Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 583(7817): 631-637, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32641830

RESUMO

Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques1,2. Because previously described cytidine deaminases operate on single-stranded nucleic acids3, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)-for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria4. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases9,10.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders.


Assuntos
Toxinas Bacterianas/metabolismo , Citidina Desaminase/metabolismo , DNA Mitocondrial/genética , Edição de Genes/métodos , Genes Mitocondriais/genética , Mitocôndrias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Sequência de Bases , Burkholderia cenocepacia/enzimologia , Burkholderia cenocepacia/genética , Respiração Celular/genética , Citidina/metabolismo , Citidina Desaminase/química , Citidina Desaminase/genética , Genoma Mitocondrial/genética , Células HEK293 , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia , Mutação , Fosforilação Oxidativa , Engenharia de Proteínas , RNA Guia de Cinetoplastídeos/genética , Especificidade por Substrato , Sistemas de Secreção Tipo VI/metabolismo
2.
J Bacteriol ; 206(4): e0044123, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38501654

RESUMO

Antibiotic activity is limited by the physical construction of the Gram-negative cell envelope. Species of the Burkholderia cepacia complex (Bcc) are known as intrinsically multidrug-resistant opportunistic pathogens with low permeability cell envelopes. Here, we re-examined a previously performed chemical-genetic screen of barcoded transposon mutants in B. cenocepacia K56-2, focusing on cell envelope structural and functional processes. We identified structures mechanistically important for resistance to singular and multiple antibiotic classes. For example, susceptibility to novobiocin, avibactam, and the LpxC inhibitor, PF-04753299, was linked to the BpeAB-OprB efflux pump, suggesting these drugs are substrates for this pump in B. cenocepacia. Defects in peptidoglycan precursor synthesis specifically increased susceptibility to cycloserine and revealed a new putative amino acid racemase, while defects in divisome accessory proteins increased susceptibility to multiple ß-lactams. Additionally, disruption of the periplasmic disulfide bond formation system caused pleiotropic defects on outer membrane integrity and ß-lactamase activity. Our findings highlight the layering of resistance mechanisms in the structure and function of the cell envelope. Consequently, we point out processes that can be targeted for developing antibiotic potentiators.IMPORTANCEThe Gram-negative cell envelope is a double-layered physical barrier that protects cells from extracellular stressors, such as antibiotics. The Burkholderia cell envelope is known to contain additional modifications that reduce permeability. We investigated Burkholderia cell envelope factors contributing to antibiotic resistance from a genome-wide view by re-examining data from a transposon mutant library exposed to an antibiotic panel. We identified susceptible phenotypes for defects in structures and functions in the outer membrane, periplasm, and cytoplasm. Overall, we show that resistance linked to the cell envelope is multifaceted and provides new targets for the development of antibiotic potentiators.


Assuntos
Burkholderia cenocepacia , Complexo Burkholderia cepacia , Burkholderia , Burkholderia cenocepacia/genética , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Complexo Burkholderia cepacia/genética , Burkholderia/metabolismo
3.
Microbiology (Reading) ; 170(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189440

RESUMO

One of the mechanisms employed by the opportunistic pathogen Burkholderia cenocepacia to acquire the essential element iron is the production and release of two ferric iron chelating compounds (siderophores), ornibactin and pyochelin. Here we show that B. cenocepacia is also able to take advantage of a range of siderophores produced by other bacteria and fungi ('xenosiderophores') that chelate iron exclusively by means of hydroxamate groups. These include the tris-hydroxamate siderophores ferrioxamine B, ferrichrome, ferricrocin and triacetylfusarinine C, the bis-hydroxamates alcaligin and rhodotorulic acid, and the monohydroxamate siderophore cepabactin. We also show that of the 24 TonB-dependent transporters encoded by the B. cenocepacia genome, two (FhuA and FeuA) are involved in the uptake of hydroxamate xenosiderophores, with FhuA serving as the exclusive transporter of iron-loaded ferrioxamine B, triacetylfusarinine C, alcaligin and rhodotorulic acid, while both FhuA and FeuA are able to translocate ferrichrome-type siderophores across the outer membrane. Finally, we identified FhuB, a putative cytoplasmic membrane-anchored ferric-siderophore reductase, as being obligatory for utilization of all of the tested bis- and tris-hydroxamate xenosiderophores apart from alcaligin.


Assuntos
Burkholderia cenocepacia , Ferricromo , Burkholderia cenocepacia/genética , Sideróforos , Ferro
4.
Appl Environ Microbiol ; 90(5): e0222223, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38624199

RESUMO

Fungal phytopathogens cause significant reductions in agricultural yields annually, and overusing chemical fungicides for their control leads to environmental pollution and the emergence of resistant pathogens. Exploring natural isolates with strong antagonistic effects against pathogens can improve our understanding of their ecology and develop new treatments for the future. We isolated and characterized a novel bacterial strain associated with the species Burkholderia cenocepacia, termed APO9, which strongly inhibits Zymoseptoria tritici, a commercially important pathogenic fungus causing Septoria tritici blotch in wheat. Additionally, this strain exhibits inhibitory activity against four other phytopathogens. We found that physical contact plays a crucial role for APO9's antagonistic capacity. Genome sequencing of APO9 and biosynthetic gene cluster (BGC) analysis identified nine classes of BGCs and three types of secretion systems (types II, III, and IV), which may be involved in the inhibition of Z. tritici and other pathogens. To identify genes driving APO9's inhibitory activity, we screened a library containing 1,602 transposon mutants and identified five genes whose inactivation reduced inhibition efficiency. One such gene encodes for a diaminopimelate decarboxylase located in a terpenoid biosynthesis gene cluster. Phylogenetic analysis revealed that while some of these genes are also found across the Burkholderia genus, as well as in other Betaproteobacteria, the combination of these genes is unique to the Burkholderia cepacia complex. These findings suggest that the inhibitory capacity of APO9 is complex and not limited to a single mechanism, and may play a role in the interaction between various Burkholderia species and various phytopathogens within diverse plant ecosystems. IMPORTANCE: The detrimental effects of fungal pathogens on crop yields are substantial. The overuse of chemical fungicides contributes not only to environmental pollution but also to the emergence of resistant pathogens. Investigating natural isolates with strong antagonistic effects against pathogens can improve our understanding of their ecology and develop new treatments for the future. We discovered and examined a unique bacterial strain that demonstrates significant inhibitory activity against several phytopathogens. Our research demonstrates that this strain has a wide spectrum of inhibitory actions against plant pathogens, functioning through a complex mechanism. This plays a vital role in the interactions between plant microbiota and phytopathogens.


Assuntos
Ascomicetos , Burkholderia cenocepacia , Doenças das Plantas , Ascomicetos/genética , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/efeitos dos fármacos , Doenças das Plantas/microbiologia , Triticum/microbiologia , Antibiose , Família Multigênica
5.
Nature ; 561(7721): 122-126, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30111836

RESUMO

Immune recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors often activates proinflammatory NF-κB signalling1. Recent studies indicate that the bacterial metabolite D-glycero-ß-D-manno-heptose 1,7-bisphosphate (HBP) can activate NF-κB signalling in host cytosol2-4, but it is unclear whether HBP is a genuine PAMP and the cognate pattern recognition receptor has not been identified. Here we combined a transposon screen in Yersinia pseudotuberculosis with biochemical analyses and identified ADP-ß-D-manno-heptose (ADP-Hep), which mediates type III secretion system-dependent NF-κB activation and cytokine expression. ADP-Hep, but not other heptose metabolites, could enter host cytosol to activate NF-κB. A CRISPR-Cas9 screen showed that activation of NF-κB by ADP-Hep involves an ALPK1 (alpha-kinase 1)-TIFA (TRAF-interacting protein with forkhead-associated domain) axis. ADP-Hep directly binds the N-terminal domain of ALPK1, stimulating its kinase domain to phosphorylate and activate TIFA. The crystal structure of the N-terminal domain of ALPK1 and ADP-Hep in complex revealed the atomic mechanism of this ligand-receptor recognition process. HBP was transformed by host adenylyltransferases into ADP-heptose 7-P, which could activate ALPK1 to a lesser extent than ADP-Hep. ADP-Hep (but not HBP) alone or during bacterial infection induced Alpk1-dependent inflammation in mice. Our findings identify ALPK1 and ADP-Hep as a pattern recognition receptor and an effective immunomodulator, respectively.


Assuntos
Açúcares de Adenosina Difosfato/imunologia , Burkholderia cenocepacia , Citosol , Imunidade Inata , Moléculas com Motivos Associados a Patógenos/imunologia , Proteínas Quinases/metabolismo , Yersinia pseudotuberculosis , Açúcares de Adenosina Difosfato/metabolismo , Animais , Infecções por Burkholderia/enzimologia , Infecções por Burkholderia/imunologia , Infecções por Burkholderia/patologia , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/imunologia , Burkholderia cenocepacia/metabolismo , Sistemas CRISPR-Cas , Cristalografia por Raios X , Citocinas/biossíntese , Citosol/enzimologia , Citosol/imunologia , Dissacarídeos/metabolismo , Ativação Enzimática , Feminino , Edição de Genes , Fatores Imunológicos/imunologia , Fatores Imunológicos/metabolismo , Imunomodulação , Inflamação/enzimologia , Inflamação/imunologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , NF-kappa B/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/imunologia , Yersinia pseudotuberculosis/metabolismo
6.
Nucleic Acids Res ; 50(7): 3709-3726, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35234897

RESUMO

Burkholderia cenocepacia is an opportunistic pathogen that causes severe infections of the cystic fibrosis (CF) lung. To acquire iron, B. cenocepacia secretes the Fe(III)-binding compound, ornibactin. Genes for synthesis and utilisation of ornibactin are served by the iron starvation (IS) extracytoplasmic function (ECF) σ factor, OrbS. Transcription of orbS is regulated in response to the prevailing iron concentration by the ferric uptake regulator (Fur), such that orbS expression is repressed under iron-sufficient conditions. Here we show that, in addition to Fur-mediated regulation of orbS, the OrbS protein itself responds to intracellular iron availability. Substitution of cysteine residues in the C-terminal region of OrbS diminished the ability to respond to Fe(II) in vivo. Accordingly, whilst Fe(II) impaired transcription from and recognition of OrbS-dependent promoters in vitro by inhibiting the binding of OrbS to core RNA polymerase (RNAP), the cysteine-substituted OrbS variant was less responsive to Fe(II). Thus, the cysteine residues within the C-terminal region of OrbS contribute to an iron-sensing motif that serves as an on-board 'anti-σ factor' in the presence of Fe(II). A model to account for the presence two regulators (Fur and OrbS) that respond to the same intracellular Fe(II) signal to control ornibactin synthesis and utilisation is discussed.


Assuntos
Proteínas de Bactérias , Burkholderia cenocepacia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Burkholderia/microbiologia , Burkholderia cenocepacia/genética , Fibrose Cística/complicações , Compostos Ferrosos/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Ferro/metabolismo
7.
Appl Environ Microbiol ; 89(10): e0118423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796010

RESUMO

Outer membrane vesicle (OMV)-delivered Pseudomonas quinolone signal (PQS) plays a critical role in cell-cell communication in Pseudomonas aeruginosa. However, the functions and mechanisms of membrane-enclosed PQS in interspecies communication in microbial communities are not clear. Here, we demonstrate that PQS delivered by both OMVs from P. aeruginosa and liposome reduces the competitiveness of Burkholderia cenocepacia, which usually shares the same niche in the lungs of cystic fibrosis patients, by interfering with quorum sensing (QS) in B. cenocepacia through the LysR-type regulator ShvR. Intriguingly, we found that ShvR regulates the production of the QS signals cis-2-dodecenoic acid (BDSF) and N-acyl homoserine lactone (AHL) by directly binding to the promoters of signal synthase-encoding genes. Perception of PQS influences the regulatory activity of ShvR and thus ultimately reduces QS signal production and virulence in B. cenocepacia. Our findings provide insights into the interspecies communication mediated by the membrane-enclosed QS signal among bacterial species residing in the same microbial community.IMPORTANCEQuorum sensing (QS) is a ubiquitous cell-to-cell communication mechanism. Previous studies showed that Burkholderia cenocepacia mainly employs cis-2-dodecenoic acid (BDSF) and N-acyl homoserine lactone (AHL) QS systems to regulate biological functions and virulence. Here, we demonstrate that Pseudomonas quinolone signal (PQS) delivered by outer membrane vesicles from Pseudomonas aeruginosa or liposome attenuates B. cenocepacia virulence by targeting the LysR-type regulator ShvR, which regulates the production of the QS signals BDSF and AHL in B. cenocepacia. Our results not only suggest the important roles of membrane-enclosed PQS in interspecies and interkingdom communications but also provide a new perspective on the use of functional nanocarriers loaded with QS inhibitors for treating pathogen infections.


Assuntos
Burkholderia cenocepacia , Percepção de Quorum , Humanos , Percepção de Quorum/genética , Virulência/genética , Acil-Butirolactonas/metabolismo , Lipossomos/metabolismo , Proteínas de Bactérias/genética , Burkholderia cenocepacia/genética , Pseudomonas aeruginosa/metabolismo , Regulação Bacteriana da Expressão Gênica
8.
BMC Microbiol ; 23(1): 2, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36600213

RESUMO

BACKGROUND: Burkholderia cenocepacia is an opportunistic pathogen that can cause acute and chronic infections in patients with weakened immune systems and in patients with cystic fibrosis. B. cenocepacia is resistant to many antibiotics making treatment challenging. Consequently, there is a critical need for alternative strategies to treat B. cenocepacia infections such as using bacteriophages and/or bacteriophages with subinhibitory doses of antibiotic called phage-antibiotic synergy. RESULTS: We isolated a bacteriophage, KP1, from raw sewage that infects B. cenocepacia. Its morphological characteristics indicate it belongs in the family Siphoviridae, it has a 52 Kb ds DNA genome, and it has a narrow host range. We determined it rescued infections in Lemna minor (duckweed) and moderately reduced bacterial populations in our artificial sputum medium model. CONCLUSION: These results suggest that KP1 phage alone in the duckweed model or in combination with antibiotics in the ASMDM model improves the efficacy of reducing B. cenocepacia populations.


Assuntos
Bacteriófagos , Infecções por Burkholderia , Burkholderia cenocepacia , Humanos , Burkholderia cenocepacia/genética , Bacteriófagos/genética , Antibacterianos/farmacologia , Infecções por Burkholderia/terapia , Infecções por Burkholderia/microbiologia
9.
Appl Microbiol Biotechnol ; 107(11): 3653-3671, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37097504

RESUMO

Small non-coding RNAs (sRNAs) are key regulators of post-transcriptional gene expression in bacteria. Despite the identification of hundreds of bacterial sRNAs, their roles on bacterial physiology and virulence remain largely unknown, as is the case of bacteria of the Burkholderia cepacia complex (Bcc). Bcc is a group of opportunistic pathogens with relatively large genomes that can cause lethal lung infections amongst cystic fibrosis (CF) patients. To characterise sRNAs expressed by Bcc bacteria when infecting a host, the nematode Caenorhabditis elegans was used as an infection model by the epidemic CF strain B. cenocepacia J2315. A total of 108 new and 31 previously described sRNAs with a predicted Rho independent terminator were identified, most of them located on chromosome 1. RIT11b, a sRNA downregulated under C. elegans infection conditions, was shown to directly affect B. cenocepacia virulence, biofilm formation, and swimming motility. RIT11b overexpression reduced the expression of the direct targets dusA and pyrC, involved in biofilm formation, epithelial cell adherence, and chronic infections in other organisms. The in vitro direct interaction of RIT11b with the dusA and pyrC messengers was demonstrated by electrophoretic mobility shift assays. To the best of our knowledge this is the first report on the functional characterization of a sRNA directly involved in B. cenocepacia virulence. KEY POINTS: • 139 sRNAs expressed by B. cenocepacia during C. elegans infection were identified • The sRNA RIT11b affects B. cenocepacia virulence, biofilm formation, and motility • RIT11b directly binds to and regulates dusA and pyrC mRNAs.


Assuntos
Infecções por Burkholderia , Burkholderia cenocepacia , Complexo Burkholderia cepacia , Pequeno RNA não Traduzido , Animais , Humanos , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Complexo Burkholderia cepacia/genética , Pequeno RNA não Traduzido/genética , Infecções por Burkholderia/epidemiologia , Infecções por Burkholderia/microbiologia
10.
Proc Natl Acad Sci U S A ; 117(35): 21647-21657, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817433

RESUMO

Many bacteria cycle between sessile and motile forms in which they must sense and respond to internal and external signals to coordinate appropriate physiology. Maintaining fitness requires genetic networks that have been honed in variable environments to integrate these signals. The identity of the major regulators and how their control mechanisms evolved remain largely unknown in most organisms. During four different evolution experiments with the opportunist betaproteobacterium Burkholderia cenocepacia in a biofilm model, mutations were most frequently selected in the conserved gene rpfR RpfR uniquely integrates two major signaling systems-quorum sensing and the motile-sessile switch mediated by cyclic-di-GMP-by two domains that sense, respond to, and control the synthesis of the autoinducer cis-2-dodecenoic acid (BDSF). The BDSF response in turn regulates the activity of diguanylate cyclase and phosphodiesterase domains acting on cyclic-di-GMP. Parallel adaptive substitutions evolved in each of these domains to produce unique life history strategies by regulating cyclic-di-GMP levels, global transcriptional responses, biofilm production, and polysaccharide composition. These phenotypes translated into distinct ecology and biofilm structures that enabled mutants to coexist and produce more biomass than expected from their constituents grown alone. This study shows that when bacterial populations are selected in environments challenging the limits of their plasticity, the evolved mutations not only alter genes at the nexus of signaling networks but also reveal the scope of their regulatory functions.


Assuntos
Biofilmes/crescimento & desenvolvimento , Burkholderia cenocepacia/genética , Percepção de Quorum/genética , Proteínas de Bactérias/metabolismo , Burkholderia cenocepacia/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , GMP Cíclico/genética , Evolução Molecular Direcionada/métodos , Regulação Bacteriana da Expressão Gênica/genética , Mutação/genética , Fenótipo , Transdução de Sinais/genética , Virulência/genética
11.
Environ Microbiol ; 24(2): 737-751, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33734565

RESUMO

Members of the genus Burkholderia show remarkable abilities to adapt to a wide range of environmental conditions and is frequently isolated from soils contaminated with heavy metals. In this study, we used a transposon sequencing approach to identify 138 and 164 genes that provide a benefit for growth of the opportunistic pathogen Burkholderia cenocepacia H111 in the presence of silver and gold ions respectively. The data suggest that arginine metabolism and citrate biosynthesis are important for silver tolerance, while components of an ABC transporter (BCAL0307-BCAL0308) and de novo cysteine biosynthesis are required for tolerance to gold ions. We show that determinants that affect tolerance to both metal ions include the two-component systems BCAL0497/99 and BCAL2830/31 and genes that are involved in maintaining the integrity of the cell envelope, suggesting that membrane proteins represent important targets of silver and gold ions. Furthermore, we show that that the P-type ATPase CadA (BCAL0055), which confers tolerance to cadmium contributes to silver but not gold tolerance. Our results may be useful for improving the antibacterial effect of silver and gold ions to combat drug-resistant pathogens.


Assuntos
Burkholderia cenocepacia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , Prata/farmacologia
12.
Microbiology (Reading) ; 168(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35358034

RESUMO

Burkholderia cenocepacia infections are difficult to treat and there is an urgent need for alternative (combination) treatments. The use of anti-virulence therapies in combination with antibiotics is a possible strategy to increase the antimicrobial susceptibility of the pathogen and to slow down the development of resistance. In the present study we evaluated the ß-lactam and colistin-potentiating activity, and anti-virulence effect of the non-mevalonate pathway inhibitor FR900098 against B. cenocepacia in various in vitro and in vivo models. In addition, we evaluated whether repeated exposure to FR900098 alone or when combined with ceftazidime leads to increased resistance. FR900098 potentiated the activity of colistin and several ß-lactam antibiotics (aztreonam, cefepime, cefotaxime, ceftazidime, mecillinam and piperacillin) but not of imipenem and meropenem. When used alone or in combination with ceftazidime, FR900098 increased the survival of infected Galleria mellonella and Caenorhabditis elegans. Furthermore, combining ceftazidime with FR900098 resulted in a significant inhibition of the biofilm formation of B. cenocepacia. Repeated exposure to FR900098 in the C. elegans infection model did not lead to decreased activity, and the susceptibility of the evolved B. cenocepacia HI2424 lineages to ceftazidime, FR900098 and the combination of both remained unchanged. In conclusion, FR900098 reduces B. cenocepacia virulence and potentiates ceftazidime in an in vivo C. elegans model, and this activity is not lost during the experimental evolution experiment carried out in the present study.


Assuntos
Burkholderia cenocepacia , Fosfomicina , Animais , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , Caenorhabditis elegans , Fosfomicina/análogos & derivados , Fosfomicina/metabolismo , Fosfomicina/farmacologia , Virulência
13.
Nucleic Acids Res ; 48(22): 12858-12873, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33270887

RESUMO

Analysis of genomic DNA from pathogenic strains of Burkholderia cenocepacia J2315 and Escherichia coli O104:H4 revealed the presence of two unusual MTase genes. Both are plasmid-borne ORFs, carried by pBCA072 for B. cenocepacia J2315 and pESBL for E. coli O104:H4. Pacific Biosciences SMRT sequencing was used to investigate DNA methyltransferases M.BceJIII and M.EcoGIX, using artificial constructs. Mating properties of engineered pESBL derivatives were also investigated. Both MTases yield promiscuous m6A modification of single strands, in the context SAY (where S = C or G and Y = C or T). Strikingly, this methylation is asymmetric in vivo, detected almost exclusively on one DNA strand, and is incomplete: typically, around 40% of susceptible motifs are modified. Genetic and biochemical studies suggest that enzyme action depends on replication mode: DNA Polymerase I (PolI)-dependent ColE1 and p15A origins support asymmetric modification, while the PolI-independent pSC101 origin does not. An MTase-PolI complex may enable discrimination of PolI-dependent and independent plasmid origins. M.EcoGIX helps to establish pESBL in new hosts by blocking the action of restriction enzymes, in an orientation-dependent fashion. Expression and action appear to occur on the entering single strand in the recipient, early in conjugal transfer, until lagging-strand replication creates the double-stranded form.


Assuntos
Metilação de DNA/genética , DNA Polimerase I/genética , DNA de Cadeia Simples/genética , Metiltransferases/genética , Proteínas de Bactérias/genética , Burkholderia cenocepacia/genética , Replicação do DNA/genética , Escherichia coli O104/genética , Proteínas de Escherichia coli/genética , Genoma Bacteriano/genética , Plasmídeos/genética , Proteínas Ribossômicas/genética
14.
Environ Microbiol ; 23(9): 5069-5086, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33684254

RESUMO

The Burkholderia cepacia complex is a group of Burkholderia species that are opportunistic pathogens causing high mortality rates in patients with cystic fibrosis. An environmental stress often encountered by these soil-dwelling and pathogenic bacteria is phosphorus limitation, an essential element for cellular processes. Here, we describe cellular and extracellular proteins differentially regulated between phosphate-deplete (0 mM, no added phosphate) and phosphate-replete (1 mM) growth conditions using a comparative proteomics (LC-MS/MS) approach. We observed a total of 128 and 65 unique proteins were downregulated and upregulated respectively, in the B. cenocepacia proteome. Of those downregulated proteins, many have functions in amino acid transport/metabolism. We have identified 24 upregulated proteins that are directly/indirectly involved in inorganic phosphate or organic phosphorus acquisition. Also, proteins involved in virulence and antimicrobial resistance were differentially regulated, suggesting B. cenocepacia experiences a dramatic shift in metabolism under these stress conditions. Overall, this study provides a baseline for further research into the biology of Burkholderia in response to phosphorus stress.


Assuntos
Burkholderia cenocepacia , Burkholderia cenocepacia/genética , Cromatografia Líquida , Humanos , Fósforo , Proteômica , Espectrometria de Massas em Tandem
15.
Microbiology (Reading) ; 167(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33565960

RESUMO

Research on prokaryotic epigenetics, the study of heritable changes in gene expression independent of sequence changes, led to the identification of DNA methylation as a versatile regulator of diverse cellular processes. Methylation of adenine bases is often linked to regulation of gene expression in bacteria, but cytosine methylation is also frequently observed. In this study, we present a complete overview of the cytosine methylome in Burkholderia cenocepacia, an opportunistic respiratory pathogen in cystic fibrosis patients. Single-molecule real-time (SMRT) sequencing was used to map all 4mC-modified cytosines, as analysis of the predicted MTases in the B. cenocepacia genome revealed the presence of a 4mC-specific phage MTase, M.BceJII, targeting GGCC sequences. Methylation motif GCGGCCGC was identified, and out of 6850 motifs detected across the genome, 2051 (29.9 %) were methylated at the fifth position. Whole-genome bisulfite sequencing (WGBS) was performed to map 5mC methylation and 1635 5mC-modified cytosines were identified in CpG motifs. A comparison of the genomic positions of the modified bases called by each method revealed no overlap, which confirmed the authenticity of the detected 4mC and 5mC methylation by SMRT sequencing and WGBS, respectively. Large inter-strain variation of the 4mC-methylated cytosines was observed when B. cenocepacia strains J2315 and K56-2 were compared, which suggests that GGCC methylation patterns in B. cenocepacia are strain-specific. It seems likely that 4mC methylation of GGCC is not involved in regulation of gene expression but rather is a remnant of bacteriophage invasion, in which methylation of the phage genome was crucial for protection against restriction-modification systems of B. cenocepacia.


Assuntos
Burkholderia cenocepacia/genética , Citosina/metabolismo , DNA Bacteriano/genética , Genoma Bacteriano , Infecções por Burkholderia/microbiologia , Burkholderia cenocepacia/metabolismo , Metilação de DNA , DNA Bacteriano/metabolismo , Humanos , Sequenciamento Completo do Genoma
16.
Appl Environ Microbiol ; 87(12): e0020221, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33811025

RESUMO

Quorum-sensing (QS) signals are widely employed by bacteria to regulate biological functions in response to cell densities. Previous studies showed that Burkholderia cenocepacia mostly utilizes two types of QS systems, including the N-acylhomoserine lactone (AHL) and cis-2-dodecenoic acid (BDSF) systems, to regulate biological functions. We demonstrated here that a LysR family transcriptional regulator, Bcal3178, controls the QS-regulated phenotypes, including biofilm formation and protease production, in B. cenocepacia H111. Expression of Bcal3178 at the transcriptional level was obviously downregulated in both the AHL-deficient and BDSF-deficient mutant strains compared to the wild-type H111 strain. It was further identified that Bcal3178 regulated target gene expression by directly binding to the promoter DNA regions. We also revealed that Bcal3178 was directly controlled by the AHL system regulator CepR. These results show that Bcal3178 is a new downstream component of the QS signaling network that modulates a subset of genes and functions coregulated by the AHL and BDSF QS systems in B. cenocepacia. IMPORTANCE Burkholderia cenocepacia is an important opportunistic pathogen in humans that utilizes the BDSF and AHL quorum-sensing (QS) systems to regulate biological functions and virulence. We demonstrated here that a new downstream regulator, Bcal3178 of the QS signaling network, controls biofilm formation and protease production. Bcal3178 is a LysR family transcriptional regulator modulated by both the BDSF and AHL QS systems. Furthermore, Bcal3178 controls many target genes, which are regulated by the QS systems in B. cenocepacia. Collectively, our findings depict a novel molecular mechanism with which QS systems regulate some target gene expression and biological functions by modulating the expression level of a LysR family transcriptional regulator in B. cenocepacia.


Assuntos
Proteínas de Bactérias/fisiologia , Biofilmes/crescimento & desenvolvimento , Burkholderia cenocepacia/fisiologia , Percepção de Quorum , Fatores de Transcrição/fisiologia , Burkholderia cenocepacia/genética , Regulação Bacteriana da Expressão Gênica , Mutação , Peptídeo Hidrolases/metabolismo , Fenótipo
17.
Genome Res ; 27(4): 650-662, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28325850

RESUMO

Chronic bacterial infections of the lung are the leading cause of morbidity and mortality in cystic fibrosis patients. Tracking bacterial evolution during chronic infections can provide insights into how host selection pressures-including immune responses and therapeutic interventions-shape bacterial genomes. We carried out genomic and phenotypic analyses of 215 serially collected Burkholderia cenocepacia isolates from 16 cystic fibrosis patients, spanning a period of 2-20 yr and a broad range of epidemic lineages. Systematic phenotypic tests identified longitudinal bacterial series that manifested progressive changes in liquid media growth, motility, biofilm formation, and acute insect virulence, but not in mucoidy. The results suggest that distinct lineages follow distinct evolutionary trajectories during lung infection. Pan-genome analysis identified 10,110 homologous gene clusters present only in a subset of strains, including genes restricted to different molecular types. Our phylogenetic analysis based on 2148 orthologous gene clusters from all isolates is consistent with patient-specific clades. This suggests that initial colonization of patients was likely by individual strains, followed by subsequent diversification. Evidence of clonal lineages shared by some patients was observed, suggesting inter-patient transmission. We observed recurrent gene losses in multiple independent longitudinal series, including complete loss of Chromosome III and deletions on other chromosomes. Recurrently observed loss-of-function mutations were associated with decreases in motility and biofilm formation. Together, our study provides the first comprehensive genome-phenome analyses of B. cenocepacia infection in cystic fibrosis lungs and serves as a valuable resource for understanding the genomic and phenotypic underpinnings of bacterial evolution.


Assuntos
Infecções por Burkholderia/microbiologia , Burkholderia cenocepacia/genética , Fibrose Cística/microbiologia , Fenótipo , Polimorfismo Genético , Adolescente , Animais , Biofilmes , Infecções por Burkholderia/complicações , Burkholderia cenocepacia/isolamento & purificação , Burkholderia cenocepacia/patogenicidade , Burkholderia cenocepacia/fisiologia , Criança , Pré-Escolar , Fibrose Cística/complicações , Genótipo , Humanos , Pulmão/microbiologia , Mariposas/microbiologia , Virulência , Adulto Jovem
18.
Chembiochem ; 21(11): 1587-1592, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-31945256

RESUMO

Only a few natural products incorporating a diazeniumdiolate moiety have been isolated, and these compounds usually display a broad range of biological activities. Only recently has the first diazeniumdiolate natural product biosynthetic gene cluster been identified in Burkholderia cenocepacia H111, which produces the fungicide (-)-fragin and the signal molecule rac-valdiazen. In this study, l-valine was identified as the initial substrate of (-)-fragin biosynthesis with the aid of feeding experiments using isotopically labelled amino acid. The formation of the diazeniumdiolate was chemically studied with several proposed intermediates. Our results indicate that the functional group is formed during an early stage of the biosynthesis. Furthermore, an oxime compound was identified as a degradation product of (-)-fragin and was also observed in the crude extract of the wild-type strain. Moreover, a structure-activity relationship analysis revealed that each moiety of (-)-fragin is essential for its biological activity.


Assuntos
Antifúngicos/metabolismo , Compostos Azo/metabolismo , Proteínas de Bactérias/metabolismo , Produtos Biológicos/metabolismo , Burkholderia cenocepacia/enzimologia , Genoma Bacteriano , Oxirredutases/metabolismo , Antifúngicos/química , Antifúngicos/farmacologia , Compostos Azo/química , Compostos Azo/farmacologia , Proteínas de Bactérias/genética , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Burkholderia cenocepacia/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Família Multigênica , Oxirredutases/genética , Relação Estrutura-Atividade , Especificidade por Substrato , Valina/química , Valina/metabolismo
19.
Mol Ecol ; 29(1): 138-148, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31725941

RESUMO

Natural environments are rarely static; rather selection can fluctuate on timescales ranging from hours to centuries. However, it is unclear how adaptation to fluctuating environments differs from adaptation to constant environments at the genetic level. For bacteria, one key axis of environmental variation is selection for planktonic or biofilm modes of growth. We conducted an evolution experiment with Burkholderia cenocepacia, comparing the evolutionary dynamics of populations evolving under constant selection for either biofilm formation or planktonic growth with populations in which selection fluctuated between the two environments on a weekly basis. Populations evolved in the fluctuating environment shared many of the same genetic targets of selection as those evolved in constant biofilm selection, but were genetically distinct from the constant planktonic populations. In the fluctuating environment, mutations in the biofilm-regulating genes wspA and rpfR rose to high frequency in all replicate populations. A mutation in wspA first rose rapidly and nearly fixed during the initial biofilm phase but was subsequently displaced by a collection of rpfR mutants upon the shift to the planktonic phase. The wspA and rpfR genotypes coexisted via negative frequency-dependent selection around an equilibrium frequency that shifted between the environments. The maintenance of coexisting genotypes in the fluctuating environment was unexpected. Under temporally fluctuating environments, coexistence of two genotypes is only predicted under a narrow range of conditions, but the frequency-dependent interactions we observed provide a mechanism that can increase the likelihood of coexistence in fluctuating environments.


Assuntos
Adaptação Fisiológica , Proteínas de Bactérias/genética , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/crescimento & desenvolvimento , Burkholderia cenocepacia/fisiologia , Ecologia , Meio Ambiente , Genótipo , Mutação
20.
Proc Natl Acad Sci U S A ; 114(49): 13006-13011, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29158389

RESUMO

Quorum sensing (QS) signals are used by bacteria to regulate biological functions in response to cell population densities. Cyclic diguanosine monophosphate (c-di-GMP) regulates cell functions in response to diverse environmental chemical and physical signals that bacteria perceive. In Burkholderia cenocepacia, the QS signal receptor RpfR degrades intracellular c-di-GMP when it senses the QS signal cis-2-dodecenoic acid, also called Burkholderia diffusible signal factor (BDSF), as a proxy for high cell density. However, it was unclear how this resulted in control of BDSF-regulated phenotypes. Here, we found that RpfR forms a complex with a regulator named GtrR (BCAL1536) to enhance its binding to target gene promoters under circumstances where the BDSF signal binds to RpfR to stimulate its c-di-GMP phosphodiesterase activity. In the absence of BDSF, c-di-GMP binds to the RpfR-GtrR complex and inhibits its ability to control gene expression. Mutations in rpfR and gtrR had overlapping effects on both the B. cenocepacia transcriptome and BDSF-regulated phenotypes, including motility, biofilm formation, and virulence. These results show that RpfR is a QS signal receptor that also functions as a c-di-GMP sensor. This protein thus allows B. cenocepacia to integrate information about its physical and chemical surroundings as well as its population density to control diverse biological functions including virulence. This type of QS system appears to be widely distributed in beta and gamma proteobacteria.


Assuntos
Proteínas de Bactérias/genética , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/patogenicidade , GMP Cíclico/análogos & derivados , Ácidos Graxos Monoinsaturados/metabolismo , Regulação Bacteriana da Expressão Gênica , Percepção de Quorum/genética , Animais , Carga Bacteriana , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Infecções por Burkholderia/microbiologia , Infecções por Burkholderia/patologia , Burkholderia cenocepacia/crescimento & desenvolvimento , GMP Cíclico/metabolismo , Camundongos , Mutação , Fenótipo , Transdução de Sinais , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA