Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 149: 109542, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579976

RESUMO

The interaction between environmental factors and Vibrio in bivalves is not well understood, despite the widely held belief that pathogen infection and seawater temperature significantly impact summer mortality. In the present study, we conducted simulated experiments to explore the effects of high temperature and Vibrio infection on the clam Meretrix petechialis. The survival curve analysis revealed that the combined challenge of high temperature and Vibrio infection (31°C-vibrio) led to significantly higher clam mortality compared to the groups exposed solely to Vibrio (27°C-vibrio), high temperature (31°C-control), and the control condition (27°C-control). Furthermore, PCoA analysis of 11 immune genes indicated that Vibrio infection predominated during the incubation period, with a gradual equilibrium between these factors emerging during the course of the infection. Additionally, our investigations into apoptosis and autophagy processes exhibited significant induction of mTOR and Bcl2 of the 31°C-vibrio group in the early challenge stage, followed by inhibition in the later stage. Oxidative stress analysis demonstrated a substantial additive effect on malondialdehyde (MDA) and glutathione (GSH) content in the combined challenge group compared to the control group. Comparative transcriptome analysis revealed a significant increase in differentially expressed genes related to immunity, such as complement C1q-like protein, C-type lectin, big defensin, and lysozyme, in the 31°C-vibrio group, suggesting that the synergistic effect of high temperature and Vibrio infection triggers more robust antibacterial immune responses. These findings provide critical insights for understanding the infection process and uncovering the causes of summer mortality.


Assuntos
Apoptose , Bivalves , Temperatura Alta , Estresse Oxidativo , Vibrio , Animais , Bivalves/imunologia , Bivalves/microbiologia , Bivalves/genética , Vibrio/fisiologia , Temperatura Alta/efeitos adversos , Estações do Ano , Imunidade Inata/genética , Vibrioses/veterinária , Vibrioses/imunologia
2.
Fish Shellfish Immunol ; 151: 109664, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844186

RESUMO

Mass Mortality Events (MMEs) affecting the noble pen shell Pinna nobilis have been reported since 2016. In this work, we used an in vitro flow cytometric assay to evaluate phagocytosis, coupled with cytology and Electron Microscopy (TEM), to define animal immunocompetence following infection by P. nobilis Picornavirus (PnPV). The study was performed on 27 animals in July 2021 and May 2022 on two natural population from the Ebro Delta (Catalonia, Spain) and animals maintained in captivity at facilities in Valencia and Murcia Aquarium. Hemolymph was collected in the field and in captivity as a non-destructive sampling method. Based on dimension and internal complexity, flow cytometry identified three haemocyte types, distinguished in granulocytes, hyalinocytes and a third type, biggest in size and with high internal complexity and granularity. Those cells corresponded at ultrastructure to hemocytes with advanced phases of PnPV infection and related to cytopathic effect of the replicating virus displaying numerous Double Membrane Vesicles (DMVs) and cells corpse fusion. The results showed that pen shell in captivity had significantly lower Total Hemocyte Count (THC) compared with natural population of Alfacs Bay (mean number of 7-9 x 104 vs 2-5 x 105 cells/mL, respectively). FACS (Fluorescence-activated cell sorting) based phagocytosis analysis demonstrate that animals in captivity at IMEDMAR-UCV and Murcia Aquarium, had scarce or absent ability to phagocyte the two stimuli (Staphylococcus aureus and Zymosan A) (10,2 % ± 1,7 of positives) if compared with the natural population in Alfacs Bay (28,5 % ± 5,6 of positive). Ultrastructure images showed that PnPV itself can lead to an alteration of the hemocyte cytoskeleton, impairing the capabilities to perform an active phagocytosis and an efficient phagolysosome fusion.


Assuntos
Hemócitos , Picornaviridae , Animais , Picornaviridae/imunologia , Hemócitos/imunologia , Hemócitos/ultraestrutura , Imunocompetência , Bivalves/imunologia , Bivalves/virologia , Fagocitose , Espanha , Citometria de Fluxo/veterinária , Microscopia Eletrônica de Transmissão/veterinária , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/virologia
3.
Fish Shellfish Immunol ; 153: 109833, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147178

RESUMO

C-type lectins (CTLs) are a kind of Ca2+-dependent immunoreactive factors, which participated in pathogens recognition and defense. The present study identified a new CTL from hard clam Meretrix meretrix (designated as MmCTL4). The full-length of MmCTL4 cDNA was 608 bp, encoding a presumed signal peptide of 19 bp and a carbohydrate recognition domain (CRD) of 131 bp. The tertiary structure of recombinant MmCTL4 protein (rMmCTL4) was the typical long double-ring structure with three conserved disulfide bonds, and the motifs in Ca2+-binding sites of MmCTL4 were QPN and WSD. The SYBR Green real-time PCR analysis indicated that MmCTL4 was widely expressed in the hemocytes, hepatopancreas and mantle of healthy clams. After Vibrio splendidus stimulation, the temporal expression profile of MmCTL4 mRNA in hemocytes and hepatopancreas increased by 7.8-fold at 6 hpi and 3.9-fold at 12 hpi, respectively. The cDNA fragments encoding MmCTL4 were recombined into pET-32a (+) vectors, and transformed into Escherichia coli BL21 (DE3). The rMmCTL4 with the presence of Ca2+ performed obvious hemagglutination activity, and could agglutinate E. coli, Bacillus subtilis, and Staphylococcus aureus, while it only weakly agglutinate Vibrio parahaemolyticus and fungi P. pastoris. The agglutination activity of rMmCTL4 were significantly inhibited by D-mannose, D-xylose, D-lactose, maltose and lipopolysaccharides. These results indicated that MmCTL4, as a class of typical pattern recognition receptors (PRRs), could protect the host against pathogen invasion in the innate immunity of clams.


Assuntos
Sequência de Aminoácidos , Bivalves , Imunidade Inata , Lectinas Tipo C , Filogenia , Alinhamento de Sequência , Animais , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Lectinas Tipo C/química , Bivalves/imunologia , Bivalves/genética , Imunidade Inata/genética , Alinhamento de Sequência/veterinária , Sequência de Bases , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária , Vibrio/fisiologia
4.
Fish Shellfish Immunol ; 115: 22-26, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34052388

RESUMO

Inflammation is a form of innate immune response of living organisms to harmful stimuli. In marine bivalves, inflammation is a common defense mechanism. Several studies have investigated the morphological features of inflammation in bivalves, such as hemocyte infiltration. However, the molecular and biochemical responses associated with inflammation in marine bivalves remain unexplored. Here, we investigated changes in nitric oxide (NO) levels, cyclooxygenase 2 (COX-2) activity, and allograft inflammatory factor-1 (AIF-1) gene expression levels in hemolymph samples collected from Manila clam (Ruditapes philippinarum) exposed to pro- and anti-inflammatory substances. These included the pro-inflammatory agent lipopolysaccharide (LPS), and the nonsteroidal anti-inflammatory drugs (NSAIDs) ibuprofen and diclofenac, all widely used in vertebrates. Our study showed that NO levels, COX-2 activity, and AIF-1 expression increased in response to the treatments with LPS and decreased in response to the treatments with NSAIDs in a concentration-dependent manner. These results suggest that the mechanism of inflammatory responses in bivalves is very similar to that of vertebrates, and we propose that inflammatory responses can be quantified using these techniques and used to determine the physiological status of marine bivalves exposed to biotic or abiotic stresses.


Assuntos
Bivalves/genética , Bivalves/imunologia , Expressão Gênica/imunologia , Imunidade Inata/genética , Animais , Proteínas de Ligação ao Cálcio/imunologia , Ciclo-Oxigenase 2/imunologia , Diclofenaco/administração & dosagem , Ibuprofeno/administração & dosagem , Lipopolissacarídeos/administração & dosagem , Óxido Nítrico/imunologia , Poluentes Químicos da Água/administração & dosagem
5.
Fish Shellfish Immunol ; 111: 49-58, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33493684

RESUMO

The Manila clam (Ruditapes philippinarum), one of the major marine aquaculture species in China, is susceptible to infection with the pathogen Vibrio, which results in massive mortality and economic losses. Toll-like receptors (TLRs) are significant pattern recognition receptors (PRRs) of innate immunity that are involved in immune regulation against pathogenic invasion. Molecular characterization of Manila clam TLRs and investigations of their immune functions are essential to prevent and control Vibrio infection. In the present research, eight cDNA sequences of R. philippinarum TLRs (RpTLRs) were identified from previous transcriptome libraries and then classified into four groups, namely, P-TLR (one sequence), V-TLR (one sequence), Ls-TLR (two sequences) and sP-TLR (four sequences), based on the corresponding LRR domain arrangement of their protein structures within the typical TLR motifs. A selective pressure test firstly suggested that the molluscan P-TLR, V-TLR, Ls-TLR and sP-TLR families underwent positive selection, and different numbers of positive selection sites (PSSs) were identified in different domains of the four types of RpTLRs, as determined by PAML and analysis of website data. These findings indicated that the evolution of RpTLRs may be associated with their immune recognition and function. Furthermore, tissue-specific expression analysis showed that all RpTLRs were ubiquitously expressed in all test tissues and were dominant in hemocytes. Quantitative real-time PCR revealed that the cDNA expression of all eight RpTLRs was upregulated after injection with Vibrio anguillarum (P < 0.01) in R. philippinarum hemocytes, revealing that these RpTLRs play important roles in responding to pathogenic stimulation. In summary, these findings provide a foundation for future investigations of the molecular classification and evolutionary patterns of Toll-like receptors in invertebrates, and the innate immune responses of TLR signaling pathways in Mollusca.


Assuntos
Bivalves/genética , Bivalves/imunologia , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Transcriptoma , Vibrio/fisiologia , Animais , Perfilação da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/imunologia
6.
Fish Shellfish Immunol ; 108: 24-31, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33253907

RESUMO

Substantial mortality and economic losses in marine mollusk culture has drawn considerable attention in recent years. The changes in immune status and environmental stress are thought to be the main causes of shellfish summer mortality. The reproduction and immune defense are both physiologically demanding processes, therefore, the immune status of mollusk is likely to be affected by reproduction during breeding. In present study, we performed transcriptome and gene expression analyses in the clam Meretrix petechialis pre-/post-spawning. DEGs enrichment analysis revealed important immune signaling pathways and key genes changed after spawning. Further analysis showed females up-regulated genes involved in apoptosis, TLR signal pathway and heat shock, whereas males down-regulated complement-related genes after spawning. Additionally, both genders of clams up-regulated its immune response level to against Vibrio infection after spawning revealed by the changes of four immune-related DEGs. The up-regulation of two marker genes at the transcription and protein levels further confirmed that pathogen reinforced the expression differences of immune-related genes between the two groups. Our study provides a new insight into the understanding of molecular mechanisms underlying reproduction influenced immune differences in M. petechialis.


Assuntos
Bivalves/genética , Bivalves/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Transcriptoma/imunologia , Animais , Bivalves/microbiologia , Perfilação da Expressão Gênica , Reprodução , Vibrio parahaemolyticus/fisiologia
7.
Mol Biol Rep ; 48(1): 997-1004, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33394229

RESUMO

Recently, Pinna nobilis pen shells population in Mediterranean Sea has plummeted due to a Mass Mortality Event caused by an haplosporidian parasite. In consequence, this bivalve species has been included in the IUCN Red List as "Critically Endangered". In the current scenario, several works are in progress to protect P. nobilis from extinction, being identification of hybrids (P. nobilis x P. rudis) among survivors extremely important for the conservation of the species.Morphological characteristics and molecular analyses were used to identify putative hybrids. A total of 10 individuals of each species (P. nobilis and P. rudis) and 3 doubtful individuals were considered in this study. The putative hybrids showed shell morphology and mantle coloration intermingled exhibiting both P. nobilis and P. rudis traits. Moreover, the analyses of 1150 bp of the 28S gene showed 9 diagnostic sites between P. rudis and P. nobilis, whereas hybrids showed both parental diagnostic alleles at the diagnostic loci. Regarding the multilocus genotypes from the 8 microsatellite markers, the segregation of two Pinna species was clearly detected on the PCoA plot and the 3 hybrids showed intermediate positions.This is the first study evidencing the existence of hybrids P. nobilis x P. rudis, providing molecular methodology for a proper identification of new hybrids. Further studies testing systematically all parasite-resisting isolated P. nobilis should be undertaken to determine if the resistance is resulting from introgression of P. rudis into P. nobilis genome and identifying aspects related to resistance.


Assuntos
Bivalves/genética , Quimera/genética , Resistência à Doença/genética , Loci Gênicos , Haplosporídios/patogenicidade , Alelos , Animais , Bivalves/classificação , Bivalves/imunologia , Bivalves/parasitologia , Quimera/imunologia , Cruzamentos Genéticos , Resistência à Doença/imunologia , Espécies em Perigo de Extinção , Genótipo , Haplosporídios/crescimento & desenvolvimento , Mar Mediterrâneo , Repetições de Microssatélites , Filogenia , Análise de Componente Principal
8.
J Invertebr Pathol ; 186: 107492, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33086084

RESUMO

It is a difficult task to describe what constitutes a 'healthy' shellfish (e.g., crustacean, bivalve). Visible defects such as discolouration, missing limbs or spines, fouling, lesions, and exoskeletal fractures can be indicative of underlying issues, senescence, or a 'stressed' animal. The absence of such symptoms is not evidence of a disease-free or a stress-free state. Now, more than ever, aquatic invertebrates must cope with acute and chronic environmental perturbations, such as, heatwaves and cold shocks, xenobiotic contaminants, intoxication events, and promiscuous pathogens expanding their host and geographic ranges. With that in mind, how does one determine the extent to which shellfish become stressed in situ (natural) or in cultured (artificial) settings to enhance disease susceptibility? Many biomarkers - predominantly biochemical and cellular measures of shellfish blood (haemolymph) - are considered to gauge immunosuppression and immunocompetence. Such measures range from immune cell (haemocyte) counts to enzymic activities and metabolite quantitation. Stressed invertebrates often reflect degraded conditions of their ecosystems, referred to as environmental indicators. We audit briefly the broad immune functions of shellfish, how they are modulated by known and emerging stressors, and discuss these concepts with respect to neuroendocrinology and immunotoxicology. We assert that chronic stress, alone or in combination with microbial, chemical and abiotic factors, increases the risk of infectious disease in shellfish, exacerbates idiopathic morbidity, and reduces the likelihood of recovery. Acute stress events can lead to immunomodulation, but these effects are largely transient. Enhancing our understanding of shellfish health and immunity is imperative for tackling losses at each stage of the aquatic food cycle and disease outbreaks in the wild.


Assuntos
Bivalves/imunologia , Crustáceos/imunologia , Estresse Fisiológico/imunologia , Animais , Hemócitos/imunologia , Hemolinfa/imunologia
9.
BMC Genomics ; 21(1): 318, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32326883

RESUMO

BACKGROUND: Hypoxia is an important environmental stressor in aquatic ecosystems, with increasingly impacts on global biodiversity. Benthic communities are the most sensitive parts of the coastal ecosystem to eutrophication and resulting hypoxia. As a filter-feeding organism living in the seafloor sediment, Ruditapes philippinarum represents an excellent "sentinel" species to assess the quality of marine environment. In order to gain insight into the molecular response and acclimatization mechanisms to hypoxia stress in marine invertebrates, we examined hypoxia-induced changes in immune-related gene expression and gene pathways involved in hypoxia regulation of R. philippinarum. RESULTS: We investigated the response of the Manila clam R. philippinarum to hypoxia under experimental conditions and focused on the analysis of the differential expression patterns of specific genes associated with hypoxia response by RNA-seq and time course qPCR analysis. A total of 75 genes were captured significantly differentially expressed, and were categorized into antioxidant/oxidative stress response, chaperones/heat shock proteins, immune alteration, and cell proliferation/apoptosis. Fourteen hypoxia responsive genes were validated significantly up/down regulated at different time 0, 2, 5, and 8 d in gills of R. philippinarum in hypoxia challenged group. Functional enrichment analysis revealed the HIF signaling pathway and NF-κB signaling pathway play pivotal roles in hypoxia tolerance and resistance in R. philippinarum. CONCLUSION: The HIF signaling pathway and NF-κB signaling pathway play a critical role in hypoxia tolerance and resistance in Manila clam. The immune and defense related genes and pathways obtained here gain a fundamental understanding of the hypoxia stress in marine bivalves and provide important insights into the physiological acclimation, immune response and defense activity under hypoxia challenge. The reduced metabolism is a consequence of counterbalancing investments in immune defense against other physiological processes.


Assuntos
Bivalves/genética , Perfilação da Expressão Gênica/métodos , Fator 1 Induzível por Hipóxia/genética , Imunidade/genética , NF-kappa B/genética , Transdução de Sinais/efeitos dos fármacos , Adaptação Fisiológica/genética , Anaerobiose , Animais , Bivalves/imunologia , Ontologia Genética , Estresse Fisiológico
10.
Fish Shellfish Immunol ; 106: 110-119, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32755682

RESUMO

The Manila clam, Ruditapes philippinarum, is an economically important shellfish in marine aquaculture. A better understanding of the immune system in R. philippinarum will provide the basis for the development of strategies to mitigate the impact of infectious diseases affecting this species but can also be of relevance for other bivalves of commercial interest. In this study, the transcriptional response of the Manila clam under lipopolysaccharide (LPS) challenge was characterized using RNA sequencing. The transcriptomes of LPS challenged group of clams (LH1, LH2 and LH3), and the PBS control group (CH1, CH2 and CH3), were sequenced with the Illumina HiSeq platform. Compared with the unigene expression profile of the control group, 223 unigenes were up-regulated and 389 unigenes were down-regulated in the LPS challenged group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that signal transduction, defense response, and immune-related pathways such as Chemokine signaling pathway, Complement and coagulation cascades, NOD-like receptor signaling pathway, and Inflammatory mediator regulation of TRP channels in sensory system were the most highly enriched pathways among the genes that were differentially expressed under LPS challenge. This study present understanding of the molecular basis underpinning response to LPS challenge and provides useful information for future work on the molecular mechanism of pathogen resistance and immunity in Manila clam.


Assuntos
Bivalves/genética , Imunidade Inata/genética , Lipopolissacarídeos/farmacologia , Transcriptoma/imunologia , Animais , Bivalves/imunologia , Perfilação da Expressão Gênica
11.
Fish Shellfish Immunol ; 98: 1017-1023, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31743760

RESUMO

TAF5L is a component of the P300/CBP-associated factor (PCAF) histone acetylase complex, which serves as a coactivator and takes part in basal transcription such as promoter recognition, complex assembly and transcription initiation. In our study, the full-length sequence of MpTAF5L was identified and characterized in the clam M. petechialis. Sequence analysis showed that the predicted MpTAF5L protein had a N-terminal TAF5-NTD2 domain and a C-terminal WD40-repeats domain. The annotation and evolutionary analysis revealed MpTAF5L had close evolutionary relationship with other invertebrate species. Tissue distribution analysis of TAF5L claimed that it was highly expressed in the mantle, adductor muscle, foot and hepatopancreas. The mRNA expression of MpTAF5L was significantly up-regulated after Vibrio parahaemolyticus challenge, indicating its involvement in the immune response of clam. Yeast two-hybrid assays verified that MpTAF5L can interact with MpMITF (a critical immune-related transcription factor), and our further research clarified this interaction depended upon the N-terminal TAF5-NTD2 domain of MpTAF5L. Moreover, the mRNA expression of MpBcl-2 (a target gene of MITF) was significantly decreased but the mRNA expression of MpMITF was not significantly changed after knockdown of MpTAF5L, which indicated the reduction of MpMITF regulating activity at the same time. These results revealed that MpTAF5L interacted with MpMITF and enhanced the activation of MpMITF, which plays roles in the immune defense against V. parahaemolyticus.


Assuntos
Bivalves/genética , Bivalves/imunologia , Imunidade Inata/genética , Fator de Transcrição Associado à Microftalmia/genética , Fatores de Transcrição de p300-CBP/genética , Sequência de Aminoácidos , Animais , Fator de Transcrição Associado à Microftalmia/imunologia , Alinhamento de Sequência , Fatores de Transcrição de p300-CBP/imunologia
12.
Fish Shellfish Immunol ; 107(Pt A): 260-268, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33031900

RESUMO

In the present study, two C-type lectins (designated as VpClec-3 and VpClec-4) were identified and characterized from the manila clam Venerupis philippinarum. Multiple alignment and phylogenetic relationship analysis strongly suggested that VpClec-3 and VpClec-4 belong to the C-type lectin family. In nonstimulated clams, the VpClec-3 transcript was dominantly expressed in the hepatopancreas, while the VpClec-4 transcript was mainly expressed in gill tissues. Both VpClec-3 and VpClec-4 mRNA expression was significantly upregulated following Vibrio anguillarum challenge. Recombinant VpClec-4 (rVpClec-4) was shown to bind lipopolysaccharide (LPS) and glucan in vitro, whereas recombinant VpClec-3 (rVpClec-3) only bound to glucan. In addition, rVpClec-3 and rVpClec-4 displayed broad agglutination activities towards Vibrio harveyi, Vibrio splendidus and V. anguillarum, while no agglutination activities towards Enterobacter cloacae or Aeromonas hydrophila were observed in rVpClec-3. Moreover, hemocyte phagocytosis was significantly enhanced by rVpClec-3 and rVpClec-4. All the results showed that VpClecs function as pattern recognition receptors (PRRs) with distinct recognition spectra and are potentially involved in the innate immune responses of V. philippinarum.


Assuntos
Bivalves/genética , Bivalves/imunologia , Glucanos/farmacologia , Bacilos Gram-Negativos Anaeróbios Facultativos/fisiologia , Imunidade Inata/genética , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Lipopolissacarídeos/farmacologia , Aglutinação , Sequência de Aminoácidos , Animais , Lectinas Tipo C/química , Alinhamento de Sequência
13.
Fish Shellfish Immunol ; 100: 230-237, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32169664

RESUMO

The geoduck Panopea globosa is an endemic and economic valuable species from the Mexican Northwest coast whose biology has been little studied. No information exists about their hemocytes to date, which is highly important to assess the welfare of wild and cultured organisms. In this study, hemocytes of adult P. globosa were characterized at the morphological, ultrastructural and functional level. The mean number of hemocytes in the hemolymph of P. globosa was 6 × 105 ± 2 × 105 cells mL-1. The cells were identified as granulocytes (Gr) and hyalinocytes (H). The former accounted for 28% of adhered cells in the hemolymph, measured 6-18 µm, showed numerous basophilic granules in the cytoplasm, with round and eccentric nuclei, and a nucleus:cytoplasm ratio of 0.44 ± 0.01. Hyalinocytes were the most abundant cells in the hemolymph of P. globosa (72% adhered cells) and were subdivided, according to their size, in small (Hs) 4-12 µm and large (HL) 6-18 µm. Hyalinocytes were eosinophilic round or ovoid cells with a central or eccentric nucleus, few or no granules in the cytoplasm and similar nucleus:cytoplasm ratio (Hs: 0.63 and HL: 061). Lysosomes and lipids were observed in Gr, while carbohydrates were the most abundant energy substrate in H. Both hemocytic cell types, mainly Gr, were capable to ingest particles and yield superoxide (P > 0.05). The present study shows for the first time the cell types, abundance and immune activities of hemocytes present in the hemolymph of P. globosa. This information provides a useful baseline to carry out further research on the cellular immune response of the clam to potential pathogens or changes in environmental factors.


Assuntos
Bivalves/citologia , Bivalves/imunologia , Hemócitos/classificação , Hemolinfa/citologia , Imunidade Celular , Animais , Granulócitos/citologia , México , Oceanos e Mares , Fagocitose , Fagossomos/imunologia
14.
Fish Shellfish Immunol ; 99: 641-653, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32044464

RESUMO

Marine mollusk aquaculture has more than doubled over the past twenty years, accounting for over 15% of total aquaculture production in 2016. Infectious disease is one of the main limiting factors to the development of mollusk aquaculture, and the difficulties inherent to combating pathogens through antibiotic therapies or disinfection have led to extensive research on host defense mechanisms and host-pathogen relationships. It has become increasingly clear that characterizing the functional profiles of response to a disease is an essential step in understanding resistance mechanisms and moving towards more effective disease control. The Manila clam, Ruditapes philippinarum, is a main cultured bivalve species of economic importance which is affected by Brown Ring disease (BRD), an infection induced by the bacterium Vibrio tapetis. In this study, juvenile Manila clams were subjected to a 28-day controlled challenge with Vibrio tapetis, and visual and molecular diagnoses were carried out to distinguish two extreme phenotypes within the experimental clams: uninfected ("RES", resistant) and infected ("DIS", diseased) post-challenge. Total protein extractions were carried out for resistant and diseased clams, and proteins were identified using LC-MS/MS. Protein sequences were matched against a reference transcriptome of the Manila clam, and protein intensities based on label-free quantification were compared to reveal 49 significantly accumulated proteins in resistant and diseased clams. Proteins with known roles in pathogen recognition, lysosome trafficking, and various aspects of the energy metabolism were more abundant in diseased clams, whereas those with roles in redox homeostasis and protein recycling were more abundant in resistant clams. Overall, the comparison of the proteomic profiles of resistant and diseased clams after a month-long controlled challenge to induce the onset of Brown Ring disease suggests that redox homeostasis and maintenance of protein structure by chaperone proteins may play important and interrelated roles in resistance to infection by Vibrio tapetis in the Manila clam.


Assuntos
Bivalves/genética , Bivalves/microbiologia , Resistência à Doença , Vibrioses/veterinária , Animais , Aquicultura , Bivalves/imunologia , Cromatografia Líquida , Homeostase , Interações Hospedeiro-Patógeno/imunologia , Oxirredução , Fenótipo , Proteômica , Espectrometria de Massas em Tandem , Transcriptoma , Vibrio , Vibrioses/imunologia
15.
Fish Shellfish Immunol ; 106: 1067-1077, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32956807

RESUMO

As a consequence of global warming, extreme events, such as marine heatwaves (MHW), have been increasing in frequency and intensity with negative effects on aquatic organisms. This innovative study evaluated for the first time, the immunological and physiological response of the estuarine edible bivalve Scrobicularia plana to different heatwaves, with distinct duration and recovery periods. So, extensive immune (total haemocyte count - THC, haemocyte viability, phagocytosis rate, respiratory oxidative burst of haemocytes, total protein, protease activity, nitric oxide and bactericidal activity of plasma) and oxidative stress (lipid peroxidation - LPO, superoxide dismutase - SOD, catalase - CAT and glutathione-S-Transferase - GST) analyses were performed in an experimental study that tested the impact of heatwaves during 25 days. The survival and condition of S. plana were not affected by the exposure to the extreme events. However, our data suggested that longer heatwaves with shorter recovery periods can be more challenging for the species, since THC and phagocytic activity were most affected under the temperature increase conditions. Regarding the oxidative status, the species increased its SOD activity while MDA production slightly declined to the increase of temperature, protecting the organism from cellular damage. These results indicate that S. plana has a great capacity to adapt to environmental temperature changes, however, the expected higher frequency/duration of heatwaves with climate change trends can cause some debility of the species face to other stressors, which can compromise its success in the future.


Assuntos
Bivalves/imunologia , Bivalves/metabolismo , Temperatura Alta/efeitos adversos , Estresse Oxidativo , Animais , Contagem de Células Sanguíneas , Catalase/metabolismo , Glutationa Transferase/metabolismo , Hemócitos , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Fagocitose , Superóxido Dismutase/metabolismo
16.
Fish Shellfish Immunol ; 98: 971-980, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31676427

RESUMO

Antibacterial research is reaching new heights due to the increasing demand for the discovery of new substances capable of inhibiting bacteria, especially to respond to the appearance of more and more multi-resistant strains. Bivalves show enormous potential for the finding of new antibacterial compounds, although for that to be further explored, more research needs to be made regarding the immune system of these organisms. Beyond their primary cellular component responsible for bacterial recognition and destruction, the haemocytes, bivalves have various other antibacterial units dissolved in the haemolymph that intervene in the defense against bacterial infections, from the recognition factors that detect different bacteria to the effector molecules carrying destructive properties. Moreover, to better comprehend the immune system, it is important to understand the different survival strategies that bacteria possess in order to stay alive from the host's defenses. This work reviews the current literature regarding the components that intervene in a bacterial infection, as well as discussing the enormous potential that freshwater bivalves have in the discovery of new antibacterial compounds.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/prevenção & controle , Bivalves/imunologia , Sistema Imunitário/metabolismo , Animais , Antibacterianos/química , Bivalves/química
17.
Fish Shellfish Immunol ; 103: 266-276, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32439511

RESUMO

Defensins represent an evolutionary ancient family of antimicrobial peptides, which played an undeniably important role in host defense. In the present study, a defensin isoform was identified and characterized from manila clam Ruditapes philippinarum (designed as Rpdef1α). Multiple alignments and phylogenetic analysis suggested that Rpdef1α belonged to the defensin family. Quantitative RT-PCR and immunohistochemical analysis revealed that Rpdef1α transcripts and the encoding peptide were dominantly expressed in the tissues of gills and mantle. After Vibrio anguillarum challenge, the Rpdef1α transcripts were significantly up-regulated in gills of clams. In addition, rRpdef1α not only showed broad-spectrum antimicrobial activities towards Vibrio species, but also inhibited the formation of bacterial biofilms. Knockdown of Rpdef1α transcripts caused significant increase in the cumulative mortality of manila clams post V. anguillarum challenge. Membrane integrity, scanning electron microscopy analysis and electrochemical assay indicated that rRpdef1α was capable of causing bacterial membrane permeabilization and then resulted in cell death. Moreover, phagocytosis and chemotactic ability of hemocytes could be significantly enhanced after incubation with rRpdef1α. Overall, these results suggested that Rpdef1α could act as both antibacterial agent and opsonin to defend against the invading microorganisms in manila clam R. philippinarum.


Assuntos
Bivalves/genética , Bivalves/imunologia , Defensinas/genética , Defensinas/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Antibacterianos , Biofilmes/efeitos dos fármacos , Defensinas/química , Perfilação da Expressão Gênica/veterinária , Filogenia , Alinhamento de Sequência/veterinária , Vibrio/fisiologia
18.
Fish Shellfish Immunol ; 104: 374-382, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32492464

RESUMO

Bivalve lectins perform a crucial function in recognition of foreign particles, such as microalgae and pathogenic bacteria. In this study, a novel C-type lectin form Sinonovacula constricta (ScCL) was characterized. The full-length cDNA of ScCL was 1645 bp, encoding a predicted polypeptide of 273 amino acids with one typical carbohydrate-recognition domain. ScCL has the highest similarity and closest phylogenetic relationship with the C-type lectin from Solen grandis. Real-time PCR analysis showed that ScCL was expressed in all tested tissues, with the highest expression in the foot and the lowest expression in hemocytes. Agglutination activity of ScCL was Ca2+-independent. ScCL showed the strongest agglutination on Chlorella vulgaris, the modest agglutination on Platymonas subcordiformis, Nannochloropsis sp., and Thalassiosira pseudonana, the weakest agglutination on Chaetoceros sp., and no agglutination on Isochrysis zhanjiangensis. Meanwhile, agglutination tests and western blot analysis revealed that the recombinant ScCL protein could agglutinate Staphylococcus aureus and Vibrio harveyi, but could not agglutinate Vibrio anguillarum, Bacillus cereus, or Vibrio parahaemolyticus. Furthermore, ScCL had a high binding activity with LPS and mannose, a low binding activity with LTA, and no binding activity with PGN. The expression of ScCL in the gill of S. constricta fed with C. vulgaris and T. pseudonana was significantly increased at 1 and/or 3 h. After injection with S. aureus, the expression of ScCL in the gill was significantly increased at 3, 6, and 24 h. These results indicated that ScCL was involved in food particle recognition and immunity of S. constricta.


Assuntos
Bivalves , Lectinas Tipo C , Aglutinação , Animais , Bactérias , Bivalves/genética , Bivalves/imunologia , Bivalves/metabolismo , Bivalves/microbiologia , Cálcio , Clorófitas , Comportamento Alimentar , Brânquias/imunologia , Imunidade Inata , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Microalgas , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/veterinária
19.
Fish Shellfish Immunol ; 104: 133-140, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32470512

RESUMO

In the present study, a fas apoptotic inhibitory molecule (FAIM) was identified from Ruditapes philippinarum (designated as RpFAIM). Multiple alignments and phylogenetic analysis strongly suggested that RpFAIM was a new member of the FAIMs family. The RpFAIM transcripts were constitutively expressed in a wide range of tissues, and dominantly expressed in hemocytes. After V. anguillarum or M. luteus challenge, the expression level of RpFAIM transcripts was significantly induced and reached the maximum level at 6 h and 24 h, respectively. Knockdown of RpFAIM down-regulated the transcript levels of NF-κB signaling genes (e.g. RpIKK, RpIκB, RpNF-κB). The results were roughly similar to those under bacterial stimulation. Moreover, RpFAIM primarily localized in the cell cytoplasm, and its over-expression inhibited the apoptosis of HeLa cells. These results revealed that RpFAIM perhaps regulated the NF-κB signaling pathways positively, which provided a better understanding of RpFAIM in innate immunity.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Bivalves/genética , Bivalves/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Perfilação da Expressão Gênica , Micrococcus luteus/fisiologia , Filogenia , Alinhamento de Sequência , Vibrio/fisiologia
20.
BMC Genomics ; 20(1): 820, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699041

RESUMO

BACKGROUND: The lucinid clam Loripes orbiculatus lives in a nutritional symbiosis with sulphur-oxidizing bacteria housed in its gills. Although our understanding of the lucinid endosymbiont physiology and metabolism has made significant progress, relatively little is known about how the host regulates the symbiosis at the genetic and molecular levels. We generated transcriptomes from four L. orbiculatus organs (gills, foot, visceral mass, and mantle) for differential expression analyses, to better understand this clam's physiological adaptations to a chemosymbiotic lifestyle, and how it regulates nutritional and immune interactions with its symbionts. RESULTS: The transcriptome profile of the symbiont-housing gill suggests the regulation of apoptosis and innate immunity are important processes in this organ. We also identified many transcripts encoding ion transporters from the solute carrier family that possibly allow metabolite exchange between host and symbiont. Despite the clam holobiont's clear reliance on chemosynthesis, the clam's visceral mass, which contains the digestive tract, is characterised by enzymes involved in digestion, carbohydrate recognition and metabolism, suggesting that L. orbiculatus has a mixotrophic diet. The foot transcriptome is dominated by the biosynthesis of glycoproteins for the construction of mucus tubes, and receptors that mediate the detection of chemical cues in the environment. CONCLUSIONS: The transcriptome profiles of gills, mantle, foot and visceral mass provide insights into the molecular basis underlying the functional specialisation of bivalve organs adapted to a chemosymbiotic lifestyle.


Assuntos
Bivalves/genética , Perfilação da Expressão Gênica , Simbiose , Animais , Apoptose/genética , Fenômenos Fisiológicos Bacterianos , Bivalves/citologia , Bivalves/imunologia , Bivalves/microbiologia , Meio Ambiente , Pé/fisiologia , Imunidade Inata/genética , Nutrientes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA