Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 626
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 25(11): e202400142, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38742957

RESUMO

The widespread attention towards 1,4-butanediol (BDO) as a key chemical raw material stems from its potential in producing biodegradable plastics. However, the efficiency of its biosynthesis via current bioprocesses is limited. In this study, a dual-pathway approach for 1,4-BDO production from succinic acid was developed. Specifically, a double-enzyme catalytic pathway involving carboxylic acid reductase and ethanol dehydrogenase was proposed. Optimization of the expression levels of the pathway enzymes led to a significant 318 % increase in 1,4-BDO titer. Additionally, the rate-limiting enzyme MmCAR was engineered to enhance the kcat/KM values by 50 % and increase 1,4-BDO titer by 46.7 %. To address cofactor supply limitations, an NADPH and ATP cycling system was established, resulting in a 48.9 % increase in 1,4-BDO production. Ultimately, after 48 hours, 1,4-BDO titers reached 201 mg/L and 1555 mg/L in shake flask and 5 L fermenter, respectively. This work represents a significant advancement in 1,4-BDO synthesis from succinic acid, with potential applications in the organic chemical and food industries.


Assuntos
Butileno Glicóis , Escherichia coli , Ácido Succínico , Butileno Glicóis/metabolismo , Butileno Glicóis/química , Ácido Succínico/metabolismo , Ácido Succínico/química , Escherichia coli/metabolismo , Escherichia coli/genética , Biocatálise , Álcool Desidrogenase/metabolismo , Oxirredutases/metabolismo , Oxirredutases/genética , Fermentação
2.
Microb Cell Fact ; 23(1): 205, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044245

RESUMO

BACKGROUND: (R,R)-2,3-butanediol (BDO) is employed in a variety of applications and is gaining prominence due to its unique physicochemical features. The use of glycerol as a carbon source for 2,3-BDO production in Klebsiella pneumoniae has been limited, since 1,3-propanediol (PDO) is generated during glycerol fermentation. RESULTS: In this study, the inactivation of the budC gene in K. pneumoniae increased the production rate of (R,R)-2,3-BDO from 21.92 ± 2.10 to 92.05 ± 1.20%. The major isomer form of K. pneumoniae (meso-2,3-BDO) was shifted to (R,R)-2,3-BDO. The purity of (R,R)-2,3-BDO was examined by agitation speed, and 98.54% of (R,R)-2,3-BDO was obtained at 500 rpm. However, as the cultivation period got longer, the purity of (R,R)-2,3-BDO declined. For this problem, a two-step agitation speed control strategy (adjusted from 500 to 400 rpm after 24 h) and over-expression of the dhaD gene involved in (R,R)-2,3-BDO biosynthesis were used. Nevertheless, the purity of (R,R)-2,3-BDO still gradually decreased over time. Finally, when pure glycerol was replaced with crude glycerol, the titer of 89.47 g/L of (R,R)-2,3-BDO (1.69 g/L of meso-2,3-BDO), productivity of 1.24 g/L/h, and yield of 0.35 g/g consumed crude glycerol was achieved while maintaining a purity of 98% or higher. CONCLUSIONS: This study is meaningful in that it demonstrated the highest production and productivity among studies in that produced (R,R)-2,3-BDO with a high purity in Klebsiella sp. strains. In addition, to the best of our knowledge, this is the first study to produce (R,R)-2,3-BDO using glycerol as the sole carbon source.


Assuntos
Butileno Glicóis , Fermentação , Glicerol , Klebsiella pneumoniae , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/genética , Glicerol/metabolismo , Butileno Glicóis/metabolismo , Engenharia Metabólica/métodos , Oxirredução , Estereoisomerismo , Propilenoglicóis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
3.
Appl Microbiol Biotechnol ; 108(1): 146, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240862

RESUMO

2,3-Butanediol (2,3-BDO) is an important gateway molecule for many chemical derivatives. Currently, microbial production is gradually being recognized as a green and sustainable alternative to petrochemical synthesis, but the titer, yield, and productivity of microbial 2,3-BDO remain suboptimal. Here, we used systemic metabolic engineering strategies to debottleneck the 2,3-BDO production in Enterobacter aerogenes. Firstly, the pyruvate metabolic network was reconstructed by deleting genes for by-product synthesis to improve the flux toward 2,3-BDO synthesis, which resulted in a 90% increase of the product titer. Secondly, the 2,3-BDO productivity of the IAM1183-LPCT/D was increased by 55% due to the heterologous expression of DR1558 which boosted cell resistance to abiotic stress. Thirdly, carbon sources were optimized to further improve the yield of target products. The IAM1183-LPCT/D showed the highest titer of 2,3-BDO from sucrose, 20% higher than that from glucose, and the yield of 2,3-BDO reached 0.49 g/g. Finally, the titer of 2,3-BDO of IAM1183-LPCT/D in a 5-L fermenter reached 22.93 g/L, 85% higher than the wild-type strain, and the titer of by-products except ethanol was very low. KEY POINTS: Deletion of five key genes in E. aerogenes improved 2,3-BDO production The titer of 2,3-BDO was increased by 90% by regulating metabolic flux Response regulator DR1558 was expressed to increase 2,3-BDO productivity.


Assuntos
Enterobacter aerogenes , Enterobacter aerogenes/genética , Enterobacter aerogenes/metabolismo , Engenharia Metabólica/métodos , Butileno Glicóis/metabolismo , Reatores Biológicos , Fermentação
4.
J Basic Microbiol ; 64(6): e2300751, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38644586

RESUMO

NAD+-dependent (2 R,3 R)­2,3­butanediol dehydrogenase (BDH) from Neisseria gonorrhoeae (NgBDH) is a representative member of the medium-chain dehydrogenase/reductase (MDR) superfamily. To date, little information is available on the substrate binding sites and catalytic residues of BDHs from this superfamily. In this work, according to molecular docking studies, we found that conserved residues Phe120 and Val161 form strong hydrophobic interactions with both (2 R,3 R)­2,3­butanediol (RR-BD) and meso-2,3­butanediol (meso-BD) and that mutations of these residues to alanine or threonine impair substrate binding. To further evaluate the roles of these two residues, Phe120 and Val161 were mutated to alanine or threonine. Kinetic analysis revealed that, relative to those of wild type, the apparent KM values of the Phe120Ala mutant for RR-BD and meso-BD increased 36- and 369-fold, respectively; the catalytic efficiencies of this mutant with RR-BD and meso-BD decreased approximately 586- and 3528-fold, respectively; and the apparent KM values of the Val161Ala mutant for RR-BD and meso-BD increased 4- and 37-fold, respectively, the catalytic efficiencies of this mutant with RR-BD and meso-BD decreased approximately 3- and 28-fold, respectively. Additionally, the Val161Thr mutant slightly decreased catalytic efficiencies (twofold with RR-BD; 7.3-fold with meso-BD) due to an increase in KM (sixfold for RR-BD; 24-fold for meso-BD) and a slight increase (2.8-fold with RR-BD; 3.3-fold with meso-BD) in kcat. These findings validate the critical roles of Phe120 and Val161 of NgBDH in substrate binding and catalysis. Overall, the current study provides a better understanding of the substrate binding and catalysis of BDHs within the MDR superfamily.


Assuntos
Oxirredutases do Álcool , Butileno Glicóis , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Neisseria gonorrhoeae , Fenilalanina , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/química , Cinética , Butileno Glicóis/metabolismo , Fenilalanina/metabolismo , Fenilalanina/genética , Sítios de Ligação , Especificidade por Substrato , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Valina/metabolismo , Valina/genética , Domínio Catalítico , Interações Hidrofóbicas e Hidrofílicas
5.
Molecules ; 29(18)2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39339388

RESUMO

(R)-1, 3-Butanediol (1, 3-BDO) is an important intermediate in the synthesis of aromatics, pheromones, insecticides, and beta-lactam antibiotics. The ChKRED20 is a robust NADH-dependent ketoreductase identified from Chryseobacterium sp. CA49. We obtained a ChKRED20 mutant (M12) through directed evolutionary screening of ChKRED20, the mutant with significantly improved activity to asymmetrically reduce 4-hydroxy-2-butanone (4H2B) to (R)-1, 3-BDO. So far, both ChKRED20 and its mutants have been expressed in intracellular in E. coli, the process of purification after intracellular expression is complicated, which leads to high cost. Here, we expressed M12 by constructing multicopy expression strains in P. pastoris, and the target protein yield was 302 mg/L in shake-flask fermentation and approximately 3.5 g/L in high-density fermentation. The recombinant M12 showed optimal enzyme activity at 30 °C and had high activity within a broad pH range of 6.0-8.0, and also showed high thermal stability. The recombinant M12 was further used for the reduction of 4H2B to (R)-1, 3-BDO, and 98.9% yield was achieved at 4540 mM 4H2B. The crude M12 enzyme extract was found to catalyze the bioreductive production of (R)-1, 3-BDO with excellent stereoselectivity (ee > 99%) and meet the production requirements. Our research shows that the M12 mutant can be used for the synthesis of (R)-1, 3-BDO, and the P. pastoris expression system is an ideal platform for the large-scale, low-cost preparation of ChKRED20 or its mutants, which may have applications in industrial settings.


Assuntos
Butileno Glicóis , Butileno Glicóis/metabolismo , Fermentação , Mutação , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomycetales/enzimologia , Concentração de Íons de Hidrogênio , Expressão Gênica
6.
Molecules ; 29(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893534

RESUMO

Electrocatalytic CO2 reduction to CO and formate can be coupled to gas fermentation with anaerobic microorganisms. In combination with a competing hydrogen evolution reaction in the cathode in aqueous medium, the in situ, electrocatalytic produced syngas components can be converted by an acetogenic bacterium, such as Clostridium ragsdalei, into acetate, ethanol, and 2,3-butanediol. In order to study the simultaneous conversion of CO, CO2, and formate together with H2 with C. ragsdalei, fed-batch processes were conducted with continuous gassing using a fully controlled stirred tank bioreactor. Formate was added continuously, and various initial CO partial pressures (pCO0) were applied. C. ragsdalei utilized CO as the favored substrate for growth and product formation, but below a partial pressure of 30 mbar CO in the bioreactor, a simultaneous CO2/H2 conversion was observed. Formate supplementation enabled 20-50% higher growth rates independent of the partial pressure of CO and improved the acetate and 2,3-butanediol production. Finally, the reaction conditions were identified, allowing the parallel CO, CO2, formate, and H2 consumption with C. ragsdalei at a limiting CO partial pressure below 30 mbar, pH 5.5, n = 1200 min-1, and T = 32 °C. Thus, improved carbon and electron conversion is possible to establish efficient and sustainable processes with acetogenic bacteria, as shown in the example of C. ragsdalei.


Assuntos
Reatores Biológicos , Butileno Glicóis , Dióxido de Carbono , Monóxido de Carbono , Clostridium , Fermentação , Formiatos , Hidrogênio , Formiatos/metabolismo , Formiatos/química , Clostridium/metabolismo , Clostridium/crescimento & desenvolvimento , Monóxido de Carbono/metabolismo , Hidrogênio/metabolismo , Dióxido de Carbono/metabolismo , Butileno Glicóis/metabolismo , Butileno Glicóis/química , Gases/metabolismo , Gases/química , Etanol/metabolismo
7.
Molecules ; 29(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39203012

RESUMO

2,3-butanediol (2,3-BD) is a versatile bio-based platform chemical. An artificial four-enzyme synthetic biosystem composed of ethanol dehydrogenase, NADH oxidase, formolase and 2,3-butanediol dehydrogenase was designed for upgrading ethanol to 2,3-BD in our previous study. However, a key challenge in developing in vitro enzymatic systems for 2,3-BD synthesis is the relatively sluggish catalytic efficiency of formolase, which catalyzes the rate-limiting step in such systems. Herein, this study reports how engineering the tunnel and substrate binding pocket of FLS improved its catalytic performance. A series of single-point and combinatorial variants were successfully obtained which displayed both higher catalytic efficiency and better substrate tolerance than wild-type FLS. Subsequently, a cell-free biosystem based on the FLS:I28V/L482E enzyme was implemented for upgrading ethanol to 2,3-BD. Ultimately, this system achieved efficient production of 2,3-BD from ethanol by the fed-batch method, reaching a concentration of 1.39 M (124.83 g/L) of the product and providing both excellent productivity and yield values of 5.94 g/L/h and 92.7%, respectively. Taken together, this modified enzymatic catalysis system provides a highly promising alternative approach for sustainable and cost-competitive production of 2,3-BD.


Assuntos
Oxirredutases do Álcool , Butileno Glicóis , Etanol , Butileno Glicóis/metabolismo , Butileno Glicóis/química , Etanol/metabolismo , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/química , NADH NADPH Oxirredutases/metabolismo , NADH NADPH Oxirredutases/química , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/química , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/química
8.
Int J Cosmet Sci ; 46(1): 85-95, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37699769

RESUMO

OBJECTIVE: This study aimed to assess the effect of 1,3-propanediol at different concentrations (5%, 10%, or 15%), either applied alone or in combination with butylene glycol (BG) (5%) and/or glycerol (5%), on skin hydration and skin barrier function. The measurements were conducted using capacitance to determine skin hydration and trans epidermal water loss (TEWL) rates to evaluate skin barrier function. METHODS: A total of 30 healthy female subjects participated in the study. Capacitance and TEWL measurements were conducted at multiple time points, including before application and at 15 min, 2 and 8 h after the humectants were applied to the forearms of the subjects. All the subjects provided written informed consent. RESULTS: The 1,3-propanediol in all concentrations and in all combinations (with BG and/or glycerol) increased skin hydration and improved skin barrier function 15 min, 2 and 8 h after application. Glycerol increased the hydration performance of 1,3-propanediol. The application of 1,3-propanediol at a concentration of 15%, either alone or in combination with other humectants, reduced the TEWL to a greater extent than lower concentrations of 1,3-propanediol. Furthermore, the addition of glycerol to 1,3-propanediol 15% improved the skin barrier and reduced TEWL when compared with 1,3-propanediol alone and with the combination of 1,3-propanediol + BG. CONCLUSION: The humectants significantly improved skin hydration and reduced TEWL throughout the 8-h time course. The increase in 1,3-propanediol concentration, as well as its combination with glycerol, provided a greater benefit to the skin, improving both hydration and the skin barrier function.


OBJECTIF: Cette étude visait à évaluer l'effet sur l'hydratation de la peau et la fonction de barrière cutanée du 1,3-propanediol à différentes concentrations (5 %, 10 % ou 15 %), appliqué seul ou en association avec du butylène glycol (5 %) et/ou du glycérol (5 %). Les mesures ont été effectuées à l'aide de la capacitance pour déterminer l'hydratation de la peau et les taux de perte d'eau transépidermique (Trans Epidermal Water Loss, TEWL) pour évaluer la fonction de barrière cutanée. MÉTHODES: Au total, 30 sujets de sexe féminin en bonne santé ont participé à l'étude. Les mesures de la capacitance et de la TEWL ont été effectuées à plusieurs moments, y compris avant l'application, 15 minutes, 2 heures et 8 heures après l'application des produits humectant sur les avant-bras des sujets. Tous les sujets ont fourni un consentement éclairé écrit. RÉSULTATS: Le 1,3-propanediol, à toutes les concentrations et dans toutes les associations (avec le butylène glycol et/ou le glycérol), a augmenté l'hydratation de la peau et amélioré la fonction de barrière cutanée à 15 minutes, 2 heures et 8 heures après l'application. Le glycérol a augmenté les performances d'hydratation du 1,3-propanediol. L'application de 1,3-propanediol à une concentration de 15 %, seul ou en association avec d'autres produits humectant, a réduit la TEWL dans une plus grande mesure que des concentrations inférieures de 1,3-propanediol. En outre, l'ajout de glycérol au 1,3-propanediol 15 % a amélioré la barrière cutanée et réduit la TEWL par rapport au 1,3-propanediol seul et à l'association 1,3-propanediol + butylène glycol. CONCLUSION: Les produits humectant ont significativement amélioré l'hydratation de la peau et réduit la TEWL tout au long des 8 heures. L'augmentation de la concentration de 1,3-propanediol, ainsi que son association avec le glycérol, ont apporté un plus grand bénéfice à la peau, améliorant à la fois l'hydratation et la fonction de barrière cutanée.


Assuntos
Glicerol , Higroscópicos , Propilenoglicóis , Feminino , Humanos , Glicerol/farmacologia , Glicerol/metabolismo , Higroscópicos/farmacologia , Pele , Água/metabolismo , Propilenoglicol/farmacologia , Propilenoglicol/metabolismo , Butileno Glicóis/metabolismo , Butileno Glicóis/farmacologia , Perda Insensível de Água
9.
J Sci Food Agric ; 104(10): 5869-5881, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38407005

RESUMO

BACKGROUND: Flax lignan has attracted much attention because of its potential bioactivities. However, the bioavailability of secoisolariciresinol diglucoside (SDG), the main lignan in flaxseed, depends on the bioconversion by the colon bacteria. Lactic acid bacteria (LAB) with ß-glucosidase activity has found wide application in preparing bioactive aglycone. RESULTS: LAB strains with good ß-glucosidase activity were isolated from fermented tofu. Their bioconversion of flax lignan extract was investigated by resting cell catalysis and microbial fermentation, and the metabolism of SDG by Lactiplantibacillus plantarum C5 following fermentation was characterized by widely targeted metabolomics. Five L. plantarum strains producing ß-glucosidase with broad substrate specificity were isolated and identified, and they all can transform SDG into secoisolariciresinol (SECO). L. plantarum C5 resting cell reached a maximum SDG conversion of 49.19 ± 3.75%, and SECO generation of 21.49 ± 1.32% (0.215 ± 0.013 mm) at an SDG substrate concentration of 1 mM and 0.477 ± 0.003 mm SECO was produced at 4 mm within 24 h. Although sixteen flax lignan metabolites were identified following the fermentation of SDG extract by L. plantarum C5, among them, four were produced following the fermentation: SECO, demethyl-SECO, demethyl-dehydroxy-SECO and isolariciresinol. Moreover, seven lignans increased significantly. CONCLUSION: Fermentation significantly increased the profile and level of flax lignan metabolites, and the resting cell catalysis benefits from higher bioconversion efficiency and more straightforward product separation. Resting cell catalysis and microbial fermentation of flax lignan extract by the isolated ß-glucosidase production L. plantarum could be potentially applied in preparing flax lignan ingredients and fermented flaxseed. © 2024 Society of Chemical Industry.


Assuntos
Biotransformação , Fermentação , Linho , Lignanas , beta-Glucosidase , Lignanas/metabolismo , Lignanas/química , Linho/química , Linho/metabolismo , beta-Glucosidase/metabolismo , beta-Glucosidase/química , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/enzimologia , Proteínas de Bactérias/metabolismo , Butileno Glicóis/metabolismo , Catálise , Glucosídeos
10.
World J Microbiol Biotechnol ; 40(4): 134, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38480613

RESUMO

Lignan, a beneficial constituent of Flaxseed (Linum usitatissimum L.) showed great interest in researchers because of its multiple functional properties. Nonetheless, a challenge arises due to the glycosidic structure of lignans, which the gut epithelium cannot readily absorb. Therefore, we screened 18 strains of Lactiplantibacillus plantarum, Lacticaseibacillus casei, Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, Pediococcus pentosaceus, Pediococcus acidilactici, and Enterococcus durans to remove glycosides from flaxseed lignan extract enzymatically. Among our findings, Lactiplantibacillus plantarum SCB0151 showed the highest activity of ß-glucosidase (8.91 ± 0.04 U/mL) and higher transformed efficiency of Secoisolariciresinol (SECO) (8.21 ± 0.13%). The conversion rate of Secoisolariciresinol diglucoside (SDG) and the generation rate of SECO was 58.30 ± 3.78% and 32.13 ± 2.78%, respectively, under the optimized conditions. According to the LC-HRMSMS analysis, SECO (68.55 ± 6.57 µM), Ferulic acid (FA) (32.12 ± 2.50 µM), and Coumaric acid (CA) (79.60 ± 6.21 µM) were identified in the biotransformation products (TP) of flaxseed lignan extract. Results revealed that the TP exhibited a more pronounced anti-inflammatory effect than the flaxseed lignan extract. SECO, FA, and CA demonstrated a more inhibitory effect on NO than that of SDG. The expression of iNOS and COX-2 was significantly suppressed by TP treatment in LPS-induced Raw264.7 cells. The secretion of IL-6, IL-2, and IL-1ß decreased by 87.09 ± 0.99%, 45.40 ± 0.87%, and 53.18 ± 0.83%, respectively, at 60 µg/mL of TP treatment. Given these data, the bioavailability of flaxseed lignan extract and its anti-inflammatory effect were significantly enhanced by Lactiplantibacillus plantarum SCB0151, which provided a novel approach to commercializing flaxseed lignan extract for functional food.


Assuntos
Linho , Glucosídeos , Lignanas , Linho/química , Linho/metabolismo , Fermentação , Lignanas/farmacologia , Lignanas/química , Lignanas/metabolismo , Glicosídeos , Butileno Glicóis/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia
11.
Plant Foods Hum Nutr ; 79(1): 159-165, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38236453

RESUMO

Linseed represents a rich source of nutritional, functional and health-beneficial compounds. Nevertheless, the chemical composition and content of bioactive compounds may be quite variable and potentially affected by various factors, including genotype and the environment. In this study, the proximate chemical composition, lignans content and antioxidant potential of six experimentally grown linseed cultivars were assessed and compared. A diagonal cultivation trial in the University of South Bohemia Experimental Station in Ceské Budejovice, Czech Republic, was established in three subsequent growing seasons (2018, 2019 and 2020). The results showed that the cultivar and growing conditions influenced most studied parameters. The lack of precipitation in May and June 2019 negatively affected the seed yield and the level of secoisolariciresinol diglucoside but did not decrease the crude protein content, which was negatively related to the oil content. The newly developed method for lignans analysis allowed the identification and quantification of secoisolariciresinol diglucoside and matairesinol. Their content correlated positively with the total polyphenol content and antioxidant assays (DPPH and ABTS radical scavenging activity), indicating the significant contribution to the biofunctional properties of linseed. On the other hand, we did not detect minor linseed lignans, pinoresinol and lariciresinol. The results of this study showed the importance of cultivar and growing conditions factors on the linseed chemical composition and the lignans content, determining its nutritional and medicinal properties.


Assuntos
Linho , Glucosídeos , Lignanas , Antioxidantes/análise , Butileno Glicóis/análise , Butileno Glicóis/química , Butileno Glicóis/metabolismo , Linho/química , Lignanas/análise , Lignanas/química , Lignanas/metabolismo
12.
Environ Microbiol ; 25(12): 2834-2850, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37775475

RESUMO

Polybutylene succinate (PBS) is an eco-friendly green plastic. However, PBS was shown as being non-biodegradable in marine environments, and up until now, only a limited number of PBS-degrading marine microbes have been discovered. We first set up in vitro PBS- and PBSA (polybutylene succinate adipate)-plastispheres to characterize novel PBS-degrading marine microbes. Microbial growth and oxygen consumption were observed in both PBS- and PBSA-plastispheres enriched with natural seawater collected from Usujiri, Hokkaido, Japan, and Vibrionaceae and Pseudoalteromonadaceae were significantly enriched on these films. Further gene identification indicated that vibrios belonging to the Gazogenes clade possess genes related to a PBS degrading enzyme (PBSase). The PBS degradation assay for six Gazogenes clade vibrios identified Vibrio ruber, Vibrio rhizosphaerae, and Vibrio spartinae as being capable of degrading PBS. We further identified the gene responsible for PBSase from the type strain of V. ruber, and the purified recombinant vibrio PBSase was found to have low-temperature adaptation and was active under high NaCl concentrations. We also provided docking models between the vibrio PBSase and PBS and PBSA units to show how vibrio PBSase interacts with each substrate compared to the Acidovorax PBSase. These results could contribute to a more sustainable society through further utilization of PBS in marine environments and plastic recycling.


Assuntos
Vibrio , Vibrio/metabolismo , Polímeros/metabolismo , Butileno Glicóis/metabolismo
13.
Crit Rev Biotechnol ; 43(1): 67-81, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34957872

RESUMO

2,3-Butanediol (BD) and acetoin (AC) are products of the non-oxidative metabolism of microorganisms, presenting industrial importance due to their wide range of applications and high market value. Their optical isomers have particular applications, justifying the efforts on the selective bioproduction. Each microorganism produces different isomer mixtures, as a consequence of having different butanediol dehydrogenase (BDH) enzymes. However, the whole scene of the isomer bioproduction, considering the several enzymes and conditions, has not been completely elucidated. Here we show the BDH classification as R, S or meso by bioinformatics analysis uncovering the details of the isomers production. The BDH was compared to diacetyl reductases (DAR) and the new enoyl reductases (ER). We observed that R-BDH is the most singular BDH, while meso and S-BDHs are similar and may be better distinguished through their stereo-selective triad. DAR and ER showed distinct stereo-triads from those described for BDHs, agreeing with kinetic data from the literature and our phylogenetic analysis. The ER family probably has meso-BDH like activity as already demonstrated for a single sequence from this group. These results are of great relevance, as they organize BD producing enzymes, to our known, never shown before in the literature. This review also brings attention to nontraditional enzymes/pathways that can be involved with BD/AC synthesis, as well as oxygen conditions that may lead to the differential production of their isomers. Together, this information can provide helpful orientation for future studies in the field of BD/AC biological production, thus contributing to achieve their production on an industrial scale.


Assuntos
Acetoína , Butileno Glicóis , Acetoína/metabolismo , Filogenia , Butileno Glicóis/metabolismo , Isomerismo
14.
Proc Natl Acad Sci U S A ; 117(32): 19159-19167, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719126

RESUMO

Amino acids are naturally occurring and structurally diverse metabolites in biological system, whose potentials for chemical expansion, however, have not been fully explored. Here, we devise a metabolic platform capable of producing industrially important C3-C5 diols from amino acids. The presented platform combines the natural catabolism of charged amino acids with a catalytically efficient and thermodynamically favorable diol formation pathway, created by expanding the substrate scope of the carboxylic acid reductase toward noncognate ω-hydroxylic acids. Using the established platform as gateways, seven different diol-convertible amino acids are converted to diols including 1,3-propanediol, 1,4-butanediol, and 1,5-pentanediol. Particularly, we afford to optimize the production of 1,4-butanediol and demonstrate the de novo production of 1,5-pentanediol from glucose, with titers reaching 1.41 and 0.97 g l-1, respectively. Our work presents a metabolic platform that enriches the pathway repertoire for nonnatural diols with feedstock flexibility to both sugar and protein hydrolysates.


Assuntos
Aminoácidos/metabolismo , Bactérias/metabolismo , Butileno Glicóis/metabolismo , Glicóis/metabolismo , Pentanos/metabolismo , Propilenoglicóis/metabolismo , Bactérias/genética , Vias Biossintéticas
15.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003568

RESUMO

Saccharomyces cerevisiae is a promising host for the bioproduction of higher alcohols, such as 2,3-butanediol (2,3-BDO). Metabolically engineered S. cerevisiae strains that produce 2,3-BDO via glycolysis have been constructed. However, the specific 2,3-BDO production rates of engineered strains must be improved. To identify approaches to improving the 2,3-BDO production rate, we investigated the factors contributing to higher ethanol production rates in certain industrial strains of S. cerevisiae compared to laboratory strains. Sequence analysis of 11 industrial strains revealed the accumulation of many nonsynonymous substitutions in RIM15, a negative regulator of high fermentation capability. Comparative metabolome analysis suggested a positive correlation between the rate of ethanol production and the activity of the pyruvate-consuming pathway. Based on these findings, RIM15 was deleted, and the pyruvate-consuming pathway was activated in YHI030, a metabolically engineered S. cerevisiae strain that produces 2,3-BDO. The titer, specific production rate, and yield of 2,3-BDO in the test tube-scale culture using the YMS106 strain reached 66.4 ± 4.4 mM, 1.17 ± 0.017 mmol (g dry cell weight h)-1, and 0.70 ± 0.03 mol (mol glucose consumed)-1. These values were 2.14-, 2.92-, and 1.81-fold higher than those of the vector control, respectively. These results suggest that bioalcohol production via glycolysis can be enhanced in a metabolically engineered S. cerevisiae strain by deleting RIM15 and activating the pyruvate-consuming pathway.


Assuntos
Ácido Pirúvico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Pirúvico/metabolismo , Engenharia Metabólica/métodos , Butileno Glicóis/metabolismo , Fermentação , Etanol/metabolismo
16.
Molecules ; 28(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570714

RESUMO

Secoisolariciresinol (SECO) is one of the major lignans occurring in various grains, seeds, fruits, and vegetables. The gut microbiota plays an important role in the biotransformation of dietary lignans into enterolignans, which might exhibit more potent bioactivities than the precursor lignans. This study aimed to identify, synthesize, and evaluate the microbial metabolites of SECO and to develop efficient lead compounds from the metabolites for the treatment of osteoporosis. SECO was fermented with human gut microbiota in anaerobic or micro-aerobic environments at different time points. Samples derived from microbial transformation were analyzed using an untargeted metabolomics approach for metabolite identification. Nine metabolites were identified and synthesized. Their effects on cell viability, osteoblastic differentiation, and gene expression were examined. The results showed that five of the microbial metabolites exerted potential osteogenic effects similar to those of SECO or better. The results suggested that the enterolignans might account for the osteoporotic effects of SECO in vivo. Thus, the presence of the gut microbiota could offer a good way to form diverse enterolignans with bone-protective effects. The current study improves our understanding of the microbial transformation products of SECO and provides new approaches for new candidate identification in the treatment of osteoporosis.


Assuntos
4-Butirolactona , Lignanas , Humanos , Dieta , Lignanas/farmacologia , Lignanas/metabolismo , Butileno Glicóis/farmacologia , Butileno Glicóis/metabolismo
17.
Crit Rev Biotechnol ; 42(8): 1135-1156, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34806505

RESUMO

Acetoin, a high-value-added bio-based platform chemical, is widely used in foods, cosmetics, agriculture, and the chemical industry. It is an important precursor for the synthesis of: 2,3-butanediol, liquid hydrocarbon fuels and heterocyclic compounds. Since the fossil resources are becoming increasingly scarce, biological production of acetoin has received increasing attention as an alternative to chemical synthesis. Although there are excellent reviews on the: application, catabolism and fermentative production of acetoin, little attention has been paid to acetoin production via: electrode-assisted fermentation, whole-cell biocatalysis, and in vitro/cell-free biocatalysis. In this review, acetoin biosynthesis pathways and relevant key enzymes are firstly reviewed. In addition, various strategies for biological acetoin production are summarized including: cell-free biocatalysis, whole-cell biocatalysis, microbial fermentation, and electrode-assisted fermentation. The advantages and disadvantages of the different approaches are discussed and weighed, illustrating the increasing progress toward economical, green and efficient production of acetoin. Additionally, recent advances in acetoin extraction and recovery in downstream processing are also briefly reviewed. Moreover, the current issues and future prospects of diverse strategies for biological acetoin production are discussed, with the hope of realizing the promises of industrial acetoin biomanufacturing in the near future.


Assuntos
Acetoína , Butileno Glicóis , Acetoína/química , Acetoína/metabolismo , Butileno Glicóis/metabolismo , Fermentação , Biocatálise
18.
Microb Cell Fact ; 21(1): 199, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175998

RESUMO

As part of the transition from a fossil resources-based economy to a bio-based economy, the production of platform chemicals by microbial cell factories has gained strong interest. 2,3-butanediol (2,3-BDO) has various industrial applications, but its production by microbial fermentation poses multiple challenges. We have engineered the bacterial 2,3-BDO synthesis pathway, composed of AlsS, AlsD and BdhA, in a pdc-negative version of an industrial Saccharomyces cerevisiae yeast strain. The high concentration of glycerol caused by the excess NADH produced in the pathway from glucose to 2,3-BDO was eliminated by overexpression of NoxE and also in a novel way by combined overexpression of NDE1, encoding mitochondrial external NADH dehydrogenase, and AOX1, encoding a heterologous alternative oxidase expressed inside the mitochondria. This was combined with strong downregulation of GPD1 and deletion of GPD2, to minimize glycerol production while maintaining osmotolerance. The HGS50 strain produced a 2,3-BDO titer of 121.04 g/L from 250 g/L glucose, the highest ever reported in batch fermentation, with a productivity of 1.57 g/L.h (0.08 g/L.h per gCDW) and a yield of 0.48 g/g glucose or with 96% the closest to the maximum theoretical yield ever reported. Expression of Lactococcus lactis NoxE, encoding a water-forming NADH oxidase, combined with similar genetic modifications, as well as expression of Candida albicans STL1, also minimized glycerol production while maintaining high osmotolerance. The HGS37 strain produced 130.64 g/L 2,3-BDO from 280 g/L glucose, with productivity of 1.58 g/L.h (0.11 g/L.h per gCDW). Both strains reach combined performance criteria adequate for industrial implementation.


Assuntos
Glicerol , Saccharomyces cerevisiae , Butileno Glicóis/metabolismo , Fermentação , Glucose/metabolismo , Glicerol/metabolismo , Engenharia Metabólica , NAD/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Saccharomyces cerevisiae/metabolismo
19.
Microb Cell Fact ; 21(1): 150, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879766

RESUMO

BACKGROUND: 2,3-butanediol is an important platform compound which has a wide range of applications, involving in medicine, chemical industry, food and other fields. Especially the optically pure (2R,3R)-2,3-butanediol can be employed as an antifreeze agent and as the precursor for producing chiral compounds. However, some (2R,3R)-2,3-butanediol overproducing strains are pathogenic such as Enterobacter cloacae and Klebsiella oxytoca. RESULTS: In this study, a (3R)-acetoin overproducing C. glutamicum strain, CGS9, was engineered to produce optically pure (2R,3R)-2,3-butanediol efficiently. Firstly, the gene bdhA from B. subtilis 168 was integrated into strain CGS9 and its expression level was further enhanced by using a strong promoter Psod and ribosome binding site (RBS) with high translation initiation rate, and the (2R,3R)-2,3-butanediol titer of the resulting strain was increased by 33.9%. Then the transhydrogenase gene udhA from E. coli was expressed to provide more NADH for 2,3-butanediol synthesis, which reduced the accumulation of the main byproduct acetoin by 57.2%. Next, a mutant atpG was integrated into strain CGK3, which increased the glucose consumption rate by 10.5% and the 2,3-butanediol productivity by 10.9% in shake-flask fermentation. Through fermentation engineering, the most promising strain CGK4 produced a titer of 144.9 g/L (2R,3R)-2,3-butanediol with a yield of 0.429 g/g glucose and a productivity of 1.10 g/L/h in fed-batch fermentation. The optical purity of the resulting (2R,3R)-2,3-butanediol surpassed 98%. CONCLUSIONS: To the best of our knowledge, this is the highest titer of optically pure (2R,3R)-2,3-butanediol achieved by GRAS strains, and the result has demonstrated that C. glutamicum is a competitive candidate for (2R,3R)-2,3-butanediol production.


Assuntos
Corynebacterium glutamicum , Acetoína/metabolismo , Butileno Glicóis/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Escherichia coli/metabolismo , Fermentação , Glucose/metabolismo , Engenharia Metabólica/métodos
20.
Curr Microbiol ; 79(8): 218, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35704098

RESUMO

In this study, to reduce the formation of organic acid during 1,3-propanediol biosynthesis in Klebsiella pneumoniae, a method combining UV mutagenesis and high-throughput screening with pH color plates was employed to obtain K. pneumoniae mutants. When compared with the parent strain, the total organic acid formation by the mutant decreased, whereas 1,3-propanediol biosynthesis increased after 24 h anaerobic shake flask culture. Subsequently, genetic changes in the mutant were analyzed by whole-genome sequencing and verified by signal gene deletion. Mutation of the rpoS gene was confirmed to contribute to the regulation of organic acid synthesis in K. pneumoniae. Besides, rpoS deletion eliminated the formation of 2,3-butanediol, the main byproduct produced during 1,3-propanediol fermentation, indicating the role of rpoS in metabolic regulation in K. pneumoniae. Thus, a K. pneumoniae mutant was developed, which could produce lower organic acid during 1,3-propanediol fermentation due to an rpoS mutation in this study.


Assuntos
Klebsiella pneumoniae , Propilenoglicóis , Butileno Glicóis/metabolismo , Fermentação , Glicerol/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Mutação , Propilenoglicóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA