Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 18(1): e3000570, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971946

RESUMO

Stimuli that modulate neuronal activity are not always detectable, indicating a loss of information between the modulated neurons and perception. To identify where in the macaque visual system information about periodic light modulations is lost, signal-to-noise ratios were compared across simulated cone photoreceptors, lateral geniculate nucleus (LGN) neurons, and perceptual judgements. Stimuli were drifting, threshold-contrast Gabor patterns on a photopic background. The sensitivity of LGN neurons, extrapolated to populations, was similar to the monkeys' at low temporal frequencies. At high temporal frequencies, LGN sensitivity exceeded the monkeys' and approached the upper bound set by cone photocurrents. These results confirm a loss of high-frequency information downstream of the LGN. However, this loss accounted for only about 5% of the total. Phototransduction accounted for essentially all of the rest. Together, these results show that low temporal frequency information is lost primarily between the cones and the LGN, whereas high-frequency information is lost primarily within the cones, with a small additional loss downstream of the LGN.


Assuntos
Macaca mulatta/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Animais , Núcleo de Edinger-Westphal/citologia , Núcleo de Edinger-Westphal/fisiologia , Núcleo de Edinger-Westphal/efeitos da radiação , Fenômenos Eletrofisiológicos , Corpos Geniculados/citologia , Corpos Geniculados/fisiologia , Luz , Iluminação , Masculino , Neurônios/fisiologia , Neurônios/efeitos da radiação , Estimulação Luminosa , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Movimentos Sacádicos/fisiologia , Fatores de Tempo , Córtex Visual/efeitos da radiação , Vias Visuais/efeitos da radiação , Percepção Visual/efeitos da radiação
2.
Nature ; 532(7598): 236-9, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27049951

RESUMO

In bright light, cone-photoreceptors are active and colour vision derives from a comparison of signals in cones with different visual pigments. This comparison begins in the retina, where certain retinal ganglion cells have 'colour-opponent' visual responses-excited by light of one colour and suppressed by another colour. In dim light, rod-photoreceptors are active, but colour vision is impossible because they all use the same visual pigment. Instead, the rod signals are thought to splice into retinal circuits at various points, in synergy with the cone signals. Here we report a new circuit for colour vision that challenges these expectations. A genetically identified type of mouse retinal ganglion cell called JAMB (J-RGC), was found to have colour-opponent responses, OFF to ultraviolet (UV) light and ON to green light. Although the mouse retina contains a green-sensitive cone, the ON response instead originates in rods. Rods and cones both contribute to the response over several decades of light intensity. Remarkably, the rod signal in this circuit is antagonistic to that from cones. For rodents, this UV-green channel may play a role in social communication, as suggested by spectral measurements from the environment. In the human retina, all of the components for this circuit exist as well, and its function can explain certain experiences of colour in dim lights, such as a 'blue shift' in twilight. The discovery of this genetically defined pathway will enable new targeted studies of colour processing in the brain.


Assuntos
Percepção de Cores/fisiologia , Visão de Cores/fisiologia , Vias Neurais/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Cor , Percepção de Cores/efeitos da radiação , Visão de Cores/efeitos da radiação , Escuridão , Feminino , Humanos , Masculino , Camundongos , Modelos Neurológicos , Vias Neurais/efeitos da radiação , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/efeitos da radiação , Células Fotorreceptoras Retinianas Bastonetes/efeitos da radiação , Sinapses/metabolismo , Sinapses/efeitos da radiação , Territorialidade , Raios Ultravioleta
3.
J Neurosci ; 40(37): 7065-7079, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32817065

RESUMO

The crumbs (crb) apical polarity genes are essential for the development and functions of epithelia. Adult zebrafish retinal neuroepithelium expresses three crb genes (crb1, crb2a, and crb2b); however, it is unknown whether and how Crb1 differs from other Crb proteins in expression, localization, and functions. Here, we show that, unlike zebrafish Crb2a and Crb2b as well as mammalian Crb1 and Crb2, zebrafish Crb1 does not localize to the subapical regions of photoreceptors and Müller glial cells; rather, it localizes to a small region of cone outer segments: the cell membranes surrounding the axonemes. Moreover, zebrafish Crb1 is not required for retinal morphogenesis and photoreceptor patterning. Interestingly, Crb1 promotes rod survival under strong white light irradiation in a previously unreported non--cell-autonomous fashion; in addition, Crb1 delays UV and blue cones' chromatin condensation caused by UV light irradiation. Finally, Crb1 plays a role in cones' responsiveness to light through an arrestin-translocation-independent mechanism. The localization of Crb1 and its functions do not differ between male and female fish. We conclude that zebrafish Crb1 has diverged from other vertebrate Crb proteins, representing a neofunctionalization in Crb biology during evolution.SIGNIFICANCE STATEMENT Apicobasal polarity of epithelia is an important property that underlies the morphogenesis and functions of epithelial tissues. Epithelial apicobasal polarity is controlled by many polarity genes, including the crb genes. In vertebrates, multiple crb genes have been identified, but the differences in their expression patterns and functions are not fully understood. Here, we report a novel subcellular localization of zebrafish Crb1 in retinal cone photoreceptors and evidence for its new functions in photoreceptor maintenance and light responsiveness. This study expands our understanding of the biology of the crb genes in epithelia, including retinal neuroepithelium.


Assuntos
Axonema/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Visão Ocular , Proteínas de Peixe-Zebra/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Cromatina/metabolismo , Feminino , Masculino , Proteínas do Tecido Nervoso/genética , Transporte Proteico , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
4.
Exp Eye Res ; 211: 108746, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34450185

RESUMO

PURPOSE: To develop a model of focal injury by blue light-emitting diode (LED)-induced phototoxicity (LIP) in pigmented mouse retinas and to study the effects on cone, Iba-1+ cells and retinal pigment epithelium (RPE) cell populations after administration of basic fibroblast growth factor (bFGF) and minocycline, alone or combined. METHODS: In anesthetized dark-adapted adult female pigmented C57BL/6 mice, left pupils were dilated and the eye exposed to LIP (500 lux, 45 s). The retina was monitored longitudinally in vivo with SD-OCT for 7 days (d). Ex vivo, the effects of LIP and its protection with bFGF (0.5 µg) administered alone or combined with minocycline (45 mg/kg) were studied in immunolabeled arrestin-cone outer segments (a+OS) and quantified within a predetermined fixed-size circular area (PCA) centered on the lesion in flattened retinas at 1, 3, 5 or 7d. Moreover, Iba-1+ cells and RPE cell morphology were analysed with Iba-1 and ZO-1 antibodies, respectively. RESULTS: LIP caused a focal lesion within the superior-temporal retina with retinal thinning, particularly the outer retinal layers (116.5 ± 2.9 µm to 36.8 ± 6.3 µm at 7d), and with progressive diminution of a+OS within the PCA reaching minimum values at 7d (6218 ± 342 to 3966 ± 311). Administration of bFGF alone (4519 ± 320) or in combination with minocycline (4882 ± 446) had a significant effect on a+OS survival at 7d and Iba-1+ cell activation was attenuated in the groups treated with minocycline. In parallel, the RPE cell integrity was progressively altered after LIP and administration of neuroprotective components had no restorative effect at 7d. CONCLUSIONS: LIP resulted in progressive outer retinal damage affecting the OS cone population and RPE. Administration of bFGF increased a+OS survival but did not prevent RPE deterioration.


Assuntos
Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Luz/efeitos adversos , Lesões Experimentais por Radiação/etiologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Degeneração Retiniana/etiologia , Animais , Arrestinas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Microscopia de Fluorescência , Minociclina/uso terapêutico , Lesões Experimentais por Radiação/diagnóstico por imagem , Lesões Experimentais por Radiação/prevenção & controle , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/prevenção & controle , Epitélio Pigmentado da Retina/metabolismo , Tomografia de Coerência Óptica
5.
Mol Cell Biochem ; 476(9): 3483-3495, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33983563

RESUMO

Iron is implicated in ocular diseases such as in age-related macular degeneration. Light is also considered as a pathological factor in this disease. Earlier, two studies reported the influence of constant light environment on the pattern of expressions of iron-handling proteins. Here, we aimed to see the influence of light in 12-h light-12-h dark (12L:12D) cycles on the expression of iron-handling proteins in chick retina. Chicks were exposed to 400 lx (control) and 5000 lx (experimental) light at 12L:12D cycles and sacrificed at variable timepoints. Retinal ferrous ion (Fe2+) level, ultrastructural changes, lipid peroxidation level, immunolocalization and expression patterns of iron-handling proteins were analysed after light exposure. Both total Fe2+ level (p = 0.0004) and lipid peroxidation (p = 0.002) significantly increased at 12-, 48- and 168-h timepoint (for Fe2+) and 48- and 168-h timepoint (for lipid peroxidation), and there were degenerative retinal changes after 168 h of light exposure. Intense light exposure led to an increase in the levels of transferrin and transferrin receptor-1 (at 168-h) and ferroportin-1, whereas the levels of ferritins, hephaestin, (at 24-, 48- and 168-h timepoint) and ceruloplasmin (at 168-h timepoint) were decreased. These changes in iron-handling proteins after light exposure are likely due to a disturbance in the iron storage pool evident from decreased ferritin levels, which would result in increased intracellular Fe2+ levels. To counteract this, Fe2+ is released into the extracellular space, an observation supported by increased expression of ferroportin-1. Ceruloplasmin was able to convert Fe2+ into Fe3+ until 48 h of light exposure, but its decreased expression with time (at 168-h timepoint) resulted in increased extracellular Fe2+ that might have caused oxidative stress and retinal cell damage.


Assuntos
Proteínas Reguladoras de Ferro/metabolismo , Ferro/metabolismo , Luz , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Animais , Galinhas , Peroxidação de Lipídeos , Masculino , Retina/efeitos da radiação , Células Fotorreceptoras Retinianas Cones/efeitos da radiação
6.
J Pineal Res ; 70(4): e12735, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33793975

RESUMO

Intrinsically photosensitive retinal ganglion cells convey intrinsic, melanopsin-based, photoreceptive signals alongside those produced by rods and cones to the suprachiasmatic nucleus (SCN) circadian clock. To date, experimental data suggest that melanopsin plays a more significant role in measuring ambient light intensity than cone photoreception. Such studies have overwhelmingly used diffuse light stimuli, whereas light intensity in the world around us varies across space and time. Here, we investigated the extent to which melanopsin or cone signals support circadian irradiance measurements in the presence of naturalistic spatiotemporal variations in light intensity. To address this, we first presented high- and low-contrast movies to anaesthetised mice whilst recording extracellular electrophysiological activity from the SCN. Using a mouse line with altered cone sensitivity (Opn1mwR mice) and multispectral light sources we then selectively varied irradiance of the movies for specific photoreceptor classes. We found that steps in melanopic irradiance largely account for the light induced-changes in SCN activity over a range of starting light intensities and in the presence of spatiotemporal modulation. By contrast, cone-directed changes in irradiance only influenced SCN activity when spatiotemporal contrast was low. Consistent with these findings, under housing conditions where we could independently adjust irradiance for melanopsin versus cones, the period lengthening effects of constant light on circadian rhythms in behaviour were reliably determined by melanopic irradiance, regardless of irradiance for cones. These data add to the growing evidence that modulating effective irradiance for melanopsin is an effective strategy for controlling the circadian impact of light.


Assuntos
Ritmo Circadiano/efeitos da radiação , Luz/efeitos adversos , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Opsinas de Bastonetes/efeitos da radiação , Núcleo Supraquiasmático/fisiologia , Animais , Comportamento Animal/efeitos da radiação , Ritmo Circadiano/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
7.
J Pineal Res ; 71(1): e12719, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33512714

RESUMO

Light influences diverse aspects of human physiology and behaviour including neuroendocrine function, the circadian system and sleep. A role for melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) in driving such effects is well established. However, rod and/or cone signals routed through ipRGCs could also influence "non-visual" spectral sensitivity. In humans, this has been most extensively studied for acute, light-dependent, suppression of nocturnal melatonin production. Of the published action spectra for melatonin suppression, one demonstrates a spectral sensitivity consistent with that expected for melanopsin while our own (using briefer 30 minute light exposures) displays very high sensitivity to short wavelength light, suggesting a contribution of S-cones. To clarify that possibility, six healthy young male participants were each exposed to 30 minutes of five irradiances of 415 nm monochromatic light (1-40 µW/cm2 ) across different nights. These data were then combined with the original action spectrum. The aggregated data are incompatible with the involvement of any single-opsin and multi-opsin models based on the original action spectrum (including Circadian Stimulus) fail to predict the responses to 415 nm stimuli. Instead, the extended action spectrum can be most simply approximated by an ~2:1 combination of melanopsin and S-cone signals. Such a model also better describes the magnitude of melatonin suppression observed in other studies using an equivalent 30 minute mono- or polychromatic light paradigm but not those using longer (90 minute) light exposures. In sum, these data provide evidence for an initial S-cone contribution to melatonin suppression that rapidly decays under extended light exposure.


Assuntos
Melatonina/biossíntese , Células Fotorreceptoras Retinianas Cones/metabolismo , Adulto , Ritmo Circadiano/fisiologia , Humanos , Luz , Masculino , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Opsinas de Bastonetes/metabolismo
8.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575905

RESUMO

BACKGROUND: In adult rats we study the short- and long-term effects of focal blue light-emitting diode (LED)-induced phototoxicity (LIP) on retinal thickness and Iba-1+ activation. METHODS: The left eyes of previously dark-adapted Sprague Dawley (SD) rats were photoexposed to a blue LED (20 s, 200 lux). In vivo longitudinal monitoring of retinal thickness, fundus images, and optical retinal sections was performed from 1 to 30 days (d) after LIP with SD-OCT. Ex vivo, we analysed the population of S-cone and Iba-1+ cells within a predetermined fixed-size circular area (PCA) centred on the lesion. RESULTS: LIP resulted in a circular focal lesion readily identifiable in vivo by fundus examination, which showed within the PCAs a progressive thinning of the outer retinal layer, and a diminution of the S-cone population to 19% by 30 d. In parallel to S-cone loss, activated Iba-1+ cells delineated the lesioned area and acquired an ameboid morphology with peak expression at 3 d after LIP. Iba-1+ cells adopted a more relaxed-branched morphology at 7 d and by 14-30 d their morphology was fully branched. CONCLUSION: LIP caused a progressive reduction of the outer retina with loss of S cones and a parallel dynamic activation of microglial cells in the lesioned area.


Assuntos
Luz , Retina/patologia , Retina/efeitos da radiação , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imunofluorescência , Microglia/metabolismo , Microglia/patologia , Microglia/efeitos da radiação , Ratos , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Fatores de Tempo , Tomografia de Coerência Óptica
9.
Opt Lett ; 45(17): 4658-4661, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870829

RESUMO

Noninvasive, objective measurement of rod function is as significant as that of cone function, and for retinal diseases such as retinitis pigmentosa and age-related macular degeneration, rod function may be a more sensitive biomarker of disease progression and efficacy of treatment than cone function. Functional imaging of single human rod photoreceptors, however, has proven difficult because their small size and rapid functional response pose challenges for the resolution and speed of the imaging system. Here, we describe light-evoked, functional responses of human rods and cones, measured noninvasively using a synchronized adaptive optics optical coherence tomography (OCT) and scanning light ophthalmoscopy (SLO) system. The higher lateral resolution of the SLO images made it possible to confirm the identity of rods in the corresponding OCT volumes.


Assuntos
Luz , Oftalmoscopia/métodos , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos da radiação , Humanos
10.
Exp Eye Res ; 200: 108205, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32866531

RESUMO

We had previously found that M to L cone abundancy ratios in the chicken retina are correlated with vitreous chamber depth and refractive state in chickens eyes, when they have normal visual exposure but not when they develop deprivation myopia. The finding suggests an interaction between cone abundancies and emmetropization. In the current study, we analyzed how stable this correlation was against changes in environmental variables and strain differences. We found that the correlation was preserved in two chicken strains, as long as they were raised in the laboratory facilities and not in the animal facilities of the institute. To determine the reasons for this difference, spectral and temporal lighting parameters were better adjusted in both places, whereas temperature, humidity, food, diurnal lighting cycles and illuminance were already matched. It was also verified that both strains of chickens had the same cone opsin amino acid sequences. The correlation between M to L cone abundancy and ocular biometry is highly susceptible to changes in environmental variables. Yet undetermined differences in lighting parameters were the most likely reasons. Other striking findings were that green cone opsin mRNA expression was downregulated when deprivation myopia developed. Similarly, red opsin mRNA was downregulated when chicks wore red spectacles, which made them more hyperopic. In summary, our experiments show that photoreceptor abundancies, opsin expression, and the responses to deprivation, and therefore emmetropization, are surprisingly dependent on subtle differences in lighting parameters.


Assuntos
Opsinas dos Cones/genética , Regulação da Expressão Gênica , Iluminação , RNA/genética , Refração Ocular/fisiologia , Erros de Refração/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Animais , Biometria , Galinhas , Opsinas dos Cones/biossíntese , Opsinas dos Cones/efeitos da radiação , Modelos Animais de Doenças , Erros de Refração/metabolismo , Erros de Refração/fisiopatologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação
11.
PLoS Biol ; 15(4): e2001210, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28403143

RESUMO

An animal's ability to survive depends on its sensory systems being able to adapt to a wide range of environmental conditions, by maximizing the information extracted and reducing the noise transmitted. The visual system does this by adapting to luminance and contrast. While luminance adaptation can begin at the retinal photoreceptors, contrast adaptation has been shown to start at later stages in the retina. Photoreceptors adapt to changes in luminance over multiple time scales ranging from tens of milliseconds to minutes, with the adaptive changes arising from processes within the phototransduction cascade. Here we show a new form of adaptation in cones that is independent of the phototransduction process. Rather, it is mediated by voltage-gated ion channels in the cone membrane and acts by changing the frequency response of cones such that their responses speed up as the membrane potential modulation depth increases and slow down as the membrane potential modulation depth decreases. This mechanism is effectively activated by high-contrast stimuli dominated by low frequencies such as natural stimuli. However, the more generally used Gaussian white noise stimuli were not effective since they did not modulate the cone membrane potential to the same extent. This new adaptive process had a time constant of less than a second. A critical component of the underlying mechanism is the hyperpolarization-activated current, Ih, as pharmacologically blocking it prevented the long- and mid- wavelength sensitive cone photoreceptors (L- and M-cones) from adapting. Consistent with this, short- wavelength sensitive cone photoreceptors (S-cones) did not show the adaptive response, and we found they also lacked a prominent Ih. The adaptive filtering mechanism identified here improves the information flow by removing higher-frequency noise during lower signal-to-noise ratio conditions, as occurs when contrast levels are low. Although this new adaptive mechanism can be driven by contrast, it is not a contrast adaptation mechanism in its strictest sense, as will be argued in the Discussion.


Assuntos
Adaptação Ocular , Células Fotorreceptoras Retinianas Cones/fisiologia , Potenciais de Ação , Animais , Carpa Dourada , Cinética , Células Fotorreceptoras Retinianas Cones/efeitos da radiação
12.
Biochem Biophys Res Commun ; 514(3): 919-925, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31084926

RESUMO

Staphylococcal nuclease and tudor domain containing 1 (SND1) has multiple functions in a variety of cellular processes. Here, we assessed the effects of SND1 in cellular DNA damage after ionizing radiation (IR). Knocking down SND1 in the mouse-derived photoreceptor 661 W cell line markedly inhibited cell proliferation and increased apoptosis after IR treatment. After DNA damage, SND1 induced Ataxia telangiectasia mutated kinase (ATM) signaling to launch DNA repair. Defects of SND1 were associated with missing response to DNA damage signal to cell cycle checkpoints or DNA repair. The current findings reveal SND1 as a new regulatory factor in DNA damage response.


Assuntos
Reparo do DNA/efeitos dos fármacos , DNA/genética , Endonucleases/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Ensaio Cometa , DNA/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Endonucleases/deficiência , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Raios gama , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Histonas/genética , Histonas/metabolismo , Camundongos , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Transdução de Sinais , Raios Ultravioleta
13.
Doc Ophthalmol ; 137(3): 143-149, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30306358

RESUMO

PURPOSE: The clinical standards for multifocal electroretinograms (mfERG) call for adaption to normal room lighting before the mfERG begins. They specify that any assessments where bright lights are used, should be done after the mfERG to prevent excess stimulation of retinal cells. However, full-field electroretinograms (FFERG) are performed prior to mfERGs in some clinical settings. It is unclear from the literature whether the FFERG has an impact on the mfERG. This study seeks to examine the effect of the FFERG on the mfERG when performed sequentially. METHODS: Thirty young healthy subjects (age 27.1 ± 3.5 years) were included. Patients reported for two visits and were fully dilated at both visits. At visit one, a FFERG was recorded (VERIS 6.2) using our clinical protocol which includes an ISCEV standard flash sequence; each flash condition was repeated 4-6 times. Following the FFERG, an mfERG was recorded using a 4-min m-sequence at near 100% contrast. At visit two, only the mfERG was recorded. A Burian-Allen contact lens electrode filled with celluvisc was used for all recordings. The two mfERGs were compared for foveal, peripheral, and overall implicit time (IT) and amplitudes (amp). Paired t tests were used to evaluate the data. Coefficient of variation and Bland-Altman analysis was also reported for this patient group. RESULTS: There was a small but statistically significant difference in foveal amplitudes (amp) (p = 0.004) wherein the amp was larger following the FFERG stimuli. The mean difference was 11.1 nV/deg2 (100.9 nV vs 89.8 nV). There was no difference in foveal IT (p = 0.66). There was no difference in overall IT or amp when averaging the entire eye (p = 0.44 amp and p = 0.54 IT) or just evaluating the periphery (p = 0.87 amp and p = 0.051 IT). Bland-Altman analysis found a coefficient of repeatability overall was 1.57 ms (IT) and 10.7 nV/deg2 (amp). CONCLUSIONS: The difference in foveal amplitude is likely the result of a small long-term cone adaptation, but further studies are needed. While it is statistically significant, the small difference is unlikely to be clinically important. These results should help increase clinical confidence in mfERG results when recorded following a FFERG.


Assuntos
Eletrorretinografia/métodos , Fóvea Central/fisiologia , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Estimulação Luminosa , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Adulto Jovem
14.
Adv Exp Med Biol ; 1074: 485-490, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721980

RESUMO

Retbindin (Rtbdn) is a novel protein of unknown function found exclusively in the retina. Recently, our group has suggested, from in silico analysis of the peptide sequence and in vitro binding data, that Rtbdn could function to bind riboflavin (RF) and its derivatives flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), collectively known as flavins. Here we confirm that Rtbdn is capable of flavin binding and that this characteristic can protect photoreceptors from flavin-sensitized light damage.


Assuntos
Proteínas do Olho/farmacologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Animais , Células COS , Morte Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Meios de Cultivo Condicionados , Humanos , Camundongos , Radiossensibilizantes/farmacologia , Proteínas Recombinantes/farmacologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Riboflavina/farmacologia
15.
Subcell Biochem ; 81: 231-259, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27830507

RESUMO

Visual systems detect light by monitoring the effect of photoisomerization of a chromophore on the release of a neurotransmitter from sensory neurons, known as rod and cone photoreceptor cells in vertebrate retina. In all known visual systems, the chromophore is 11-cis-retinal complexed with a protein, called opsin, and photoisomerization produces all-trans-retinal. In mammals, regeneration of 11-cis-retinal following photoisomerization occurs by a thermally driven isomerization reaction. Additional reactions are required during regeneration to protect cells from the toxicity of aldehyde forms of vitamin A that are essential to the visual process. Photochemical and phototransduction reactions in rods and cones are identical; however, reactions of the rod and cone visual pigment regeneration cycles differ, and perplexingly, rod and cone regeneration cycles appear to use different mechanisms to overcome the energy barrier involved in converting all-trans- to 11-cis-retinoid. Abnormal processing of all-trans-retinal in the rod regeneration cycle leads to retinal degeneration, suggesting that excessive amounts of the retinoid itself or its derivatives are toxic. This line of reasoning led to the development of various approaches to modifying the activity of the rod visual cycle as a possible therapeutic approach to delay or prevent retinal degeneration in inherited retinal diseases and perhaps in the dry form of macular degeneration (geographic atrophy). In spite of great progress in understanding the functioning of rod and cone regeneration cycles at a molecular level, resolution of a number of remaining puzzling issues will offer insight into the amelioration of several blinding retinal diseases.


Assuntos
Células Fotorreceptoras Retinianas Cones/fisiologia , Pigmentos da Retina/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Visão Ocular/fisiologia , Vitamina A/fisiologia , Animais , Proteínas de Transporte/metabolismo , Escuridão , Previsões , Atrofia Geográfica/tratamento farmacológico , Atrofia Geográfica/metabolismo , Humanos , Isomerismo , Luz , Estrutura Molecular , Fotoquímica , Fótons , Pregabalina/farmacologia , Pregabalina/uso terapêutico , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Epitélio Pigmentado da Retina/fisiologia , Pigmentos da Retina/efeitos da radiação , Células Fotorreceptoras Retinianas Bastonetes/efeitos da radiação , Retinaldeído/metabolismo , Bases de Schiff , Vertebrados/fisiologia , Vitamina A/efeitos da radiação , cis-trans-Isomerases/metabolismo
16.
Proc Natl Acad Sci U S A ; 111(7): 2752-7, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24550304

RESUMO

Retinal cones are photoreceptors for daylight vision. For lower vertebrates, cones are known to give monophasic, hyperpolarizing responses to light flashes. For primate cones, however, they have been reported to give strongly biphasic flash responses, with an initial hyperpolarization followed by a depolarization beyond the dark level, now a textbook dogma. We have reexamined this primate-cone observation and, surprisingly, found predominantly monophasic cone responses. Correspondingly, we found that primate cones began to adapt to steady light at much lower intensities than previously reported, explainable by a larger steady response to background light for a monophasic than for a biphasic response. Similarly, we have found a monophasic cone response for several other mammalian species. Thus, a monophasic flash response may in fact be the norm for primate and other mammalian cones as for lower-vertebrate cones. This revised information is important for ultimately understanding human retinal signal processing and correlating with psychophysical data.


Assuntos
Luz , Macaca fascicularis/fisiologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Visão Ocular/fisiologia , Animais , Humanos , Camundongos , Estimulação Luminosa , Ratos , Suínos
17.
J Biol Chem ; 290(15): 9399-411, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25713141

RESUMO

Visual pigment in photoreceptors is activated by light. Activated visual pigment (R*) is believed to be inactivated by phosphorylation of R* with subsequent binding of arrestin. There are two types of photoreceptors, rods and cones, in the vertebrate retina, and they express different subtypes of arrestin, rod and cone type. To understand the difference in the function between rod- and cone-type arrestin, we first identified the subtype of arrestins expressed in rods and cones in carp retina. We found that two rod-type arrestins, rArr1 and rArr2, are co-expressed in a rod and that a cone-type arrestin, cArr1, is expressed in blue- and UV-sensitive cones; the other cone-type arrestin, cArr2, is expressed in red- and green-sensitive cones. We quantified each arrestin subtype and estimated its concentration in the outer segment of a rod or a cone in the dark; they were ∼0.25 mm (rArr1 plus rArr2) in a rod and 0.6-0.8 mm (cArr1 or cArr2) in a cone. The effect of each arrestin was examined. In contrast to previous studies, both rod and cone arrestins suppressed the activation of transducin in the absence of visual pigment phosphorylation, and all of the arrestins examined (rArr1, rArr2, and cArr2) bound transiently to most probably nonphosphorylated R*. One rod arrestin, rArr2, bound firmly to phosphorylated pigment, and the other two, rArr1 and cArr2, once bound to phosphorylated R* but dissociated from it during incubation. Our results suggested a novel mechanism of arrestin effect on the suppression of the R* activity in both rods and cones.


Assuntos
Arrestina/metabolismo , Carpas/metabolismo , Proteínas de Peixes/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Pigmentos da Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Arrestina/genética , Carpas/genética , Proteínas de Peixes/genética , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Immunoblotting , Imuno-Histoquímica , Luz , Fosforilação , Ligação Proteica/efeitos da radiação , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Células Fotorreceptoras Retinianas Bastonetes/efeitos da radiação , Transducina/metabolismo
18.
Eur J Neurosci ; 44(6): 2314-23, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27422659

RESUMO

Melanopsin phototransduction allows intrinsically photosensitive retinal ganglion cells (ipRGCs) to maintain firing under sustained illumination and to encode irradiance. ipRGCs project to different parts of the visual system, including the superficial superior colliculus (sSC), but to date there is no description of melanopsin contributions to the activity of that nucleus. We sought to fill that gap using extracellular recordings to describe light response in the sSC. We failed to observe light responses in the sSC of mice lacking rod and cone function, in which melanopsin provides the only photoreception. Nor did the sSC of intact animals track very gradual ramps in irradiance, a stimulus encoded by melanopsin for other brain regions. However, in visually intact mice we did find maintained responses to extended light steps (30 s) and to an irradiance ramp upon which a high frequency (20 Hz) temporal white noise was superimposed. Both of these responses were deficient when the spectral composition of the stimulus was changed to selectively reduce its effective irradiance for melanopsin. Such maintained activity was also impaired in mice lacking melanopsin, and this effect was specific, as responses of this genotype to higher spatiotemporal frequency stimuli were normal. We conclude that ipRGCs contribute to irradiance-dependent modulations in maintained activity in the sSC, but that this effect is less robust than for other brain regions receiving ipRGC input.


Assuntos
Transdução de Sinal Luminoso/efeitos dos fármacos , Opsinas de Bastonetes/farmacologia , Colículos Superiores/efeitos dos fármacos , Animais , Luz , Camundongos , Estimulação Luminosa/métodos , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/efeitos da radiação , Colículos Superiores/efeitos da radiação
19.
FASEB J ; 29(1): 216-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326538

RESUMO

A cycle of cis-to-trans isomerization of the chromophore is intrinsic to vertebrate vision where rod and cone photoreceptors mediate dim- and bright-light vision, respectively. Daylight illumination can greatly exceed the rate at which the photoproduct can be recycled back to the chromophore by the canonical visual cycle. Thus, an additional supply pathway(s) must exist to sustain cone-dependent vision. Two-photon microscopy revealed that the eyes of the zebrafish (Danio rerio) contain high levels of 11-cis-retinyl esters (11-REs) within the retinal pigment epithelium. HPLC analyses demonstrate that 11-REs are bleached by bright light and regenerated in the dark. Pharmacologic treatment with all-trans-retinylamine (Ret-NH2), a potent and specific inhibitor of the trans-to-cis reisomerization reaction of the canonical visual cycle, impeded the regeneration of 11-REs. Intervention with 11-cis-retinol restored the regeneration of 11-REs in the presence of all-trans-Ret-NH2. We used the XOPS:mCFP transgenic zebrafish line with a functional cone-only retina to directly demonstrate that this 11-RE cycle is critical to maintain vision under bright-light conditions. Thus, our analyses reveal that a dark-generated pool of 11-REs helps to supply photoreceptors with the chromophore under the varying light conditions present in natural environments.


Assuntos
Células Fotorreceptoras Retinianas Cones/fisiologia , Retinoides/metabolismo , Visão Ocular/fisiologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Luz , Modelos Biológicos , Mutação , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos da radiação , Retinoides/química , Distribuição Tecidual , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo , cis-trans-Isomerases/antagonistas & inibidores , cis-trans-Isomerases/metabolismo
20.
Vis Neurosci ; 33: E008, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-27485271

RESUMO

The medial part of the nucleus of Edinger-Westphal (EWM) in birds mediates light-regulated adaptive increases in choroidal blood flow (ChBF). We sought to characterize the effect of loss of EWM-mediated ChBF regulation on photoreceptor health in pigeons housed in either moderate intensity diurnal or constant light (CL). Photoreceptor abundance following complete EWM destruction was compared to that following a lesion in the pupil control circuit (as a control for spread of EWM lesions to the nearby pupil-controlling lateral EW) or following no EW damage. Birds were housed post-lesion in a 12 h 400 lux light/12 h dark light cycle for up to 16.5 months, or in constant 400 lux light for up to 3 weeks. Paraformaldehyde-glutaraldehyde fixed eyes were embedded in plastic, sectioned, slide-mounted, and stained with toluidine blue/azure II. Blinded analysis of photoreceptor outer segment abundance was performed, with outer segment types distinguished by oil droplet tint and laminar position. Brains were examined histologically to assess lesion accuracy. Disruption of pupil control had no adverse effect on photoreceptor outer segment abundance in either diurnal light or CL, but EWM destruction led to 50-60% loss of blue/violet cone outer segments in both light conditions, and a 42% loss of principal cone outer segments in CL. The findings indicate that adaptive regulation of ChBF by the EWM circuit plays a role in maintaining photoreceptor health and mitigates the harmful effect of light on photoreceptors, especially short wavelength-sensitive cone photoreceptors.


Assuntos
Corioide/irrigação sanguínea , Artérias Ciliares/inervação , Núcleo de Edinger-Westphal/fisiologia , Sistema Nervoso Parassimpático/fisiologia , Lesões Experimentais por Radiação/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/patologia , Animais , Colina O-Acetiltransferase/metabolismo , Columbidae/fisiologia , Feminino , Luz/efeitos adversos , Masculino , Lesões Experimentais por Radiação/etiologia , Fluxo Sanguíneo Regional/fisiologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Degeneração Retiniana/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA