Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(D1): D273-D278, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34850116

RESUMO

Plasmids are known to contain genes encoding for virulence factors and antibiotic resistance mechanisms. Their relevance in metagenomic data processing is steadily growing. However, with the increasing popularity and scale of metagenomics experiments, the number of reported plasmids is rapidly growing as well, amassing a considerable number of false positives due to undetected misassembles. Here, our previously published database PLSDB provides a reliable resource for researchers to quickly compare their sequences against selected and annotated previous findings. Within two years, the size of this resource has more than doubled from the initial 13,789 to now 34,513 entries over the course of eight regular data updates. For this update, we aggregated community feedback for major changes to the database featuring new analysis functionality as well as performance, quality, and accessibility improvements. New filtering steps, annotations, and preprocessing of existing records improve the quality of the provided data. Additionally, new features implemented in the web-server ease user interaction and allow for a deeper understanding of custom uploaded sequences, by visualizing similarity information. Lastly, an application programming interface was implemented along with a python library, to allow remote database queries in automated workflows. The latest release of PLSDB is freely accessible under https://www.ccb.uni-saarland.de/plsdb.


Assuntos
Bactérias/genética , Bases de Dados Genéticas , Plasmídeos/química , Interface Usuário-Computador , Actinobacteria/genética , Actinobacteria/patogenicidade , Bactérias/classificação , Bactérias/patogenicidade , Bacteroidetes/genética , Bacteroidetes/patogenicidade , Resistência Microbiana a Medicamentos/genética , Firmicutes/genética , Firmicutes/patogenicidade , Internet , Metagenômica/métodos , Anotação de Sequência Molecular , Plasmídeos/classificação , Plasmídeos/metabolismo , Proteobactérias/genética , Proteobactérias/patogenicidade , Spirochaetales/genética , Spirochaetales/patogenicidade , Tenericutes/genética , Tenericutes/patogenicidade , Virulência/genética
2.
Genomics ; 112(2): 1988-1999, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31759120

RESUMO

We analyzed the whole genomes of cecum microbiomes of Ethiopian indigenous chickens from two distinct geographical zones: Afar (AF) district (Dulecha, 730 m above sea level) and Amhara (AM) district (Menz Gera Midir, 3300 m). Through metagenomic analysis we found that microbial populations were mainly dominated by Bacteroidetes and Firmicutes. We identified 2210 common genes in the two groups. LEfSe showed that the distribution of Coprobacter, Geobacter, Cronobacter, Alloprevotella, and Dysgonomonas were more abundant in AF than AM. Analyses using KEGG, eggNOG, and CAZy databases indicated that the pathways of metabolism, genetic information processing, environmental information processing, and cellular process were significantly enriched. Functional abundance was found to be associated with the nutrient absorption and microbial localization of indigenous chickens. We also investigated antibiotic resistant genes and found antibiotics like LSM, cephalosporin, and tetracycline were significantly more abundant in AF than AM.


Assuntos
Galinhas/microbiologia , Farmacorresistência Bacteriana , Microbioma Gastrointestinal , Metagenoma , Animais , Bacteroidetes/genética , Bacteroidetes/patogenicidade , Ceco/microbiologia , Etiópia , Firmicutes/genética , Firmicutes/patogenicidade , Metagenômica/métodos , Sequenciamento Completo do Genoma/métodos
3.
Microb Ecol ; 77(1): 267-276, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29860637

RESUMO

One of the world's most common infectious disease, periodontitis (PD), derives from largely uncharacterized communities of oral bacteria growing as biofilms (a.k.a. plaque) on teeth and gum surfaces in periodontal pockets. Bacteria associated with periodontal disease trigger inflammatory responses in immune cells, which in later stages of the disease cause loss of both soft and hard tissue structures supporting teeth. Thus far, only a handful of bacteria have been characterized as infectious agents of PD. Although deep sequencing technologies, such as whole community shotgun sequencing have the potential to capture a detailed picture of highly complex bacterial communities in any given environment, we still lack major reference genomes for the oral microbiome associated with PD and other diseases. In recent work, by using a combination of supervised machine learning and genome assembly, we identified a genome from a novel member of the Bacteroidetes phylum in periodontal samples. Here, by applying a comparative metagenomics read-classification approach, including 272 metagenomes from various human body sites, and our previously assembled draft genome of the uncultivated Candidatus Bacteroides periocalifornicus (CBP) bacterium, we show CBP's ubiquitous distribution in dental plaque, as well as its strong association with the well-known pathogenic "red complex" that resides in deep periodontal pockets.


Assuntos
Bacteroidetes/classificação , Bacteroidetes/isolamento & purificação , Bacteroidetes/patogenicidade , Doenças Periodontais/microbiologia , Filogenia , Bacteroidetes/genética , California , Placa Dentária/microbiologia , Genes Bacterianos/genética , Genoma Bacteriano/genética , Humanos , Indígenas Norte-Americanos , Metagenômica , Microbiota , Família Multigênica , Periodontite/microbiologia , Análise de Sequência de DNA , Fatores de Virulência/genética
4.
Mol Ecol ; 27(8): 2095-2108, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29117633

RESUMO

Microbial symbionts of insects provide a range of ecological traits to their hosts that are beneficial in the context of biotic interactions. However, little is known about insect symbiont-mediated adaptation to the abiotic environment, for example, temperature and humidity. Here, we report on an ancient clade of intracellular, bacteriome-located Bacteroidetes symbionts that are associated with grain and wood pest beetles of the phylogenetically distant families Silvanidae and Bostrichidae. In the saw-toothed grain beetle Oryzaephilus surinamensis, we demonstrate that the symbionts affect cuticle thickness, melanization and hydrocarbon profile, enhancing desiccation resistance and thereby strongly improving fitness under dry conditions. Together with earlier observations on symbiont contributions to cuticle biosynthesis in weevils, our findings indicate that convergent acquisitions of bacterial mutualists represented key adaptations enabling diverse pest beetle groups to survive and proliferate under the low ambient humidity that characterizes dry grain storage facilities.


Assuntos
Bacteroidetes/genética , Interações entre Hospedeiro e Microrganismos/genética , Simbiose/genética , Gorgulhos/microbiologia , Animais , Bacteroidetes/patogenicidade , Dessecação , Ecologia , Filogenia , Gorgulhos/genética , Gorgulhos/fisiologia
5.
Mult Scler ; 23(5): 628-636, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27956557

RESUMO

BACKGROUND: The gut microbiome, which consists of a highly diverse ecologic community of micro-organisms, has increasingly been studied regarding its role in multiple sclerosis (MS) immunopathogenesis. This review critically examines the literature investigating the gut microbiome in MS. METHODS: A comprehensive search was performed of PubMed databases and ECTRIMS meeting abstracts for literature relating to the gut microbiome in MS. Controlled studies examining the gut microbiome in patients with MS were included for review. RESULTS: Identified studies were predominantly case-control in their design and consistently found differences in the gut microbiome of MS patients compared to controls. We examine plausible mechanistic links between these differences and MS immunopathogenesis, and discuss the therapeutic implications of these findings. CONCLUSIONS: Review of the available literature reveals potential immunopathogenic links between the gut microbiome and MS, identifies avenues for therapeutic advancement, and emphasizes the need for further systematic study in this emerging field.


Assuntos
Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Microbiota/imunologia , Esclerose Múltipla/microbiologia , Animais , Bacteroidetes/patogenicidade , Trato Gastrointestinal/imunologia , Humanos , Infecções/microbiologia , Esclerose Múltipla/complicações
6.
J Proteome Res ; 14(12): 5355-66, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26510619

RESUMO

Tannerella forsythia, a Gram-negative oral bacterium closely associated with chronic periodontitis, naturally produces outer membrane vesicles (OMVs). In this study, OMVs were purified by gradient centrifugation, and the proteome was investigated together with cellular fractions using LC-MS/MS analyses of SDS-PAGE fractions, resulting in the identification of 872 proteins including 297 OMV proteins. Comparison of the OMV proteome with the subcellular proteomes led to the localization of 173 proteins to the vesicle membrane and 61 proteins to the vesicle lumen, while 27 substrates of the type IX secretion system were assigned to the vesicle surface. These substrates were generally enriched in OMVs; however, the stoichiometry of the S-layer proteins, TfsA and TfsB, was significantly altered, potentially to accommodate the higher curvature required of the S-layer around OMVs. A vast number of TonB-dependent receptors related to SusC, together with their associated SusD-like lipoproteins, were identified, and these were also relatively enriched in OMVs. In contrast, other lipoproteins were significantly depleted from the OMVs. This study identified the highest number of membrane-associated OMV proteins to date in any bacterium and conclusively demonstrates cargo sorting of particular classes of proteins, which may have significant impact on the virulence of OMVs.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Bacteroidetes/metabolismo , Proteínas de Membrana/metabolismo , Bacteroidetes/patogenicidade , Bacteroidetes/ultraestrutura , Transporte Biológico Ativo , Humanos , Glicoproteínas de Membrana/metabolismo , Redes e Vias Metabólicas , Sinais Direcionadores de Proteínas , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem
7.
Infect Immun ; 83(12): 4582-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26371120

RESUMO

The American Heart Association supports an association between periodontal diseases and atherosclerosis but not a causal association. This study explores the use of the integrin ß6(-/-) mouse model to study the causality. We investigated the ability of a polymicrobial consortium of Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Fusobacterium nucleatum to colonize the periodontium and induce local and systemic inflammatory responses. Polymicrobially infected Itgß6(-/-) mice demonstrate greater susceptibility to gingival colonization/infection, with severe gingival inflammation, apical migration of the junctional epithelium, periodontal pocket formation, alveolar bone resorption, osteoclast activation, bacterial invasion of the gingiva, a greater propensity for the bacteria to disseminate hematogenously, and a strong splenic T cell cytokine response. Levels of atherosclerosis risk factors, including serum nitric oxide, oxidized low-density lipoprotein, serum amyloid A, and lipid peroxidation, were significantly altered by polybacterial infection, demonstrating an enhanced potential for atherosclerotic plaque progression. Aortic gene expression revealed significant alterations in specific Toll-like receptor (TLR) and nucleotide-binding domain- and leucine-rich-repeat-containing receptor (NLR) pathway genes in response to periodontal bacterial infection. Histomorphometry of the aorta demonstrated larger atherosclerotic plaques in Itgß6(-/-) mice than in wild-type (WT) mice but no significant difference in atherosclerotic plaque size between mice with polybacterial infection and mice with sham infection. Fluorescence in situ hybridization demonstrated active invasion of the aortic adventitial layer by P. gingivalis. Our observations suggest that polybacterial infection elicits distinct aortic TLR and inflammasome signaling and significantly increases local aortic oxidative stress. These results are the first to demonstrate the mechanism of the host aortic inflammatory response induced by polymicrobial infection with well-characterized periodontal pathogens.


Assuntos
Túnica Adventícia/patologia , Antígenos de Neoplasias/imunologia , Aorta/patologia , Aterosclerose/complicações , Integrinas/imunologia , Periodontite/complicações , Placa Aterosclerótica/complicações , Túnica Adventícia/imunologia , Túnica Adventícia/microbiologia , Animais , Antígenos de Neoplasias/genética , Aorta/imunologia , Aorta/microbiologia , Aterosclerose/imunologia , Aterosclerose/microbiologia , Aterosclerose/patologia , Bacteroidetes/crescimento & desenvolvimento , Bacteroidetes/imunologia , Bacteroidetes/patogenicidade , Reabsorção Óssea , Modelos Animais de Doenças , Fusobacterium nucleatum/crescimento & desenvolvimento , Fusobacterium nucleatum/imunologia , Fusobacterium nucleatum/patogenicidade , Expressão Gênica , Gengiva/imunologia , Gengiva/microbiologia , Gengiva/patologia , Hibridização in Situ Fluorescente , Inflamassomos , Integrinas/deficiência , Integrinas/genética , Lipoproteínas LDL/genética , Lipoproteínas LDL/imunologia , Camundongos , Camundongos Knockout , Consórcios Microbianos , Periodontite/imunologia , Periodontite/microbiologia , Periodontite/patologia , Periodonto/imunologia , Periodonto/microbiologia , Periodonto/patologia , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/microbiologia , Placa Aterosclerótica/patologia , Porphyromonas gingivalis/crescimento & desenvolvimento , Porphyromonas gingivalis/imunologia , Porphyromonas gingivalis/patogenicidade , Treponema denticola/crescimento & desenvolvimento , Treponema denticola/imunologia , Treponema denticola/patogenicidade
8.
Int J Mol Sci ; 16(7): 16545-59, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26197317

RESUMO

In this study, we used a culture-independent method based on library construction and sequencing to analyze the genetic diversity of the cellulase and hemicellulase genes of the bacterial community resident in the hindgut of Holotrichia parallela larvae. The results indicate that there is a large, diverse set of bacterial genes encoding lignocellulose hydrolysis enzymes in the hindgut of H. parallela. The total of 101 distinct gene fragments (similarity <95%) of glycosyl hydrolase families including GH2 (24 genes), GH8 (27 genes), GH10 (19 genes), GH11 (14 genes) and GH36 (17 genes) families was retrieved, and certain sequences of GH2 (10.61%), GH8 (3.33%), and GH11 (18.42%) families had <60% identities with known sequences in GenBank, indicating their novelty. Based on phylogenetic analysis, sequences from hemicellulase families were related to enzymes from Bacteroidetes and Firmicutes. Fragments from cellulase family were most associated with the phylum of Proteobacteria. Furthermore, a full-length endo-xylanase gene was obtained, and the enzyme exhibited activity over a broad range of pH levels. Our results indicate that there are large number of cellulolytic and xylanolytic bacteria in the hindgut of H. parallela larvae, and these symbiotic bacteria play an important role in the degradation of roots and other organic matter for the host insect.


Assuntos
Proteínas de Bactérias/genética , Celulase/genética , Besouros/microbiologia , Glicosídeo Hidrolases/genética , Microbiota/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Bacteroidetes/enzimologia , Bacteroidetes/genética , Bacteroidetes/patogenicidade , Sequência de Bases , Celulase/química , Firmicutes/enzimologia , Firmicutes/genética , Firmicutes/patogenicidade , Glicosídeo Hidrolases/química , Intestinos/microbiologia , Dados de Sequência Molecular , Filogenia , Proteobactérias/enzimologia , Proteobactérias/genética , Proteobactérias/patogenicidade
9.
Microbiome ; 12(1): 128, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020382

RESUMO

BACKGROUND: Spring viremia of carp virus (SVCV) infects a wide range of fish species and causes high mortality rates in aquaculture. This viral infection is characterized by seasonal outbreaks that are temperature-dependent. However, the specific mechanism behind temperature-dependent SVCV infectivity and pathogenicity remains unclear. Given the high sensitivity of the composition of intestinal microbiota to temperature changes, it would be interesting to investigate if the intestinal microbiota of fish could play a role in modulating the infectivity of SVCV at different temperatures. RESULTS: Our study found that significantly higher infectivity and pathogenicity of SVCV infection in zebrafish occurred at relatively lower temperature. Comparative analysis of the intestinal microbiota in zebrafish exposed to high- and low-temperature conditions revealed that temperature influenced the abundance and diversity of the intestinal microbiota in zebrafish. A significantly higher abundance of Parabacteroides distasonis and its metabolite secondary bile acid (deoxycholic acid, DCA) was detected in the intestine of zebrafish exposed to high temperature. Both colonization of Parabacteroides distasonis and feeding of DCA to zebrafish at low temperature significantly reduced the mortality caused by SVCV. An in vitro assay demonstrated that DCA could inhibit the assembly and release of SVCV. Notably, DCA also showed an inhibitory effect on the infectious hematopoietic necrosis virus, another Rhabdoviridae member known to be more infectious at low temperature. CONCLUSIONS: This study provides evidence that temperature can be an important factor to influence the composition of intestinal microbiota in zebrafish, consequently impacting the infectivity and pathogenicity of SVCV. The findings highlight the enrichment of Parabacteroides distasonis and its derivative, DCA, in the intestines of zebrafish raised at high temperature, and they possess an important role in preventing the infection of SVCV and other Rhabdoviridae members in host fish. Video Abstract.


Assuntos
Bacteroidetes , Doenças dos Peixes , Microbioma Gastrointestinal , Infecções por Rhabdoviridae , Rhabdoviridae , Temperatura , Peixe-Zebra , Animais , Doenças dos Peixes/microbiologia , Doenças dos Peixes/virologia , Infecções por Rhabdoviridae/virologia , Rhabdoviridae/fisiologia , Rhabdoviridae/patogenicidade , Bacteroidetes/patogenicidade , Água , Vírus da Necrose Hematopoética Infecciosa/patogenicidade
10.
Proc Natl Acad Sci U S A ; 107(1): 276-81, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-19966289

RESUMO

Porphyromonas gingivalis secretes strong proteases called gingipains that are implicated in periodontal pathogenesis. Protein secretion systems common to other Gram-negative bacteria are lacking in P. gingivalis, but several proteins, including PorT, have been linked to gingipain secretion. Comparative genome analysis and genetic experiments revealed 11 additional proteins involved in gingipain secretion. Six of these (PorK, PorL, PorM, PorN, PorW, and Sov) were similar in sequence to Flavobacterium johnsoniae gliding motility proteins, and two others (PorX and PorY) were putative two-component system regulatory proteins. Real-time RT-PCR analysis revealed that porK, porL, porM, porN, porP, porT, and sov were down-regulated in P. gingivalis porX and porY mutants. Disruption of the F. johnsoniae porT ortholog resulted in defects in motility, chitinase secretion, and translocation of a gliding motility protein, SprB adhesin, to the cell surface, providing a link between a unique protein translocation system and a motility apparatus in members of the Bacteroidetes phylum.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroidetes/fisiologia , Bacteroidetes/patogenicidade , Movimento Celular/fisiologia , Cisteína Endopeptidases/metabolismo , Adesinas Bacterianas , Animais , Bacteroidetes/citologia , Quitinases/metabolismo , Genoma Bacteriano , Cisteína Endopeptidases Gingipaínas , Análise em Microsséries , Dados de Sequência Molecular , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
11.
Infect Immun ; 80(7): 2436-43, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22547549

RESUMO

Tannerella forsythia is strongly associated with chronic periodontitis, an inflammatory disease of the tooth-supporting tissues, leading to tooth loss. Fusobacterium nucleatum, an opportunistic pathogen, is thought to promote dental plaque formation by serving as a bridge bacterium between early- and late-colonizing species of the oral cavity. Previous studies have shown that F. nucleatum species synergize with T. forsythia during biofilm formation and pathogenesis. In the present study, we showed that coinfection of F. nucleatum and T. forsythia is more potent than infection with either species alone in inducing NF-κB activity and proinflammatory cytokine secretion in monocytic cells and primary murine macrophages. Moreover, in a murine model of periodontitis, mixed infection with the two species induces synergistic alveolar bone loss, characterized by bone loss which is greater than the additive alveolar bone losses induced by each species alone. Further, in comparison to the single-species infection, mixed infection caused significantly increased inflammatory cell infiltration in the gingivae and osteoclastic activity in the jaw bones. These data show that F. nucleatum subspecies and T. forsythia synergistically stimulate the host immune response and induce alveolar bone loss in a murine experimental periodontitis model.


Assuntos
Perda do Osso Alveolar/microbiologia , Perda do Osso Alveolar/patologia , Bacteroidetes/patogenicidade , Fusobacterium nucleatum/patogenicidade , Infecções por Bactérias Gram-Negativas/patologia , Periodontite/microbiologia , Periodontite/patologia , Animais , Coinfecção/microbiologia , Coinfecção/patologia , Modelos Animais de Doenças , Feminino , Infecções por Bactérias Gram-Negativas/microbiologia , Camundongos , Camundongos Endogâmicos BALB C
12.
Arch Microbiol ; 194(6): 525-39, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22273979

RESUMO

The Gram-negative oral pathogen Tannerella forsythia is decorated with a 2D crystalline surface (S-) layer, with two different S-layer glycoprotein species being present. Prompted by the predicted virulence potential of the S-layer, this study focused on the analysis of the arrangement of the individual S-layer glycoproteins by a combination of microscopic, genetic, and biochemical analyses. The two S-layer genes are transcribed into mRNA and expressed into protein in equal amounts. The S-layer was investigated on intact bacterial cells by transmission electron microscopy, by immune fluorescence microscopy, and by atomic force microscopy. The analyses of wild-type cells revealed a distinct square S-layer lattice with an overall lattice constant of 10.1 ± 0.7 nm. In contrast, a blurred lattice with a lattice constant of 9.0 nm was found on S-layer single-mutant cells. This together with in vitro self-assembly studies using purified (glyco)protein species indicated their increased structural flexibility after self-assembly and/or impaired self-assembly capability. In conjunction with TEM analyses of thin-sectioned cells, this study demonstrates the unusual case that two S-layer glycoproteins are co-assembled into a single S-layer. Additionally, flagella and pilus-like structures were observed on T. forsythia cells, which might impact the pathogenicity of this bacterium.


Assuntos
Proteínas de Bactérias/química , Bacteroidetes/ultraestrutura , Membrana Celular/ultraestrutura , Glicoproteínas de Membrana/química , Proteínas de Bactérias/genética , Bacteroidetes/genética , Bacteroidetes/patogenicidade , Clonagem Molecular , Glicoproteínas de Membrana/genética , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Transcrição Gênica , Virulência
13.
Gut Microbes ; 14(1): 1997293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35090379

RESUMO

Parabacteroides distasonis (Pdis) is the type species for the new Parabacteroides genus, and a gut commensal of the Bacteroidetes phylum. Emerging reports (primarily based on reference strain/ATCC-8503) concerningly propose that long-known opportunistic pathogen Pdis is a probiotic. We posit there is an urgent need to characterize the pathogenicity of Pdis strain-strain variability. Unfortunately, no methods/insights exist to classify Bacteroidetes for this purpose. Herein, we developed a virulence gene-based classification system for Pdis and Bacteroidetes to facilitate pathogenic-vs-probiotic characterization. We used DNA in silico methods to develop a system based on the virulence (lipopolysaccharide/bacterial wall) 'rfbA O-antigen-synthesis gene'. We then performed phylogenetic analysis of rfbA from fourteen Pdis complete genomes (21 genes), other Parabacteroides, Bacteroidetes, and Enterobacteriaceae; and proposed a PCR-based Restriction-Fragment Length Polymorphism method. Cluster analysis revealed that Pdis can be classified into four lineages (based on gene gaps/insertions) which we designated rfbA-Types I, II, III, and IV. In context, we found 14 additional rfbA-types (I-XVIII) interspersed with numerous Bacteroidetes and pathogenic Enterobacteriaceae forming three major "rfbA-superclusters." For laboratory rfbA-Typing implementation, we developed a PCR-primer strategy to amplify Pdis rfbA genes (100%-specificity) to conduct MboII-RFLP and sub-classify Pdis. In-silico primers for other Bacteroidetes are proposed/discussed. Comparative analysis of lipopolysaccharide/lipid-A gene lpxK confirmed rfbA as highly discriminant. In conclusion, rfbA-Typing classifies Bacteroidetes/Pdis into unique clusters/superclusters given rfbA copy/sequence variability. Analysis revealed that most pathogenic Pdis strains are single-copy rfbA-Type I . The relevance of the rfbA strain variability in disease might depend on their hypothetical modulatory interactions with other O-antigens/lipopolysaccharides and TLR4 lipopolysaccharide-receptors in human/animal cells.


Assuntos
Proteínas de Bactérias/genética , Bacteroidetes/classificação , Glicosiltransferases/genética , Antígenos O/genética , Animais , Técnicas de Tipagem Bacteriana/métodos , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/patogenicidade , Primers do DNA/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Filogenia , Polimorfismo de Fragmento de Restrição , Probióticos/química , Probióticos/classificação , Virulência
14.
Microbiology (Reading) ; 157(Pt 8): 2382-2391, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21622527

RESUMO

Tannerella forsythia, a Gram-negative anaerobe implicated in periodontitis, has been detected within human buccal epithelial cells and shown to invade oral epithelial cells in vitro. We have previously shown that this bacterium triggers host tyrosine kinase-dependent phosphorylation and actin-dependent cytoskeleton reorganization for invasion. On the bacterial side, the leucine-rich repeat cell-surface BspA protein is important for entry. The present study was undertaken to identify host signalling molecules during T. forsythia entry into human oral and cervical epithelial cells. Specifically, the roles of phosphatidylinositol 3-kinase (PI3K), Rho-family GTPases, cholesterol-rich membrane microdomains and the endocytic protein clathrin were investigated. For this purpose, cell lines were pretreated with chemical inhibitors or small interfering RNAs (siRNAs) that target PI3Ks, Rho GTPases, clathrin and cholesterol (a critical component of 'lipid rafts'), and the resulting effects on T. forsythia uptake were determined. Our studies revealed that T. forsythia entry is dependent on host PI3K signalling, and that purified BspA protein causes activation of this lipid kinase. Bacterial entry also requires the cooperation of host Rac1 GTPase. Finally, our findings indicate an important role for clathrin and cholesterol-rich lipid microdomains in the internalization process.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroidetes/patogenicidade , Endocitose , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Clatrina/metabolismo , Células HeLa , Humanos , Microdomínios da Membrana/metabolismo , Mucosa Bucal/microbiologia
15.
PLoS Comput Biol ; 6(9)2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20838465

RESUMO

Endosymbiotic bacteria from different species can live inside cells of the same eukaryotic organism. Metabolic exchanges occur between host and bacteria but also between different endocytobionts. Since a complete genome annotation is available for both, we built the metabolic network of two endosymbiotic bacteria, Sulcia muelleri and Baumannia cicadellinicola, that live inside specific cells of the sharpshooter Homalodisca coagulata and studied the metabolic exchanges involving transfers of carbon atoms between the three. We automatically determined the set of metabolites potentially exogenously acquired (seeds) for both metabolic networks. We show that the number of seeds needed by both bacteria in the carbon metabolism is extremely reduced. Moreover, only three seeds are common to both metabolic networks, indicating that the complementarity of the two metabolisms is not only manifested in the metabolic capabilities of each bacterium, but also by their different use of the same environment. Furthermore, our results show that the carbon metabolism of S. muelleri may be completely independent of the metabolic network of B. cicadellinicola. On the contrary, the carbon metabolism of the latter appears dependent on the metabolism of S. muelleri, at least for two essential amino acids, threonine and lysine. Next, in order to define which subsets of seeds (precursor sets) are sufficient to produce the metabolites involved in a symbiotic function, we used a graph-based method, PITUFO, that we recently developed. Our results highly refine our knowledge about the complementarity between the metabolisms of the two bacteria and their host. We thus indicate seeds that appear obligatory in the synthesis of metabolites are involved in the symbiotic function. Our results suggest both B. cicadellinicola and S. muelleri may be completely independent of the metabolites provided by the co-resident endocytobiont to produce the carbon backbone of the metabolites provided to the symbiotic system (., thr and lys are only exploited by B. cicadellinicola to produce its proteins).


Assuntos
Bacteroidetes/metabolismo , Gammaproteobacteria/metabolismo , Hemípteros/metabolismo , Hemípteros/microbiologia , Animais , Bacteroidetes/patogenicidade , Biologia Computacional/métodos , Gammaproteobacteria/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , Redes e Vias Metabólicas/fisiologia , Metaboloma , Modelos Biológicos , Simbiose
17.
J Invertebr Pathol ; 103(3): 150-5, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20035767

RESUMO

Cardinium is a recently discovered maternally transmitted bacterial endosymbiont in the Bacteroidetes that has thus far been documented in five arthropod orders. While its effects on his hosts are largely unknown, a few strains have been shown to manipulate host reproduction in parasitic wasps and in mites, either by transforming males into females, or by causing mating incompatibilities between infected males and uninfected males. Cardinium has recently been reported to be widespread in spiders, and in this study, we document pervasive infections in Cybaeus spiders, which are some of the most abundant yet understudied spiders in the understory of moist Western North American forests. 12/20 species, as well as 96% of individuals in a local population of Cybaeus signifer were infected. Phylogenetic analysis revealed three closely related symbiont haplotypes within Cybaeus. Haplotypes clustered within geographically close species, suggesting that horizontal transmission might be quite high in this symbiont lineage.


Assuntos
Bacteroidetes/genética , Aranhas/genética , Aranhas/microbiologia , Simbiose/genética , Animais , Bacteroidetes/patogenicidade , DNA Bacteriano/genética , DNA Ribossômico/genética , Feminino , Transferência Genética Horizontal , Haplótipos , Masculino , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Anaerobe ; 16(3): 223-5, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20139022

RESUMO

Using 16S rRNA sequence analysis, we report the first isolation of Parabacteroides goldsteinii as a monobacterial isolate from blood culture in a patient with abdominal sepsis. P. goldsteinii phenotypically resembles Parabacteroides merdae and Parabacteroides distasonis and may be misidentified by commonly used enzymatic systems, suggesting that it may be more frequently present in clinical specimens than previously appreciated but either misidentified or ignored.


Assuntos
Abscesso Abdominal/complicações , Bacteriemia/diagnóstico , Bacteriemia/microbiologia , Bacteroidetes/isolamento & purificação , Idoso de 80 Anos ou mais , Bacteroidetes/patogenicidade , Feminino , Humanos , Virulência
19.
Anaerobe ; 16(4): 461-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20380884

RESUMO

INTRODUCTION: The purpose of this study was to investigate the adhesion and invasion of periodontopathogenic bacteria in varied mixed infections and the release of interleukins from an epithelial cell line (KB cells). METHODS: KB cells were co-cultured with Porphyromonas gingivalis ATCC 33277 and M5-1-2, Tannerella forsythia ATCC 43037, Treponema denticola ATCC 35405 and Fusobacterium nucleatum ATCC 25586 in single and mixed infections. The numbers of adherent and internalized bacteria were determined up to 18 h after bacterial exposure. Additionally, the mRNA expression and concentrations of released interleukin (IL)-6 and IL-8 were measured. RESULTS: All periodontopathogenic bacteria adhered and internalized in different numbers to KB cells, but individually without any evidence of co-aggregation also to F. nucleatum. High levels of epithelial mRNA of IL-6 and IL-8 were detectable after all bacterial challenges. After the mixed infection of P. gingivalis ATCC 33277 and F. nucleatum ATCC 25586 the highest levels of released interleukins were found. No IL-6 and IL-8 were detectable after the mixed infection of P. gingivalis M5-1-2 and F. nucleatum ATCC 25586 and the fourfold infection of P. gingivalis ATCC 33277, T. denticola ATCC 35405, T. forsythia ATCC 43037 and F. nucleatum ATCC 25586. CONCLUSION: Anaerobic periodontopathogenic bacteria promote the release of IL-6 and IL-8 by epithelial cells. Despite a continuous epithelial expression of IL-8 mRNA by all bacterial infections these effects are temporary because of the time-dependent degradation of cytokines by bacterial proteases. Mixed infections have a stronger virulence potential than single bacteria. Further research is necessary to evaluate the role of mixed infections and biofilms in the pathogenesis of periodontitis.


Assuntos
Aderência Bacteriana , Bacteroidetes/patogenicidade , Células Epiteliais/microbiologia , Fusobacterium nucleatum/patogenicidade , Interleucinas/metabolismo , Doenças Periodontais/microbiologia , Treponema denticola/patogenicidade , Bacteroidetes/crescimento & desenvolvimento , Técnicas de Cocultura , Células Epiteliais/imunologia , Fusobacterium nucleatum/crescimento & desenvolvimento , Humanos , Células KB , Treponema denticola/crescimento & desenvolvimento
20.
PLoS One ; 15(8): e0237189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760124

RESUMO

Herpes simplex virus 1 (HSV) is a ubiquitous human virus resident in a majority of the global population as a latent infection. Acyclovir (ACV), is the standard of care drug used to treat primary and recurrent infections, supplemented in some patients with intravenous immunoglobulin (IVIG) treatment to suppress infection and deleterious inflammatory responses. As many diverse medications have recently been shown to change composition of the gut microbiome, we used Illumina 16S rRNA gene sequencing to determine the effects of ACV and IVIG on the gut bacterial community. We found that HSV, ACV and IVIG can all independently disrupt the gut bacterial community in a sex biased manner when given to uninfected C57BL/6 mice. Treatment of HSV infected mice with ACV or IVIG alone or together revealed complex interactions between these drugs and infection that caused pronounced sex biased dysbiosis. ACV reduced Bacteroidetes levels in male but not female mice, while levels of the Anti-inflammatory Clostridia (AIC) were reduced in female but not male mice, which is significant as these taxa are associated with protection against the development of graft versus host disease (GVHD) in hematopoietic stem cell transplant (HSCT) patients. Gut barrier dysfunction is associated with GVHD in HSCT patients and ACV also decreased Akkermansia muciniphila, which is important for maintaining gut barrier functionality. Cumulatively, our data suggest that long-term prophylactic ACV treatment of HSCT patients may contribute to GVHD and also potentially impact immune reconstitution. These data have important implications for other clinical settings, including HSV eye disease and genital infections, where ACV is given long-term.


Assuntos
Aciclovir/efeitos adversos , Antivirais/efeitos adversos , Disbiose/etiologia , Herpes Simples/microbiologia , Imunoglobulinas Intravenosas/efeitos adversos , Aciclovir/uso terapêutico , Animais , Antivirais/uso terapêutico , Bacteroidetes/patogenicidade , Clostridium/patogenicidade , Disbiose/microbiologia , Feminino , Microbioma Gastrointestinal , Herpes Simples/tratamento farmacológico , Imunoglobulinas Intravenosas/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA