prepared anaerobically (FeII/FeII form, 1.32 Å), or prepared aerobically in the photo-reduced FeII/FeII form (1.63 Å) and with the partially oxidized metallo-cofactor (1.46 Å). The structures reveal significant conformational dynamics, likely to be associated with the generation, stabilization, and transfer of the radical to the R1 subunit. Based on observed redox-dependent structural changes, we propose that the passage for the superoxide, linking the FMN cofactor of NrdI and the metal site in NrdF, is closed upon metal oxidation, blocking access to the metal and radical sites. In addition, we describe the structural mechanics likely to be involved in this process.


Assuntos
Bacillus anthracis/enzimologia , Bacillus anthracis/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Metaloproteases/metabolismo , Cristalografia por Raios X , FMN Redutase/química , FMN Redutase/genética , FMN Redutase/metabolismo , Ferritinas/química , Ferritinas/metabolismo , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/genética , Mononucleotídeo de Flavina/metabolismo , Metaloproteases/química , Metaloproteases/genética , Ribonucleotídeo Redutases
13.
J Appl Microbiol ; 126(6): 1700-1707, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30776160

RESUMO

AIMS: To develop a gel formulation to trigger a visual signal for rapid disclosure of the location and extent of surface contamination with viable Bacillus anthracis spores. METHODS AND RESULTS: Methylumbelliferyl-α-d-glucopyranoside was combined with hyaluronic acid to produce a gel that could be applied to a surface as a coating. It remained hydrated for a sufficient time for α-glucosidase activity present in intact B. anthracis spores to cleave the substrate and release the fluorescent product, methylumbelliferone. The presence of B. anthracis spores could be disclosed at 5 × 104 CFU per reaction test well (0·32 cm2 ) both visually and using fluorescence detection equipment. CONCLUSIONS: The disclosure gel provides a rapid, visual response to the presence of B. anthracis spores on a surface. SIGNIFICANCE AND IMPACT OF THE STUDY: The disclosure gel demonstrates the first steps towards the development of a formulation that can provide nonspecialist users with a visual alert to the presence of B. anthracis spores on a surface. It is envisioned that such a formulation would be beneficial in scenarios where exposure to spore release is a risk, and could be used in the initial assessment of equipment to aid prioritization and localized execution of a decontamination strategy.


Assuntos
Bacillus anthracis/isolamento & purificação , Descontaminação/métodos , Exposição Ambiental/prevenção & controle , Técnicas Microbiológicas/métodos , Esporos Bacterianos/isolamento & purificação , Bacillus anthracis/enzimologia , Bacillus anthracis/metabolismo , Ácido Hialurônico/química , Himecromona/química , Himecromona/metabolismo , Indicadores e Reagentes , Esporos Bacterianos/enzimologia , Esporos Bacterianos/metabolismo , alfa-Glucosidases/metabolismo
14.
Nucleic Acids Res ; 45(16): 9611-9624, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934496

RESUMO

Although bacterial gyrase and topoisomerase IV have critical interactions with positively supercoiled DNA, little is known about the actions of these enzymes on overwound substrates. Therefore, the abilities of Bacillus anthracis and Escherichia coli gyrase and topoisomerase IV to relax and cleave positively supercoiled DNA were analyzed. Gyrase removed positive supercoils ∼10-fold more rapidly and more processively than it introduced negative supercoils into relaxed DNA. In time-resolved single-molecule measurements, gyrase relaxed overwound DNA with burst rates of ∼100 supercoils per second (average burst size was 6.2 supercoils). Efficient positive supercoil removal required the GyrA-box, which is necessary for DNA wrapping. Topoisomerase IV also was able to distinguish DNA geometry during strand passage and relaxed positively supercoiled substrates ∼3-fold faster than negatively supercoiled molecules. Gyrase maintained lower levels of cleavage complexes with positively supercoiled (compared with negatively supercoiled) DNA, whereas topoisomerase IV generated similar levels with both substrates. Results indicate that gyrase is better suited than topoisomerase IV to safely remove positive supercoils that accumulate ahead of replication forks. They also suggest that the wrapping mechanism of gyrase may have evolved to promote rapid removal of positive supercoils, rather than induction of negative supercoils.


Assuntos
DNA Girase/metabolismo , DNA Topoisomerase IV/metabolismo , DNA Super-Helicoidal/química , DNA Super-Helicoidal/metabolismo , Bacillus anthracis/enzimologia , DNA Girase/química , DNA Topoisomerase IV/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo
15.
Adv Exp Med Biol ; 1111: 189-203, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30267305

RESUMO

The zinc-dependent metalloprotease anthrax lethal factor (LF) is the enzymatic component of a toxin thought to have a major role in Bacillus anthracis infections. Like many bacterial toxins, LF is a secreted protein that functions within host cells. LF is a highly selective protease that cleaves a limited number of substrates in a site-specific manner, thereby impacting host signal transduction pathways. The major substrates of LF are mitogen-activated protein kinase kinases (MKKs), which lie in the middle of three-component phosphorylation cascades mediating numerous functions in a variety of cells and tissues. How LF targets its limited substrate repertoire has been an active area of investigation. LF recognizes a specific sequence motif surrounding the scissile bonds of substrate proteins. X-ray crystallography of the protease in complex with peptide substrates has revealed the structural basis of selectivity for the LF cleavage site motif. In addition to having interactions proximal to the cleavage site, LF binds directly to a more distal region in its substrates through a so-called exosite interaction. This exosite has been mapped to a surface within a non-catalytic domain of LF with previously unknown function. A putative LF-binding site has likewise been identified on the catalytic domains of MKKs. Here we review our current state of understanding of LF-substrate interactions and discuss the implications for the design and discovery of inhibitors that may have utility as anthrax therapeutics.


Assuntos
Antígenos de Bactérias/metabolismo , Bacillus anthracis/enzimologia , Toxinas Bacterianas/metabolismo , Metaloproteases/metabolismo , Humanos , Especificidade por Substrato
16.
J Bacteriol ; 200(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30249708

RESUMO

Bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that regulates processes, such as biofilm formation and virulence. During degradation, c-di-GMP is first linearized to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG) and subsequently hydrolyzed to two GMPs by a previously unknown enzyme, which was recently identified in Pseudomonas aeruginosa as the 3'-to-5' exoribonuclease oligoribonuclease (Orn). Mutants of orn accumulated pGpG, which inhibited the linearization of c-di-GMP. This product inhibition led to elevated c-di-GMP levels, resulting in increased aggregate and biofilm formation. Thus, the hydrolysis of pGpG is crucial to the maintenance of c-di-GMP homeostasis. How species that utilize c-di-GMP signaling but lack an orn ortholog hydrolyze pGpG remains unknown. Because Orn is an exoribonuclease, we asked whether pGpG hydrolysis can be carried out by genes that encode protein domains found in exoribonucleases. From a screen of these genes from Vibrio cholerae and Bacillus anthracis, we found that only enzymes known to cleave oligoribonucleotides (orn and nrnA) rescued the P. aeruginosa Δorn mutant phenotypes to the wild type. Thus, we tested additional RNases with demonstrated activity against short oligoribonucleotides. These experiments show that only exoribonucleases previously reported to degrade short RNAs (nrnA, nrnB, nrnC, and orn) can also hydrolyze pGpG. A B. subtilisnrnA nrnB mutant had elevated c-di-GMP, suggesting that these two genes serve as the primary enzymes to degrade pGpG. These results indicate that the requirement for pGpG hydrolysis to complete c-di-GMP signaling is conserved across species. The final steps of RNA turnover and c-di-GMP turnover appear to converge at a subset of RNases specific for short oligoribonucleotides.IMPORTANCE The bacterial bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) signaling molecule regulates complex processes, such as biofilm formation. c-di-GMP is degraded in two-steps, linearization into pGpG and subsequent cleavage to two GMPs. The 3'-to-5' exonuclease oligoribonuclease (Orn) serves as the enzyme that degrades pGpG in Pseudomonas aeruginosa Many phyla contain species that utilize c-di-GMP signaling but lack an Orn homolog, and the protein that functions to degrade pGpG remains uncharacterized. Here, systematic screening of genes encoding proteins containing domains found in exoribonucleases revealed a subset of genes encoded within the genomes of Bacillus anthracis and Vibrio cholerae that degrade pGpG to GMP and are functionally analogous to Orn. Feedback inhibition by pGpG is a conserved process, as strains lacking these genes accumulate c-di-GMP.


Assuntos
Bacillus anthracis/enzimologia , GMP Cíclico/análogos & derivados , Exorribonucleases/metabolismo , Vibrio cholerae/enzimologia , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Exorribonucleases/genética , Hidrólise , Mutação , Pseudomonas aeruginosa/enzimologia , Sistemas do Segundo Mensageiro , Transdução de Sinais
17.
J Struct Biol ; 202(2): 175-181, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29331609

RESUMO

Many bacteria require l-rhamnose as a key cell wall component. This sugar is transferred to the cell wall using an activated donor dTDP-l-rhamnose, which is produced by the dTDP-l-rhamnose biosynthetic pathway. We determined the crystal structure of the second enzyme of this pathway dTDP-α-d-glucose 4,6-dehydratase (RfbB) from Bacillus anthracis. Interestingly, RfbB only crystallized in the presence of the third enzyme of the pathway RfbC; however, RfbC was not present in the crystal. Our work represents the first complete structural characterization of the four proteins of this pathway in a single Gram-positive bacterium.


Assuntos
Bacillus anthracis/enzimologia , Hidroliases/química , Açúcares de Nucleosídeo Difosfato/química , Conformação Proteica , Nucleotídeos de Timina/química , Bacillus anthracis/patogenicidade , Vias Biossintéticas/genética , Carboidratos Epimerases/química , Cristalografia por Raios X
18.
Appl Environ Microbiol ; 84(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29602786

RESUMO

Four isothermal recombinase polymerase amplification (RPA) assays were developed for fast in-field identification of Bacillus anthracis The RPA assays targeted three specific sequences (i.e., the BA_5345 chromosomal marker, the lethal factor lef [from pXO1], and the capsule-biosynthesis-related capA [from pXO2]) and a conserved sequence in the adenylate cyclase gene (adk) for the Bacillus cereus group. B. anthracis-specific RPA assays were tested first with purified genomic DNAs (n = 60), including 11 representatives of B. anthracis, and then with soil (n = 8) and white powder (n = 8) samples spiked with inactivated B. anthracis spores and/or other biological agents. The RPA assays were also tested in another laboratory facility, which blindly provided DNA and lysate samples (n = 30, including 20 B. anthracis strains). RPA assays displayed 100% specificity and sensitivity. The hands-off turnaround times at 42°C ranged from 5 to 6 min for 102 genomic copies. The analytical sensitivity of each RPA assay was ∼10 molecules per reaction. In addition, the BA_5345 and adk RPA assays were assessed under field conditions with a series of surface swabs (n = 13, including 11 swabs contaminated with B. thuringiensis spores) that were blindly brought to the field laboratory by a chemical, biological, radiological, and nuclear (CBRN) sampling team. None of the 13 samples, except the control, tested positive for B. anthracis, and all samples that had been harvested from spore-contaminated surfaces tested positive with the adk RPA assay. All three B. anthracis-specific RPA assays proved suitable for rapid and reliable identification of B. anthracis and therefore could easily be used by first responders under field conditions to quickly discriminate between a deliberate release of B. anthracis spores and a hoax attack involving white powder.IMPORTANCE In recent decades, particularly following the 11 September 2001 and Amerithrax attacks, the world has experienced attempts to sow panic and chaos in society through thousands of white-powder copycats using household powders to mimic real bioterrorism attacks. In such circumstances, field-deployable detection methods are particularly needed to screen samples collected from the scene. The aim is to test the samples directly using a fast and reliable assay for detection of the presence of B. anthracis While this would not preclude further confirmatory tests from being performed in reference laboratories, it would bring useful, timely, and relevant information to local crisis managers and help them make appropriate decisions without having to wait for quantitative PCR results (with turnaround times of a few hours) or phenotypic identification and sequencing (with turnaround times of a few days). In the current investigation, we developed a set of isothermal RPA assays for the rapid screening and identification of B. anthracis in powders and soil samples, with the purpose of discriminating a deliberate release of B. anthracis spores from a hoax attack involving white powder; this would also apply to dispersion by spraying of aerosolized forms of B. anthracis Further work is now ongoing to confirm the first observations and validate the on-site use of these assays by first responders.


Assuntos
Bacillus anthracis/genética , Bacillus anthracis/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Recombinases/genética , Bacillus anthracis/enzimologia , Técnicas Bacteriológicas , DNA Bacteriano/genética , Pós/análise , Sensibilidade e Especificidade
19.
Bioorg Med Chem ; 26(6): 1212-1219, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28927803

RESUMO

We report the high-yield heterologous expression of bioactive θ-defensin RTD-1 inside Escherichia coli cells by making use of intracellular protein trans-splicing in combination with a high efficient split-intein. RTD-1 is a small backbone-cyclized polypeptide with three disulfide bridges and a natural inhibitor of anthrax lethal factor protease. Recombinant RTD-1 was natively folded and able to inhibit anthrax lethal factor protease. In-cell expression of RTD-1 was very efficient and yielded ≈0.7mg of folded RTD-1 per gram of wet E. coli cells. This approach was used to generate of a genetically-encoded RTD-1-based peptide library in live E. coli cells. These results clearly demonstrate the possibility of using genetically-encoded RTD-1-based peptide libraries in live E. coli cells, which is a critical first step for developing in-cell screening and directed evolution technologies using the cyclic peptide RTD-1asa molecular scaffold.


Assuntos
Defensinas/metabolismo , Escherichia coli/metabolismo , Sequência de Aminoácidos , Antígenos de Bactérias/metabolismo , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/enzimologia , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/metabolismo , Defensinas/genética , Defensinas/farmacologia , Biblioteca de Peptídeos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Processamento de Proteína
20.
Bioorg Med Chem ; 26(22): 5896-5902, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429095

RESUMO

Pantothenate kinase (PanK) catalyzes the transformation of pantothenate to 4'-phosphopantothenate, the first committed step in coenzyme A biosynthesis. While numerous pantothenate antimetabolites and PanK inhibitors have been reported for bacterial type I and type II PanKs, only a few weak inhibitors are known for bacterial type III PanK enzymes. Here, a series of pantothenate analogues were synthesized using convenient synthetic methodology. The compounds were exploited as small organic probes to compare the ligand preferences of the three different types of bacterial PanK. Overall, several new inhibitors and substrates were identified for each type of PanK.


Assuntos
Antibacterianos/farmacologia , Bacillus anthracis/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Bacillus anthracis/enzimologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ligantes , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA