Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Biol ; 16(8): e2005817, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30157178

RESUMO

Over the last decade, multiple broadly neutralizing monoclonal antibodies (bN-mAbs) to the HIV-1 envelope protein (Env) gp120 have been described. Many of these recognize epitopes consisting of both amino acid and glycan residues. Moreover, the glycans required for binding of these bN-mAbs are early intermediates in the N-linked glycosylation pathway. This type of glycosylation substantially alters the mass and net charge of Envs compared to molecules with the same amino acid sequence but possessing mature, complex (sialic acid-containing) carbohydrates. Since cell lines suitable for biopharmaceutical production that limit N-linked glycosylation to mannose-5 (Man5) or earlier intermediates are not readily available, the production of vaccine immunogens displaying these glycan-dependent epitopes has been challenging. Here, we report the development of a stable suspension-adapted Chinese hamster ovary (CHO) cell line that limits glycosylation to Man5 and earlier intermediates. This cell line was created using the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing system and contains a mutation that inactivates the gene encoding Mannosyl (Alpha-1,3-)-Glycoprotein Beta-1,2-N-Acetylglucosaminyltransferase (MGAT1). Monomeric gp120s produced in the MGAT1- CHO cell line exhibit improved binding to prototypic glycan-dependent bN-mAbs directed to the V1/V2 domain (e.g., PG9) and the V3 stem (e.g., PGT128 and 10-1074) while preserving the structure of the important glycan-independent epitopes (e.g., VRC01). The ability of the MGAT1- CHO cell line to limit glycosylation to early intermediates in the N-linked glycosylation pathway without impairing the doubling time or ability to grow at high cell densities suggests that it will be a useful substrate for the biopharmaceutical production of HIV-1 vaccine immunogens.


Assuntos
Vacinas contra a AIDS/metabolismo , Células CHO/fisiologia , Edição de Genes/métodos , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/metabolismo , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Cricetinae , Cricetulus , Epitopos , Glicosilação , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp120 do Envelope de HIV/fisiologia , Soropositividade para HIV , HIV-1/genética , Humanos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/fisiologia , Polissacarídeos/metabolismo , Engenharia de Proteínas/métodos
2.
Biotechnol Bioeng ; 115(6): 1509-1520, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29427454

RESUMO

Cell viability has a critical impact on product quantity and quality during the biomanufacturing of therapeutic proteins. An advanced understanding of changes in the cellular and conditioned media proteomes upon cell stress and death is therefore needed for improved bioprocess control. Here, a high pH/low pH reversed phase data independent 2D-LC-MSE discovery proteomics platform was applied to study the cellular and conditioned media proteomes of CHO-K1 apoptosis and necrosis models where cell death was induced by staurosporine exposure or aeration shear in a benchtop bioreactor, respectively. Functional classification of gene ontology terms related to molecular functions, biological processes, and cellular components revealed both cell death independent and specific features. In addition, label free quantitation using the Hi3 approach resulted in a comprehensive shortlist of 23 potential cell viability marker proteins with highest abundance and a significant increase in the conditioned media upon induction of cell death, including proteins related to cellular stress response, signal mediation, cytoskeletal organization, cell differentiation, cell interaction as well as metabolic and proteolytic enzymes which are interesting candidates for translating into targeted analysis platforms for monitoring bioprocessing response and increasing process control.


Assuntos
Apoptose , Células CHO/química , Células CHO/fisiologia , Necrose , Proteoma/análise , Animais , Cromatografia Líquida , Cricetulus , Meios de Cultivo Condicionados , Espectrometria de Massas , Proteômica
3.
Biotechnol Bioeng ; 115(5): 1331-1339, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29337363

RESUMO

Animal cell culture technology for therapeutic protein production has shown significant improvement over the last few decades. Chinese hamster ovary (CHO) cells have been widely adapted for the production of biopharmaceutical drugs. In the biopharmaceutical industry, it is crucial to develop cell culture media and culturing conditions to achieve the highest productivity and quality. However, CHO cells are significantly affected by apoptosis in the bioreactors, resulting in a substantial decrease in product quantity and quality. Thus, to overcome the obstacle of apoptosis in CHO cell culture, it is critical to develop a novel method that does not have minimal concern of safety or cost. Herein, we showed for the first time that exosomes, which are nano-sized extracellular vesicles, derived from CHO cells inhibited apoptosis in CHO cell culture when supplemented to the culture medium. Flow cytometric and microscopic analyses revealed that substantial amounts of exosomes were delivered to CHO cells. Higher cell viability after staurosporine treatment was observed by exosome supplementation (67.3%) as compared to control (41.1%). Furthermore, exosomes prevented the mitochondrial membrane potential loss and caspase-3 activation, meaning that the exosomes enhanced cellular activities under pro-apoptotic condition. As the exosomes supplements are derived from CHO cells themselves, it is not only beneficial for the biopharmaceutical productivity of CHO cell culture to inhibit apoptosis, but also from a regulatory standpoint to diminish any safety concerns. Thus, we conclude that the method developed in this research may contribute to the biopharmaceutical industry where minimizing apoptosis in CHO cell culture is beneficial.


Assuntos
Apoptose , Células CHO/efeitos dos fármacos , Células CHO/fisiologia , Técnicas de Cultura de Células/métodos , Exossomos/metabolismo , Animais , Sobrevivência Celular , Cricetulus , Meios de Cultura/química , Citometria de Fluxo , Microscopia
4.
Biotechnol Bioeng ; 115(1): 126-138, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28941283

RESUMO

A key goal in process development for antibodies is to increase productivity while maintaining or improving product quality. During process development of an antibody, titers were increased from 4 to 10 g/L while simultaneously decreasing aggregates. Process development involved optimization of media and feed formulations, feed strategy, and process parameters including pH and temperature. To better understand how CHO cells respond to process changes, the changes were implemented in a stepwise manner. The first change was an optimization of the feed formulation, the second was an optimization of the medium, and the third was an optimization of process parameters. Multiple process outputs were evaluated including cell growth, osmolality, lactate production, ammonium concentration, antibody production, and aggregate levels. Additionally, detailed assessment of oxygen uptake, nutrient and amino acid consumption, extracellular and intracellular redox environment, oxidative stress, activation of the unfolded protein response (UPR) pathway, protein disulfide isomerase (PDI) expression, and heavy and light chain mRNA expression provided an in-depth understanding of the cellular response to process changes. The results demonstrate that mRNA expression and UPR activation were unaffected by process changes, and that increased PDI expression and optimized nutrient supplementation are required for higher productivity processes. Furthermore, our findings demonstrate the role of extra- and intracellular redox environment on productivity and antibody aggregation. Processes using the optimized medium, with increased concentrations of redox modifying agents, had the highest overall specific productivity, reduced aggregate levels, and helped cells better withstand the high levels of oxidative stress associated with increased productivity. Specific productivities of different processes positively correlated to average intracellular values of total glutathione. Additionally, processes with the optimized media maintained an oxidizing intracellular environment, important for correct disulfide bond pairing, which likely contributed to reduced aggregate formation. These findings shed important understanding into how cells respond to process changes and can be useful to guide future development efforts to enhance productivity and improve product quality.


Assuntos
Anticorpos/metabolismo , Biotecnologia/métodos , Células CHO/fisiologia , Técnicas de Cultura de Células/métodos , Proteínas Recombinantes/biossíntese , Animais , Anticorpos/isolamento & purificação , Células CHO/metabolismo , Cricetulus , Meios de Cultura/química , Oxirredução , Estresse Oxidativo , Proteínas Recombinantes/isolamento & purificação , Resposta a Proteínas não Dobradas
5.
Biotechnol Bioeng ; 114(12): 2771-2781, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28843000

RESUMO

A major challenge in downstream purification of monoclonal antibodies (mAb) is the removal of host cell proteins (HCPs). Previous studies have shown that cell culture conditions significantly impact the HCP content at harvest. However, it is currently unclear how process conditions affect physiological changes in the host cell population, and how these changes, in turn, cascade down to change the HCP profile. We examined how temperature downshift (TDS) to mild hypothermia affects key upstream performance indicators, that is antibody titre, HCP concentration and HCP species, across the cell culture decline phase and at harvest through the lens of changes in cellular behavior. Mild hypothermic conditions introduced on day 5 of fed-batch Chinese hamster ovary (CHO) cell bioreactors resulted in a lower cell proliferation rate but larger percentages of healthier cells across the cell culture decline phase compared to bioreactors maintained at standard physiological temperature. Moreover, the onset of apoptosis was less evident in mild hypothermic cultures. Consequently, mild hypothermic cultures took an extra 5 days to reach an integral viable cell concentration (IVCC) and antibody yield similar to that of the control at standard physiological temperature. When cell viability dropped below 80%, mild hypothermic cell cultures had a reduced variety of HCP species by 36%, including approximately 44% and 27% lower proteases and chaperones, respectively, despite having similar HCP concentration. This study suggests that TDS may be a good strategy to provide cleaner downstream feedstocks by reducing the variety of HCPs and to maintain product integrity by reducing the number of proteases and chaperones.


Assuntos
Anticorpos Monoclonais/biossíntese , Células CHO/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Temperatura Baixa , Proteoma/metabolismo , Adaptação Fisiológica/fisiologia , Animais , Cricetulus , Regulação da Expressão Gênica/fisiologia
6.
Biotechnol Bioeng ; 114(8): 1825-1836, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28436007

RESUMO

For decades, Chinese hamster ovary (CHO) cells have been the preferred host for therapeutic monoclonal antibody (mAb) production; however, increasing mAb titer by rational engineering remains a challenge. Our previous proteomic analysis in CHO cells suggested that a higher content of glutathione (GSH) might be related to higher productivity. GSH is an important antioxidant, cell detoxifier, and is required to ensure the formation of native disulfide bonds in proteins. To investigate the involvement of GSH in mAb production, we generated stable CHO cell lines overexpressing genes involved in the first step of GSH synthesis; namely the glutamate-cysteine ligase catalytic subunit (Gclc) and the glutamate-cysteine ligase modifier subunit (Gclm). The two genes were reconstructed from our RNA-Seq de novo assembly and then were functionally annotated. Once the sequences of the genes were confirmed using proteogenomics, a transiently expressed mAb was introduced into cell lines overexpressing either Gclc or Gclm. The new cell lines were compared for mAb production to the parental cell line and changes at the proteome level were measured using SWATH. As per our previous proteomics observations, overexpressing Gclm improved productivity, titer, and the frequency of high producer clones by 70%. In contrast, overexpressing Gclc, which produced a higher amount of GSH, did not increase mAb production. We show that GSH cannot be linked to higher productivity and that Gclm may be controlling other cellular processes involved in mAb production yet to be elucidated. Biotechnol. Bioeng. 2017;114: 1825-1836. © 2017 Wiley Periodicals, Inc.


Assuntos
Anticorpos Monoclonais/biossíntese , Células CHO/fisiologia , Melhoramento Genético/métodos , Glutamato-Cisteína Ligase/metabolismo , Engenharia de Proteínas/métodos , Regulação para Cima/fisiologia , Animais , Anticorpos Monoclonais/genética , Células CHO/citologia , Catálise , Cricetulus , Glutamato-Cisteína Ligase/genética , Subunidades Proteicas
7.
Biotechnol Bioeng ; 114(11): 2560-2570, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28627778

RESUMO

An optimized biomanufacturing process in mammalian cells is contingent on the ability of the producing cells to reach high viable cell densities. In addition, at the peak of growth, cells need to continue producing the biological entity at a consistent quality. Thus, engineering cells with robust growth performance and resilience to variable stress conditions is highly desirable. The tyrosine kinase receptor, KIT, plays a key role in cell differentiation and the survival of several immune cell types. Its oncogenic mutant, D816V, endows cells with high proliferation capacity, and resistance to kinase inhibitors. Importantly, this onco-KIT mutant when introduced into various cell types is arrested in the endoplasmic reticulum in a constitutively active form. Here, we investigated the effect of oncogenic D816V KIT on the performance of CHO-K1 cells under conventional tissue culture growth settings and when adapted, to shaking conditions. The onco-KIT promoted global protein synthesis, elevated the expression of a secretable transgene, enhanced proliferation, and improved the overall titers of a model glycoprotein. Moreover, the expression of the onco-KIT endowed the cells with a remarkable resistance to various stress conditions. Our data suggest that the introduction of onco-KIT can serve as a strategy for improving glycoprotein biomanufacturing. Biotechnol. Bioeng. 2017;114: 2560-2570. © 2017 Wiley Periodicals, Inc.


Assuntos
Células CHO/citologia , Células CHO/fisiologia , Proliferação de Células/fisiologia , Melhoramento Genético/métodos , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Recombinantes/biossíntese , Estresse Fisiológico/fisiologia , Animais , Técnicas de Cultura Celular por Lotes/métodos , Cricetulus
8.
Biotechnol Bioeng ; 114(7): 1438-1447, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28128436

RESUMO

A simple method originally designed to control lactate accumulation in fed-batch cultures of Chinese Hamster Ovary (CHO) cells has been modified and extended to allow cells in culture to control their own rate of perfusion to precisely deliver nutritional requirements. The method allows for very fast expansion of cells to high density while using a minimal volume of concentrated perfusion medium. When the short-duration cell-controlled perfusion is performed in the production bioreactor and is immediately followed by a conventional fed-batch culture using highly concentrated feeds, the overall productivity of the culture is approximately doubled when compared with a highly optimized state-of-the-art fed-batch process. The technology was applied with near uniform success to five CHO cell processes producing five different humanized monoclonal antibodies. The increases in productivity were due to the increases in sustained viable cell densities. Biotechnol. Bioeng. 2017;114: 1438-1447. © 2017 Wiley Periodicals, Inc.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Células CHO/citologia , Células CHO/fisiologia , Proliferação de Células/fisiologia , Glucose/metabolismo , Ácido Láctico/metabolismo , Perfusão/métodos , Animais , Técnicas de Cultura Celular por Lotes/instrumentação , Reatores Biológicos , Cricetulus
9.
Biotechnol Bioeng ; 114(7): 1495-1510, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28262952

RESUMO

In recent years, coherent with growing biologics portfolios also the number of complex and thus difficult-to-express (DTE) therapeutic proteins has increased considerably. DTE proteins challenge bioprocess development and can include various therapeutic protein formats such as monoclonal antibodies (mAbs), multi-specific affinity scaffolds (e.g., bispecific antibodies), cytokines, or fusion proteins. Hence, the availability of robust and versatile Chinese hamster ovary (CHO) host cell factories is fundamental for high-yielding bioprocesses. MicroRNAs (miRNAs) have emerged as potent cell engineering tools to improve process performance of CHO manufacturing cell lines. However, there has not been any report demonstrating the impact of beneficial miRNAs on industrial cell line development (CLD) yet. To address this question, we established novel CHO host cells constitutively expressing a pro-productive miRNA: miR-557. Novel host cells were tested in two independent CLD campaigns using two different mAb candidates including a normal as well as a DTE antibody. Presence of miR-557 significantly enhanced each process step during CLD in a product independent manner. Stable expression of miR-557 increased the probability to identify high-producing cell clones. Furthermore, production cell lines derived from miR-557 expressing host cells exhibited significantly increased final product yields in fed-batch cultivation processes without compromising product quality. Strikingly, cells co-expressing miR-557 and a DTE antibody achieved a twofold increase in product titer compared to clones co-expressing a negative control miRNA. Thus, host cell engineering using miRNAs represents a promising tool to overcome limitations in industrial CLD especially with regard to DTE proteins. Biotechnol. Bioeng. 2017;114: 1495-1510. © 2017 Wiley Periodicals, Inc.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Células CHO/fisiologia , Melhoramento Genético/métodos , MicroRNAs/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Animais , Células CHO/citologia , Proliferação de Células/fisiologia , Cricetulus , MicroRNAs/genética , Proteínas Recombinantes/genética
10.
Biotechnol Bioeng ; 114(10): 2267-2278, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28627725

RESUMO

Chinese hamster ovary (CHO) cells are the most widely used host cell lines for the commercial production of therapeutic proteins including Fc-fusion proteins. During the culture of recombinant CHO (rCHO) cells, host cell proteins (HCPs), secreted from viable cells and released from dead cells, accumulate extracellularly, potentially impairing product quality. In this study, the HCPs that accumulated extracellularly in batch and fed-batch cultures of Fc-fusion protein-producing rCHO cell lines (DG-Fc and DUKX-Fc) were identified and quantified using nanoflow liquid chromatography-tandem mass spectrometry (LC-MS/MS), followed by gene ontology and functional analysis. When the proteome database of Cricetulus griseus was used as a reference to identify the HCPs, more HCPs were identified for DG-Fc (1632 HCPs in batch culture and 1733 HCPs in fed-batch culture) than for DUKX-Fc (1114 HCPs in batch culture and 1002 HCPs in fed-batch culture). Clustering analysis of HCPs, which were classified into four clusters according to their concentration profiles during culture, showed that the concentration profiles of HCPs affecting the quality of Fc-fusion proteins correlated with changes in Fc-fusion protein quality. Taken together, the dataset of HCPs obtained in this study using the two different rCHO cell lines provides insights into the determination of appropriate target proteins to be removed during the culture and purification steps so as to ensure good Fc-fusion protein quality. Biotechnol. Bioeng. 2017;114: 2267-2278. © 2017 Wiley Periodicals, Inc.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Células CHO/fisiologia , Perfilação da Expressão Gênica/métodos , Fragmentos Fc das Imunoglobulinas/metabolismo , Proteoma/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Animais , Células CHO/classificação , Cricetulus , Meios de Cultura , Engenharia Genética/métodos , Fragmentos Fc das Imunoglobulinas/química , Mapeamento de Peptídeos/métodos , Proteoma/química , Proteínas Recombinantes de Fusão/química
11.
Biotechnol Bioeng ; 113(11): 2433-42, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27183150

RESUMO

Recently, we reported that the loss of a telomeric region of chromosome 8 in Chinese Hamster Ovary (CHO) cells correlates with higher recombinant productivities. New cell lines lacking this region, called CHO-C8DEL, showed several advantages during cell line generation and for the production of recombinant proteins (Ritter et al., 2016, Biotechnol Bioeng). Here, we performed knock-down and knock-out experiments of genes located within this telomeric region of chromosome 8 to identify the genes causing the observed phenotypes of CHO-C8DEL cell lines. We present evidence that loss or reduced expression of the gene C12orf35 is responsible for higher productivities and shorter recovery times during selection pressure. These effects are mediated by increased levels of mRNA of the exogenes heavy chain (HC) and light chain (LC) as well as dihydrofolate reductase (DHFR) and neomycin phosphotransferase (Neo) during the stable expression of antibodies. Biotechnol. Bioeng. 2016;113: 2433-2442. © 2016 Wiley Periodicals, Inc.


Assuntos
Células CHO/fisiologia , Melhoramento Genético/métodos , Proteínas Recombinantes/biossíntese , Animais , Células CHO/citologia , Cricetulus , Técnicas de Silenciamento de Genes , Proteínas Recombinantes/genética , Regulação para Cima/genética
12.
Biotechnol Bioeng ; 113(10): 2241-53, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27072894

RESUMO

The most striking characteristic of CHO cells is their adaptability, which enables efficient production of proteins as well as growth under a variety of culture conditions, but also results in genomic and phenotypic instability. To investigate the relative contribution of genomic and epigenetic modifications towards phenotype evolution, comprehensive genome and epigenome data are presented for six related CHO cell lines, both in response to perturbations (different culture conditions and media as well as selection of a specific phenotype with increased transient productivity) and in steady state (prolonged time in culture under constant conditions). Clear transitions were observed in DNA-methylation patterns upon each perturbation, while few changes occurred over time under constant conditions. Only minor DNA-methylation changes were observed between exponential and stationary growth phase; however, throughout a batch culture the histone modification pattern underwent continuous adaptation. Variation in genome sequence between the six cell lines on the level of SNPs, InDels, and structural variants is high, both upon perturbation and under constant conditions over time. The here presented comprehensive resource may open the door to improved control and manipulation of gene expression during industrial bioprocesses based on epigenetic mechanisms. Biotechnol. Bioeng. 2016;113: 2241-2253. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.


Assuntos
Células CHO/classificação , Células CHO/fisiologia , Epigênese Genética/genética , Evolução Molecular , Genoma/genética , Seleção Genética/genética , Adaptação Fisiológica/genética , Animais , Cricetulus , Variação Genética/genética , Instabilidade Genômica/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Tempo
13.
Biotechnol Bioeng ; 113(11): 2518-23, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27159230

RESUMO

Targeted gene integration into site-specific loci can be achieved in Chinese hamster ovary (CHO) cells via CRISPR/Cas9 genome editing technology and the homology-directed repair (HDR) pathway. The low efficiency of HDR often requires antibiotic selection, which limits targeted integration of multiple genes at multiple sites. To improve HDR-mediated targeted integration, while avoiding the use of selection markers, chemical treatment for increased HDR, and fluorescent enrichment of genome-edited cells was assessed in CHO cells. Chemical treatment did not improve HDR-mediated targeted integration. In contrast, fluorescent markers in Cas9 and donor constructs enable FACS enrichment, resulting in a threefold increase in the number of cells with HDR-mediated genome editing. Combined with this enrichment method, large transgenes encoding model proteins (including an antibody) were successfully targeted integrated. This approach provides a simple and fast strategy for targeted generation of stable CHO production cell lines in a rational way. Biotechnol. Bioeng. 2016;113: 2518-2523. © 2016 Wiley Periodicals, Inc.


Assuntos
Células CHO/fisiologia , Proteínas Associadas a CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Citometria de Fluxo/métodos , Melhoramento Genético/métodos , Transgenes/genética , Animais , Técnicas de Cultura Celular por Lotes/métodos , Cricetulus , Corantes Fluorescentes , Marcação de Genes/métodos , Engenharia de Proteínas/métodos , Homologia de Sequência do Ácido Nucleico
14.
Biotechnol Lett ; 38(5): 745-50, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26758724

RESUMO

OBJECTIVE: to develop a new strategy combining near-infrared (NIR) and dielectric spectroscopies for real-time monitoring and in-depth characterizing populations of Chinese hamster ovary cells throughout cultures performed in bioreactors. RESULTS: Spectral data processing was based on off-line analyses of the cells, including trypan blue exclusion method, and lactate dehydrogenase activity (LDH). Viable cell density showed a linear correlation with permittivity up to 6 × 10(6) cells ml(-1), while a logarithmic correlation was found between non-lysed dead cell density and conductivity up to 10(7) cells ml(-1). Additionally, partial least square technique was used to develop a calibration model of the supernatant LDH activity based on online NIR spectra with a RMSEC of 55 U l(-1). Considering the LDH content of viable cells measured to be 110 U per 10(9) cells, the lysed dead cell density could be then estimated. These calibration models provided real-time prediction accuracy (R(2) ≥ 0.95) for the three types of cell populations. CONCLUSION: The high potential of a dual spectroscopy strategy to enhance the online bioprocesses characterization is demonstrated since it allows the simultaneous determination of viable, dead and lysed cell populations in real time.


Assuntos
Reatores Biológicos , Células CHO/fisiologia , Proliferação de Células , Análise Espectral/métodos , Animais , Sobrevivência Celular , Cricetulus
15.
Biotechnol Bioeng ; 112(12): 2495-504, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26108810

RESUMO

It is a common practice in biotherapeutic manufacturing to define a fixed-volume feed strategy for nutrient feeds, based on historical cell demand. However, once the feed volumes are defined, they are inflexible to batch-to-batch variations in cell growth and physiology and can lead to inconsistent productivity and product quality. In an effort to control critical quality attributes and to apply process analytical technology (PAT), a fully automated cell culture feedback control system has been explored in three different applications. The first study illustrates that frequent monitoring and automatically controlling the complex feed based on a surrogate (glutamate) level improved protein production. More importantly, the resulting feed strategy was translated into a manufacturing-friendly manual feed strategy without impact on product quality. The second study demonstrates the improved process robustness of an automated feed strategy based on online bio-capacitance measurements for cell growth. In the third study, glucose and lactate concentrations were measured online and were used to automatically control the glucose feed, which in turn changed lactate metabolism. These studies suggest that the auto-feedback control system has the potential to significantly increase productivity and improve robustness in manufacturing, with the goal of ensuring process performance and product quality consistency.


Assuntos
Reatores Biológicos , Células CHO/fisiologia , Técnicas de Cultura de Células/métodos , Proliferação de Células , Animais , Cricetulus , Meios de Cultura/química , Glucose/metabolismo , Ácido Láctico/metabolismo
16.
Biotechnol Bioeng ; 112(4): 832-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25384465

RESUMO

Pluronic® F68 (P-F68) is an important component of chemically-defined cell culture medium because it protects cells from hydrodynamic and bubble-induced shear in the bioreactor. While P-F68 is typically used in cell culture medium at a concentration of 1 g/L (0.1%), higher concentrations can offer additional shear protection and have also been shown to be beneficial during cryopreservation. Recent industry experience with variability in P-F68-associated shear-protection has opened up the possibility of elevated P-F68 concentrations in cell culture media, a topic that has not been previously explored in the context of industrial cell culture processes. Recognizing this gap, we first evaluated the effect of 1-5 g/L P-F68 concentrations in shake flask cultures over ten 3-day passages for cell lines A and B. Increase in terminal cell density and cell size was seen over time at higher P-F68 concentrations but protein productivity was not impacted. Results from this preliminary screening study suggested no adverse impact of high P-F68 concentrations. Subsequently fed-batch bioreactor experiments were conducted at 1 and 5 g/L P-F68 concentrations with both cell lines where cell growth, viability, metabolism, and product quality were examined under process conditions reflective of a commercial process. Results from these bioreactor experiments confirmed findings from the preliminary screen and also indicated no impact of elevated P-F68 concentration on product quality. If additional shear protection is desired, either due to raw material variability, cell line sensitivity, or a high-shear cell culture process, our results suggest this can be accomplished by elevating the P-F68 concentration in the cell culture medium without impacting cell culture performance and product quality.


Assuntos
Anticorpos/metabolismo , Células CHO/fisiologia , Poloxâmero/metabolismo , Animais , Anticorpos/genética , Reatores Biológicos , Células CHO/efeitos dos fármacos , Células CHO/metabolismo , Proliferação de Células/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Cricetulus , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Appl Microbiol Biotechnol ; 99(11): 4645-57, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25846330

RESUMO

In this study, eight commercially available, chemically defined Chinese hamster ovary (CHO) cell culture media from different vendors were evaluated in batch culture using an IgG-producing CHO DG44 cell line as a model. Medium adaptation revealed that the occurrence of even small aggregates might be a good indicator of cell growth performance in subsequent high cell density cultures. Batch experiments confirmed that the culture medium has a significant impact on bioprocess performance, but high amino acid concentrations alone were not sufficient to ensure superior cell growth and high antibody production. However, some key amino acids that were limiting in most media could be identified. Unbalanced glucose and amino acids led to high cell-specific lactate and ammonium production rates. In some media, persistently high glucose concentrations probably induced the suppression of respiration and oxidative phosphorylation, known as Crabtree effect, which resulted in high cell-specific glycolysis rates along with a continuous and high lactate production. In additional experiments, two of the eight basal media were supplemented with feeds from two different manufacturers in six combinations, in order to understand the combined impact of media and feeds on cell metabolism in a CHO fed-batch process. Cell growth, nutrient consumption and metabolite production rates, antibody production, and IgG quality were evaluated in detail. Concentrated feed supplements boosted cell concentrations almost threefold and antibody titers up to sevenfold. Depending on the fed-batch strategy, fourfold higher peak cell concentrations and eightfold increased IgG titers (up to 5.8 g/L) were achieved. The glycolytic flux was remarkably similar among the fed-batches; however, substantially different specific lactate production rates were observed in the different media and feed combinations. Further analysis revealed that in addition to the feed additives, the basal medium can make a considerable contribution to the ammonium metabolism of the cells. The glycosylation of the recombinant antibody was influenced by the selection of basal medium and feeds. Differences of up to 50 % in the monogalacto-fucosylated (G1F) and high mannose fraction of the IgG were observed.


Assuntos
Anticorpos/metabolismo , Células CHO/fisiologia , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Proteínas Recombinantes/metabolismo , Tecnologia Farmacêutica/métodos , Animais , Anticorpos/genética , Benchmarking , Cricetulus , Proteínas Recombinantes/genética
18.
Appl Microbiol Biotechnol ; 98(17): 7535-48, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25052466

RESUMO

MicroRNAs are short non-coding RNAs that play an important role in the regulation of gene expression. Hence, microRNAs are considered as potential targets for engineering of Chinese hamster ovary (CHO) cells to improve recombinant protein production. Here, we analyzed and compared the microRNA expression patterns of high, low, and non-producing recombinant CHO cell lines expressing two structurally different model proteins in order to identify microRNAs that are involved in heterologous protein synthesis and secretion and thus might be promising targets for cell engineering to increase productivity. To generate reproducible and comparable data, the cells were cultivated in a bioreactor under steady-state conditions. Global microRNA expression analysis showed that mature microRNAs were predominantly upregulated in the producing cell lines compared to the non-producer. Several microRNAs were significantly differentially expressed between high and low producers, but none of them commonly for both model proteins. The identification of target messenger RNAs (mRNAs) is essential to understand the biological function of microRNAs. Therefore, we negatively correlated microRNA and global mRNA expression data and combined them with computationally predicted and experimentally validated targets. However, statistical analysis of the identified microRNA-mRNA interactions indicated a considerable false positive rate. Our results and the comparison to published data suggest that the reaction of CHO cells to the heterologous protein expression is strongly product- and/or clone-specific. In addition, this study highlights the urgent need for reliable CHO-specific microRNA target prediction tools and experimentally validated target databases in order to facilitate functional analysis of high-throughput microRNA expression data in CHO cells.


Assuntos
Células CHO/fisiologia , MicroRNAs/metabolismo , Animais , Reatores Biológicos , Técnicas de Cultura de Células/métodos , Cricetulus , Perfilação da Expressão Gênica , Regulação da Expressão Gênica
19.
Biotechnol Bioeng ; 110(11): 2902-14, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23818314

RESUMO

To ensure maximum productivity of recombinant proteins it is desirable to prolong cell viability during a mammalian cell bioprocess, and therefore important to carefully monitor cell density and viability. In this study, five different and independent methods of monitoring were applied to Chinese hamster ovary (CHO) cells grown in a batch culture in a controlled bioreactor to determine cell density and/or cell viability. They included: a particle counter, trypan blue exclusion (Cedex), an in situ bulk capacitance probe, an off-line fluorescent flow cytometer, and a prototype dielectrophoretic (DEP) cytometer. These various techniques gave similar values during the exponential growth phase. However, beyond the exponential growth phase the viability measurements diverged. Fluorescent flow cytometry with a range of fluorescent markers was used to investigate this divergence and to establish the progress of cell apoptosis: the cell density estimates by the intermediate stage apoptosis assay agreed with those obtained by the bulk capacitance probe and the early stage apoptosis assay viability measurements correlated well with the DEP cytometer. The trypan blue assay showed higher estimates of viable cell density and viability compared to the capacitance probe or the DEP cytometer. The DEP cytometer measures the dielectric properties of individual cells and identified at least two populations of cells, each with a distinct polarizability. As verified by comparison with the Nexin assay, one population was associated with viable (non-apoptotic) cells and the other with apoptotic cells. From the end of the exponential through the stationary and decline stages there was a gradual shift of cell count from the viable into the apoptotic population. However, the two populations maintained their individual dielectric properties throughout this shift. This leads to the conclusion that changes in bulk dielectric properties of cultures might be better modeled as shifts in cells between different dielectric sub-populations, rather than assuming a homogeneous dielectric population. This shows that bulk dielectric probes are sensitive to the early apoptotic changes in cells. DEP cytometry offers a novel and unique technology for analyzing and characterizing mammalian cells based on their dielectric properties, and suggests a potential application of the device as a low-cost, label-free, electronic monitor of physiological changes in cells.


Assuntos
Apoptose , Células CHO/fisiologia , Fenômenos Químicos , Técnicas Citológicas/métodos , Animais , Reatores Biológicos , Sobrevivência Celular , Cricetulus
20.
Biotechnol Bioeng ; 110(8): 2184-94, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23436541

RESUMO

Unfolded protein response (UPR) is the primary signaling network activated in response to the accumulation of unfolded and/or misfolded protein in the endoplasmic reticulum (ER). The expression of high levels of recombinant proteins in mammalian cell cultures has been linked to the increased UPR. However, the dynamics of different UPR-mediated events and their impact on cell performance and recombinant protein secretion during production remain poorly defined. Here, we have created a non-invasive UPR-responsive, fluorescence-based reporter system to detect and quantify specific UPR-mediated transcriptional activation of different intracellular signaling pathways. We have generated stable antibody-expressing CHO clones containing this UPR responsive system and established FACS-based methods for real-time, continuous monitoring of the endogenous UPR activation in live cultures. The results showed that the UPR activation is dynamically regulated during production culture. The clones differed in their UPR patterns; both the timing and the degree of UPR-induced transcriptional activation were linked to cell performance, such as growth, and viability. In addition, the cell culture environment, such as media composition and osmolarity, significantly impacted endogenous UPR activation. Taken together, these data demonstrate a utility of this UPR monitoring system in recombinant protein production processes and the observations increase our understanding of the critical role of UPR in regulating diverse phenotypes of the cells including growth, survival and recombinant protein secretion under different culture environments and processing conditions.


Assuntos
Técnicas Biossensoriais/métodos , Biotecnologia/métodos , Células CHO/fisiologia , Resposta a Proteínas não Dobradas , Animais , Técnicas de Cultura de Células/métodos , Cricetulus , Fluorescência , Genes Reporter , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA