Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.158
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(29): e2315310121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990944

RESUMO

Bacitracin is a macrocyclic peptide antibiotic that is widely used as a topical treatment for infections caused by gram-positive bacteria. Mechanistically, bacitracin targets bacteria by specifically binding to the phospholipid undecaprenyl pyrophosphate (C55PP), which plays a key role in the bacterial lipid II cycle. Recent crystallographic studies have shown that when bound to C55PP, bacitracin adopts a highly ordered amphipathic conformation. In doing so, all hydrophobic side chains align on one face of the bacitracin-C55PP complex, presumably interacting with the bacterial cell membrane. These insights led us to undertake structure-activity investigations into the individual contribution of the nonpolar amino acids found in bacitracin. To achieve this we designed, synthesized, and evaluated a series of bacitracin analogues, a number of which were found to exhibit significantly enhanced antibacterial activity against clinically relevant, drug-resistant pathogens. As for the natural product, these next-generation bacitracins were found to form stable complexes with C55PP. The structure-activity insights thus obtained serve to inform the design of C55PP-targeting antibiotics, a key and underexploited antibacterial strategy.


Assuntos
Antibacterianos , Bacitracina , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Bacitracina/farmacologia , Bacitracina/química , Relação Estrutura-Atividade , Farmacorresistência Bacteriana/efeitos dos fármacos , Vancomicina/farmacologia , Vancomicina/química , Vancomicina/análogos & derivados , Desenho de Fármacos , Fosfatos de Poli-Isoprenil/metabolismo , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/farmacologia
2.
Mol Microbiol ; 121(6): 1148-1163, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38646792

RESUMO

Enterococcal infections frequently show high levels of antibiotic resistance, including to cell envelope-acting antibiotics like daptomycin (DAP). While we have a good understanding of the resistance mechanisms, less is known about the control of such resistance genes in enterococci. Previous work unveiled a bacitracin resistance network, comprised of the sensory ABC transporter SapAB, the two-component system (TCS) SapRS and the resistance ABC transporter RapAB. Interestingly, components of this system have recently been implicated in DAP resistance, a role usually regulated by the TCS LiaFSR. To better understand the regulation of DAP resistance and how this relates to mutations observed in DAP-resistant clinical isolates of enterococci, we here explored the interplay between these two regulatory pathways. Our results show that SapR regulates an additional resistance operon, dltXABCD, a known DAP resistance determinant, and show that LiaFSR regulates the expression of sapRS. This regulatory structure places SapRS-target genes under dual control, where expression is directly controlled by SapRS, which itself is up-regulated through LiaFSR. The network structure described here shows how Enterococcus faecalis coordinates its response to cell envelope attack and can explain why clinical DAP resistance often emerges via mutations in regulatory components.


Assuntos
Antibacterianos , Bacitracina , Proteínas de Bactérias , Daptomicina , Farmacorresistência Bacteriana , Enterococcus faecalis , Regulação Bacteriana da Expressão Gênica , Óperon , Daptomicina/farmacologia , Enterococcus faecalis/genética , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/metabolismo , Bacitracina/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética
3.
Proc Natl Acad Sci U S A ; 119(14): e2123268119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349335

RESUMO

SignificanceMany gram-positive organisms have evolved an elegant solution to sense and resist antimicrobial peptides that inhibit cell-wall synthesis. These organisms express an unusual "Bce-type" adenosine triphosphate-binding cassette (ABC) transporter that recognizes complexes formed between antimicrobial peptides and lipids involved in cell-wall biosynthesis. In this work, we provide the first structural snapshots of a Bce-type ABC transporter trapped in different conformational states. Our structures and associated biochemical data provide key insights into the novel target protection mechanism that these unusual ABC transporters use to sense and resist antimicrobial peptides. The studies described herein set the stage to begin developing a comprehensive molecular understanding of the diverse interactions between antimicrobial peptides and conserved resistance machinery found across most gram-positive organisms.


Assuntos
Bacitracina , Farmacorresistência Bacteriana , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/farmacologia , Bacillus subtilis/metabolismo , Bacitracina/metabolismo , Bacitracina/farmacologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/metabolismo
4.
J Bacteriol ; 206(3): e0001524, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38323910

RESUMO

Antibiotics that inhibit peptidoglycan synthesis trigger the activation of both specific and general protective responses. σM responds to diverse antibiotics that inhibit cell wall synthesis. Here, we demonstrate that cell wall-inhibiting drugs, such as bacitracin and cefuroxime, induce the σM-dependent ytpAB operon. YtpA is a predicted hydrolase previously proposed to generate the putative lysophospholipid antibiotic bacilysocin (lysophosphatidylglycerol), and YtpB is the branchpoint enzyme for the synthesis of membrane-localized C35 terpenoids. Using targeted lipidomics, we reveal that YtpA is not required for the production of lysophosphatidylglycerol. Nevertheless, ytpA was critical for growth in a mutant strain defective for homeoviscous adaptation due to a lack of genes for the synthesis of branched chain fatty acids and the Des phospholipid desaturase. Consistently, overexpression of ytpA increased membrane fluidity as monitored by fluorescence anisotropy. The ytpA gene contributes to bacitracin resistance in mutants additionally lacking the bceAB or bcrC genes, which directly mediate bacitracin resistance. These epistatic interactions support a model in which σM-dependent induction of the ytpAB operon helps cells tolerate bacitracin stress, either by facilitating the flipping of the undecaprenyl phosphate carrier lipid or by impacting the assembly or function of membrane-associated complexes involved in cell wall homeostasis.IMPORTANCEPeptidoglycan synthesis inhibitors include some of our most important antibiotics. In Bacillus subtilis, peptidoglycan synthesis inhibitors induce the σM regulon, which is critical for intrinsic antibiotic resistance. The σM-dependent ytpAB operon encodes a predicted hydrolase (YtpA) and the enzyme that initiates the synthesis of C35 terpenoids (YtpB). Our results suggest that YtpA is critical in cells defective in homeoviscous adaptation. Furthermore, we find that YtpA functions cooperatively with the BceAB and BcrC proteins in conferring intrinsic resistance to bacitracin, a peptide antibiotic that binds tightly to the undecaprenyl-pyrophosphate lipid carrier that sustains peptidoglycan synthesis.


Assuntos
Bacillus subtilis , Bacitracina , Bacitracina/farmacologia , Bacitracina/metabolismo , Bacillus subtilis/genética , Peptidoglicano/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Parede Celular/metabolismo , Membrana Celular/metabolismo , Óperon , Hidrolases/metabolismo , Lipídeos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
J Am Chem Soc ; 146(10): 7007-7017, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38428018

RESUMO

The rapid spread of drug-resistant pathogens and the declining discovery of new antibiotics have created a global health crisis and heightened interest in the search for novel antibiotics. Beyond their discovery, elucidating mechanisms of action has necessitated new approaches, especially for antibiotics that interact with lipidic substrates and membrane proteins. Here, we develop a methodology for real-time reaction monitoring of the activities of two bacterial membrane phosphatases, UppP and PgpB. We then show how we can inhibit their activities using existing and newly discovered antibiotics such as bacitracin and teixobactin. Additionally, we found that the UppP dimer is stabilized by phosphatidylethanolamine, which, unexpectedly, enhanced the speed of substrate processing. Overall, our results demonstrate the potential of native mass spectrometry for real-time biosynthetic reaction monitoring of membrane enzymes, as well as their in situ inhibition and cofactor binding, to inform the mode of action of emerging antibiotics.


Assuntos
Antibacterianos , Bacitracina , Antibacterianos/química , Testes de Sensibilidade Microbiana , Bactérias
6.
Microb Pathog ; 191: 106666, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685360

RESUMO

It is common knowledge that prolonged and excessive use of antibiotics can lead to antimicrobial resistance. However, the characteristics and mechanism of resistant-bacteria induced by clinically recommended and prophylactic dose drugs remain largely unclear. This study aimed to observe the trends of drug resistance of the bacitracin-susceptible Staphylococcus aureus strain FS127 under exposure to bacitracin (BAC), which were induced in vitro and in chicken gut. Antimicrobial susceptibility testing was used to detect the susceptibility of S. aureus induced in vitro and in the chicken gut to gentamicin, chloramphenicol, tetracycline, doxycycline, penicillin and chloramphenicol. The research results showed that bacitracin could induce drug resistance in S. aureus both in vitro and in vivo. The bacitracin-resistance rate of S. aureus isolated from chicken gut was positively correlated with the dose and time of bacitracin administration. The findings revealed that bacitracin-resistant S. aureus induced in vivo had enhanced susceptibility to chloramphenicol but no such change in vitro. Meanwhile, RT-qPCR assay was used to detect the expression levels of vraD, braD, braR and bacA in typical strains with different bacitracin-resistance levels. It was found that BacA may play a key role in the bacitracin resistance of S. aureus. In conclusion, this work reveals the characteristics and mechanism of bacitracin-resistant S. aureus induced by bacitracin in vivo and in vitro respectively.


Assuntos
Antibacterianos , Bacitracina , Galinhas , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas , Staphylococcus aureus , Bacitracina/farmacologia , Animais , Galinhas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Antibacterianos/farmacologia , Infecções Estafilocócicas/microbiologia , Cloranfenicol/farmacologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/efeitos dos fármacos , Proteínas de Bactérias/genética
7.
Ann Plast Surg ; 92(4S Suppl 2): S191-S195, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38319958

RESUMO

BACKGROUND: The use of irrigation with bacitracin-containing solution is common among surgeons, as it was widely thought to have antibacterial properties and prevent postoperative infection. Current literature, however, suggests that antibiotic-containing irrigation confers little added benefit. On January 31, 2020, the Food and Drug Administration instituted a ban on bacitracin-containing irrigation for operative use. This study aimed to determine whether bacitracin has a beneficial effect on postoperative infection rates by analyzing infection rates before and after the Food and Drug Administration ban on bacitracin irrigation. METHODS: A single-institution retrospective chart review was conducted. Eligible patients underwent implant-based breast reconstruction after mastectomy from October 1, 2016, to July 31, 2022. Procedure date, reconstruction type, patient comorbidities, use of bacitracin irrigation, postoperative infection, and secondary outcomes were collected. Univariate and multivariable logistic regression analyses were performed. RESULTS: A total of 188 female patients were included in the study. Bacitracin use did not protect against infection in univariate or multivariable analysis. Age greater than 50 years was associated with an increased risk of postoperative infection ( P = 0.0366). The presence of comorbidities, smoker status, neoadjuvant therapy treatment before surgery, implant placement, and laterality were all not significantly associated with postoperative infection development. CONCLUSIONS: The results of this study demonstrate a lack of association between bacitracin use and postoperative infection. Additional research into the optimal antibiotic for perioperative irrigation is needed, as bacitracin is not encouraged for use.


Assuntos
Implantes de Mama , Neoplasias da Mama , Mamoplastia , Humanos , Feminino , Pessoa de Meia-Idade , Bacitracina/uso terapêutico , Estudos Retrospectivos , Neoplasias da Mama/complicações , Mastectomia/efeitos adversos , Antibacterianos/uso terapêutico , Mamoplastia/métodos , Infecção da Ferida Cirúrgica/epidemiologia , Infecção da Ferida Cirúrgica/prevenção & controle , Infecção da Ferida Cirúrgica/etiologia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/prevenção & controle , Implantes de Mama/efeitos adversos
8.
World J Microbiol Biotechnol ; 40(6): 181, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668833

RESUMO

In view of the extensive potential applications of chitinase (ChiA) in various fields such as agriculture, environmental protection, medicine, and biotechnology, the development of a high-yielding strain capable of producing chitinase with enhanced activity holds significant importance. The objective of this study was to utilize the extracellular chitinase from Bacillus thuringiensis as the target, and Bacillus licheniformis as the expression host to achieve heterologous expression of ChiA with enhanced activity. Initially, through structural analysis and molecular dynamics simulation, we identified key amino acids to improve the enzymatic performance of chitinase, and the specific activity of chitinase mutant D116N/E118N was 48% higher than that of the natural enzyme, with concomitant enhancements in thermostability and pH stability. Subsequently, the expression elements of ChiA(D116N/E118N) were screened and modified in Bacillus licheniformis, resulting in extracellular ChiA activity reached 89.31 U/mL. Further efforts involved the successful knockout of extracellular protease genes aprE, bprA and epr, along with the gene clusters involved in the synthesis of by-products such as bacitracin and lichenin from Bacillus licheniformis. This led to the development of a recombinant strain, DW2△abelA, which exhibited a remarkable improvement in chitinase activity, reaching 145.56 U/mL. To further improve chitinase activity, a chitinase expression frame was integrated into the genome of DW2△abelA, resulting in a significant increas to 180.26 U/mL. Optimization of fermentation conditions and medium components further boosted shake flask enzyme activity shake flask enzyme activity, achieving 200.28 U/mL, while scale-up fermentation experiments yielded an impressive enzyme activity of 338.79 U/mL. Through host genetic modification, expression optimization and fermentation optimization, a high-yielding ChiA strain was successfully constructed, which will provide a solid foundation for the extracellular production of ChiA.


Assuntos
Bacillus licheniformis , Proteínas de Bactérias , Quitinases , Bacillus licheniformis/genética , Bacillus licheniformis/enzimologia , Bacillus thuringiensis/genética , Bacillus thuringiensis/enzimologia , Bacitracina , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quitinases/biossíntese , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Família Multigênica , Proteínas Recombinantes/biossíntese , Temperatura
9.
J Bacteriol ; 205(10): e0016423, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37439672

RESUMO

Clostridioides difficile is a Gram-positive opportunistic pathogen that results in 220,000 infections, 12,000 deaths, and upwards of $1 billion in medical costs in the United States each year. C. difficile is highly resistant to a variety of antibiotics, but we have a poor understanding of how C. difficile senses and responds to antibiotic stress and how such sensory systems affect clinical outcomes. We have identified a spontaneous C. difficile mutant that displays increased daptomycin resistance. We performed whole-genome sequencing and found a nonsense mutation, S605*, in draS, which encodes a putative sensor histidine kinase of a two-component system (TCS). The draSS605* mutant has an ~4- to 8-fold increase in the daptomycin MIC compared to the wild type (WT). We found that the expression of constitutively active DraRD54E in the WT increases daptomycin resistance 8- to 16-fold and increases bacitracin resistance ~4-fold. We found that a selection of lipid II-inhibiting compounds leads to the increased activity of the luciferase-based reporter PdraR-slucopt, including vancomycin, bacitracin, ramoplanin, and daptomycin. Using RNA sequencing (RNA-seq), we identified the DraRS regulon. Interestingly, we found that DraRS can induce the expression of the previously identified hex locus required for the synthesis of a novel glycolipid produced in C. difficile. Our data suggest that the induction of the hex locus by DraR explains some, but not all, of the DraR-induced daptomycin and bacitracin resistance. IMPORTANCE Clostridioides difficile is a major cause of hospital-acquired diarrhea and represents an urgent concern due to the prevalence of antibiotic resistance and the rate of recurrent infections. C. difficile encodes ~50 annotated two-component systems (TCSs); however, only a few have been studied. The function of these unstudied TCSs is not known. Here, we show that the TCS DraRS plays a role in responding to a subset of lipid II-inhibiting antibiotics and mediates resistance to daptomycin and bacitracin in part by inducing the expression of the recently identified hex locus, which encodes enzymes required for the production of a novel glycolipid in C. difficile.


Assuntos
Clostridioides difficile , Daptomicina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Clostridioides difficile/genética , Bacitracina/farmacologia , Daptomicina/farmacologia , Clostridioides , Glicolipídeos
10.
Curr Microbiol ; 80(5): 135, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36913050

RESUMO

Staphylococcus aureus is one of the important pathogens causing human diseases, especially its treatment has great challenges due to its resistance to methicillin and vancomycin. The Bacillus strains are known to be major sources of second metabolites that can function as drugs. Therefore, it is of great value to excavate metabolites with good inhibitory activity against S. aureus from Bacillus strains. In this study, a strain Bacillus paralicheniformis CPL618 with good antagonistic activity against S. aureus was isolated and genome analysis showed that the size was 4,447,938 bp and contained four gene clusters fen, bac, dhb, and lch which are potentially responsible for four cyclic peptides fengycin, bacitracin, bacillibactin, and lichenysin biosynthesis, respectively. These gene clusters were knockout by homologous recombination. The bacteriostatic experiment results showed that the antibacterial activity of ∆bac decreased 72.3% while Δfen, Δdhb, and ΔlchA did not significantly changed as that of wild type. Interestingly, the maximum bacitracin yield was up to 92 U/mL in the LB medium, which was extremely unusual in wild type strains. To further improve the production of bacitracin, transcription regulators abrB and lrp were knocked out, the bacitracin produced by ΔabrB, Δlrp, and ΔabrB + lrp was 124 U/mL, 112 U/mL, and 160 U/ml, respectively. Although no new anti-S. aureus compounds was found by using genome mining in this study, the molecular mechanisms of high yield of bacitracin and anti-S. aureus in B. paralicheniformis CPL618 were clarified. Moreover, B. paralicheniformis CPL618 was further genetically engineered for industrial production of bacitracin.


Assuntos
Bacillus , Bacitracina , Humanos , Bacitracina/farmacologia , Bacitracina/metabolismo , Bacillus/genética , Bacillus/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Engenharia Genética
11.
Mol Microbiol ; 115(1): 157-174, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32955745

RESUMO

Bacteria closely control gene expression to ensure optimal physiological responses to their environment. Such careful gene expression can minimize the fitness cost associated with antibiotic resistance. We previously described a novel regulatory logic in Bacillus subtilis enabling the cell to directly monitor its need for detoxification. This cost-effective strategy is achieved via a two-component regulatory system (BceRS) working in a sensory complex with an ABC-transporter (BceAB), together acting as a flux-sensor where signaling is proportional to transport activity. How this is realized at the molecular level has remained unknown. Using experimentation and computation we here show that the histidine kinase is activated by piston-like displacements in the membrane, which are converted to helical rotations in the catalytic core via an intervening HAMP-like domain. Intriguingly, the transporter was not only required for kinase activation, but also to actively maintain the kinase in its inactive state in the absence of antibiotics. Such coupling of kinase activity to that of the transporter ensures the complete control required for transport flux-dependent signaling. Moreover, we show that the transporter likely conserves energy by signaling with sub-maximal sensitivity. These results provide the first mechanistic insights into transport flux-dependent signaling, a unique strategy for energy-efficient decision making.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Bacillus subtilis/metabolismo , Histidina Quinase/metabolismo , Transportadores de Cassetes de Ligação de ATP/fisiologia , Antibacterianos/farmacologia , Bacillus subtilis/genética , Bacitracina/metabolismo , Bacitracina/farmacologia , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/genética , Histidina Quinase/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Anal Chem ; 94(40): 13719-13727, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36173369

RESUMO

Based on the Venturi self-pumping effect, real-time sniffing with mass spectrometry (R-sniffing MS) is developed as a tool for direct and real-time mass spectrometric analysis of both gaseous and solid samples. It is capable of dual-mode operation in either gaseous or solid phase, with the corresponding techniques termed as Rg-sniffing MS and Rs-sniffing MS, respectively. In its gaseous mode, Rg-sniffing MS is capable of analyzing a gaseous mixture with response time (0.8-2.1 s rise time and 7.3-9.6 s fall time), spatial resolution (<80 µm), three-dimensional diffusion imaging, and aroma distribution imaging of red pepper. In its solid mode, an appropriate solvent droplet desorbs the sample from a solid surface, followed by the aspiration of the mixture using the Venturi self-pumping effect into the mass spectrometer, wherein it is ionized by a standard ion source. Compared with the desorption electrospray ionization (DESI) technique, Rs-sniffing MS demonstrated considerably improved limit of detection (LOD) values for arginine (0.07 µg/cm2 Rs-sniffing vs 1.47 µg/cm2 DESI), thymopentin (0.10 µg/cm2 vs 2.67 µg/cm2), and bacitracin (0.16 µg/cm2 vs 2.28 µg/cm2). Rs-sniffing is applicable for the detection of C60(OCH3)6Cl-, an intermediate in the methoxylation reaction involving C60Cl6 (solid) and methanol (liquid). The convenient and highly sensitive R-sniffing MS has a characteristic separation of desorption from the ionization process, in which the matrix atmosphere of desorption can be interfaced by a pipe channel and self-pumped by the Venturi effect with consequent integration using a standard ion source. The R-sniffing MS operates in a voltage-, heat-, and vibration-free environment, wherein the analyte is ionized by a standard ion source. Consequently, a wide range of samples can be analyzed simultaneously by the R-sniffing MS technique, regardless of their physical state.


Assuntos
Gases , Espectrometria de Massas por Ionização por Electrospray , Arginina , Bacitracina , Metanol , Solventes , Espectrometria de Massas por Ionização por Electrospray/métodos , Timopentina
13.
Chembiochem ; 23(24): e202200547, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36287040

RESUMO

The growing threat of drug-resistant bacteria is a global concern, highlighting the urgent need for new antibiotics and antibacterial strategies. In this light, practical synthetic access to natural product antibiotics can provide important structure-activity insights while also opening avenues for the development of novel analogues with improved properties. To this end, we report an optimised synthetic route for the preparation of the clinically used macrocyclic peptide antibiotic bacitracin. Our combined solid- and solution-phase approach addresses the problematic, and previously unreported, formation of undesired epimers associated with the stereochemically fragile N-terminal thiazoline moiety. A number of bacitracin analogues were also prepared wherein the thiazoline motif was replaced by other known zinc-binding moieties and their antibacterial activities evaluated.


Assuntos
Antibacterianos , Bacitracina , Bacitracina/farmacologia , Bacitracina/química , Antibacterianos/farmacologia , Antibacterianos/química , Zinco
14.
Appl Environ Microbiol ; 88(11): e0240921, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35575548

RESUMO

Riemerella anatipestifer is a major pathogenic agent of duck septicemic and exudative diseases. Recent studies have shown that the R. anatipestifer type IX secretion system (T9SS) is a crucial factor in bacterial virulence. The AS87_RS04190 protein was obviously missing from the secreted proteins of the T9SS mutant strain Yb2ΔgldM. A bioinformatic analysis indicated that the AS87_RS04190 protein contains a T9SS C-terminal domain sequence and encodes a putative subtilisin-like serine protease (SspA). To determine the role of the putative SspA protein in R. anatipestifer pathogenesis and proteolysis, we constructed two strains with an sspA mutation and complementation, respectively, and determined their median lethal doses, their bacterial loads in infected duck blood, and their adherence to and invasion of cells. Our results demonstrate that the SspA protein functions in bacterial virulence. It is also associated with the bacterial protease activity and has a conserved catalytic triad structure (Asp126, His158, and Ser410), which is necessary for protein function. The optimal reactive pH and temperature were determined to be 7.0 and 50°C, respectively, and Km and Vmax were determined to be 10.15 mM and 246.96 U/mg, respectively. The enzymatic activity of SspA is activated by Ca2+, Mg2+, and Mn2+ and inhibited by Cu2+ and EDTA. SspA degrades gelatin, fibrinogen, and bacitracin LL-37. These results demonstrate that SspA is an effector protein of T9SS and functions in R. anatipestifer virulence and its proteolysis of gelatin, fibrinogen, and bacitracin LL-37. IMPORTANCE In recent years, Riemerella anatipestifer T9SS has been reported to act as a virulence factor. However, the functions of the proteins secreted by R. anatipestifer T9SS are not entirely clear. In this study, a secreted subtilisin-like serine protease SspA was shown to be associated with R. anatipestifer virulence, host complement evasion, and degradation of gelatin, fibrinogen, and LL-37. The enzymatic activity of recombinant SspA was determined, and its Km and Vmax were 10.15 mM and 246.96 U/mg, respectively. Three conserved sites (Asp126, His158, and Ser410) are necessary for the protein's function. The median lethal dose of the sspA-deleted mutant strain was reduced >10,000-fold, indicating that SspA is an important virulence factor. In summary, we demonstrate that the R. anatipestifer AS87_RS04190 gene encodes an important T9SS effector, SspA, which plays an important role in bacterial virulence.


Assuntos
Infecções por Flavobacteriaceae , Doenças das Aves Domésticas , Riemerella , Animais , Bacitracina , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Patos/microbiologia , Fibrinogênio/metabolismo , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária , Gelatina/metabolismo , Doenças das Aves Domésticas/microbiologia , Riemerella/metabolismo , Serina , Subtilisinas/metabolismo , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
15.
Bioconjug Chem ; 33(4): 555-559, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35319881

RESUMO

Endogenous Staphylococcus aureus sortase A (SrtA) covalently incorporates cell wall anchored proteins equipped with a SrtA recognition motif (LPXTG) via a lipid II-dependent pathway into the staphylococcal peptidoglycan layer. Previously, we found that the endogenous S. aureus SrtA is able to recognize and process a variety of exogenously added synthetic SrtA substrates, including K(FITC)LPMTG-amide and K(FITC)-K-vancomycin-LPMTG-amide. These synthetic substrates are covalently incorporated into the bacterial peptidoglycan (PG) of S. aureus with varying efficiencies. In this study, we examined if native and synthetic substrates are processed by SrtA via the same pathway. Therefore, the effect of the lipid II inhibiting antibiotic bacitracin on the incorporation of native and synthetic SrtA substrates was assessed. Treatment of S. aureus with bacitracin resulted in a decreased incorporation of protein A in the bacterial cell wall, whereas incorporation of exogenous synthetic substrates was increased. These results suggest that natural and exogenous synthetic substrates are processed by S. aureus via different pathways.


Assuntos
Peptidoglicano , Staphylococcus aureus , Amidas , Aminoaciltransferases , Bacitracina/metabolismo , Bacitracina/farmacologia , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases , Fluoresceína-5-Isotiocianato , Peptidoglicano/metabolismo
16.
J Surg Res ; 270: 203-207, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34700295

RESUMO

BACKGROUND: With the easily available option for surgeons to soak their suture in antibiotic irrigation solution intraoperatively in mind, this study was designed to evaluate the ability of suture soaked in bacitracin irrigation solution to inhibit the growth of Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. MATERIALS AND METHODS: Using standard experimental procedure, sterile suture was soaked in Bacitracin, and dried for 10 min or 6 h, incubated for 24 h on inoculated plates, and examined for zone of inhibition around the suture. This was compared to control unsoaked suture and antimicrobial suture (AMS) currently on the market to determine if the minor intraoperative procedural change of placing suture in antibiotic irrigation solution instead of on the sterile table could confer comparable antimicrobial activity. RESULTS: The study found the Bacitracin-soaked suture (BSS) consistently inhibited the growth of the test organisms. For both organisms, the BSS exhibited a significantly larger zone of inhibition compared to the unsoaked control suture (P < 0.0001). However, both the AMS currently on the market, and a bacitracin aliquot, exhibited significantly larger zones of inhibition compared to both drying times of the BSS (P < 0.0001). CONCLUSIONS: Placing sutures in a bacitracin irrigation solution intraoperatively instead of directly on the sterile table can achieve some of the in vitro antimicrobial effect seen from AMS currently on the market. This may result in reduced rates of surgical site infections and associated costs without major procedural change and at reduced overhead.


Assuntos
Anti-Infecciosos Locais , Staphylococcus aureus Resistente à Meticilina , Triclosan , Anti-Infecciosos Locais/farmacologia , Bacitracina/farmacologia , Humanos , Infecção da Ferida Cirúrgica/prevenção & controle , Suturas , Triclosan/farmacologia
17.
Appl Microbiol Biotechnol ; 106(19-20): 6833-6845, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36104543

RESUMO

Combinations of various strategic approaches to the suppression of methanogenesis and the formation of biogas with a simultaneous decrease in the ratio of methane in its composition were investigated. Introduction of methanogenesis suppressors such as redox derivatives of humic acids, potassium persulfate (K2S2O8), possessing oxidizing and electron acceptor properties, enzyme hexahistidine-containing organophosphorus hydrolase with high lactonase activity and polypeptide antimicrobial agent bacitracin into the media with anaerobic consortia were studied. The effect of these substances was directed at various participants of the natural methanogenic consortium, as well as on the biochemical processes carried out by them. The use of K2S2O8 together with bacitracin provided maximum and almost complete suppression of CH4 production. The measured concentration of intracellular adenosine triphosphate has shown that viability of cells in the consortium remained almost the same, whereas their metabolic activity decreased. Various combinations of the above-mentioned suppressors provided different degrees of methanogenesis suppression, but redox agents played a key role in all the cases studied. Based on the accumulated data, combining suppressors in different concentrations can be used to manage the methanogenesis (efficiency and velocity of its decrease) in media with anaerobic consortia. KEY POINTS: • Various strategies for suppression of the methanogenesis were combined. • The enzyme His6-OPH was firstly used for quorum quenching in methanogenic consortium. • Velocity of methanogenesis decrease can be managed by combinations of suppressors.


Assuntos
Biocombustíveis , Substâncias Húmicas , Trifosfato de Adenosina , Arildialquilfosfatase , Bacitracina , Humanos , Metano/metabolismo
18.
Can J Microbiol ; 68(10): 643-653, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35944283

RESUMO

This study examined changes in soil bacterial community composition and diversity in response to fertilization with litter from chickens fed a diet without antibiotics and with bambermycin, penicillin, bacitracin, salinomycin, or mix of salinomycin and bacitracin. Litter (27.5 T/ha) was applied to 24 agricultural plots in the Fraser Valley of British Columbia. Nonfertilized plots were used as a negative control. Soil samples collected from the studied plots were used to quantify Escherichia coli by plate counts, and Clostridium perfringens by qPCR. The 16S rRNA gene sequencing was performed for microbiota analysis. Following litter application in December, the population size of E. coli was 5.4 log CFU/g; however, regardless of treatments, the results revealed 5.2 and 1.4 log CFU/g of E. coli in soil sampled in January and March, respectively. Fertilization with litter from antibiotic-treated birds increased (P < 0.05) the relative abundance of Proteobacteria, Actinobacteria, and Firmicutes in soil, but decreased Acidobacteria and Verrucomicrobia groups. The alpha diversity parameters were higher (P < 0.05) in nonfertilized soil compared to the fertilized ones, suggesting that litter application was a major factor in shaping the soil bacterial communities. These results may help develop efficient litter management strategies like composting, autoclaving, or anaerobic digestion of poultry litter before application to land for preservation of soil health and crop productivity.


Assuntos
Bambermicinas , Galinhas , Animais , Antibacterianos/farmacologia , Bacitracina/farmacologia , Bactérias , Bambermicinas/farmacologia , Galinhas/microbiologia , Escherichia coli/genética , Penicilinas/farmacologia , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo
19.
Breast J ; 2022: 1389539, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105366

RESUMO

Background: Triple-antibiotic irrigation of breast implant pockets is a mainstay of infection prophylaxis in breast reconstruction and augmentation. The recall of bacitracin for injection due to risk of anaphylaxis and nephrotoxicity in January 2020, a staple component of the irrigation solution, has raised concern for worsened postoperative sequelae. This study aimed to investigate pre- and post-recall implant-based breast surgery to analyze the impact of bacitracin in irrigation solutions on infection rates. Methods: All implant-based breast reconstruction or augmentation surgeries from January 2019 to February 2021 were retrospectively reviewed. In a regression discontinuity study design, patients were divided into pre- and post-recall groups. Patient demographics, surgical details, and outcomes including infection rates were collected. Differences in complication rates were compared between groups and with surgical and patient factors. Results: 254 implants in 143 patients met inclusion criteria for this study, with 172 implants placed before recall and 82 placed after recall. Patients in each cohort did not differ in age, BMI, smoking status, or history of breast radiation or capsular contracture (p > 0.05). All breast pockets were irrigated with antibiotic solution, most commonly bacitracin, cefazolin, gentamycin, and povidone-iodine before recall (116,67.4%) and cefazolin, gentamycin, and povidone-iodine after recall (59,72.0%). There was no difference in incidence of infection (6.4% vs. 8.5%, p=0.551) or cellulitis (3.5% vs. 3.7%, p=0.959) before and after recall. Implant infection was associated with smoking history (p < 0.001) and increased surgical time (p=0.003). Conclusions: Despite the recent recall of bacitracin from inclusion in breast pocket irrigation solutions, our study demonstrated no detrimental impact on immediate complication rates. This shift in irrigation protocols calls for additional investigations into optimizing antibiotic combinations in solution, as bacitracin is no longer a viable option, to improve surgical outcomes and long-term benefits.


Assuntos
Implantes de Mama , Neoplasias da Mama , Antibacterianos/efeitos adversos , Bacitracina/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Cefazolina , Feminino , Gentamicinas , Humanos , Povidona-Iodo/uso terapêutico , Estudos Retrospectivos , Resultado do Tratamento
20.
Luminescence ; 37(8): 1300-1308, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35637545

RESUMO

Bacitracin zinc (BAC), a polypeptide antibiotic, is utilized as a feed additive due to its ability to promote growth in animals. However, the abuse of BAC can lead to a great threat to food safety. Therefore, there is an urgent need to develop a rapid and sensitive detection method. In this study, a monoclonal antibody (mAb) against BAC with excellent sensitivity and specificity was obtained. For the first time, quantum dots (QDs) were conjugated with the prepared mAb against BAC and rabbit anti-mouse antibody to fabricate a direct and an indirect competitive fluorescence-linked immunosorbent assay (dc-FLISA and ic-FLISA) to detect BAC. The IC50 of dc-FLISA and ic-FLISA were 0.28 ng/ml and 0.17 ng/ml, respectively. The limits of detection were 0.0016 ng/ml and 0.001 ng/ml, respectively, and the detection ranges were 0.0016-46.50 ng/ml and 0.001-35.65 ng/ml, respectively. In addition, the recovery rate of the two methods ranged from 93.5% to 112.0%, and the coefficient of variation (CV) was less than 10%. Therefore, the methods developed in this work have the merits of low cost, simple operation, and high sensitivity, which provide an effective analytical tool for BAC residue detection in feed samples.


Assuntos
Pontos Quânticos , Animais , Anticorpos Monoclonais/química , Bacitracina , Ensaio de Imunoadsorção Enzimática/métodos , Imunoadsorventes/química , Limite de Detecção , Pontos Quânticos/química , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA