Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 23(1): 497, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264310

RESUMO

BACKGROUND: Cancer's hallmark feature is its ability to evolve, leading to metastasis and recurrence. Although genetic mutations and epigenetic changes have been implicated, they don't fully explain the leukocytic traits that many cancers develop. Cell fusion between cancer and somatic cells, particularly macrophages, has been suggested as an alternative pathway for cancer cells to obtain new traits by acquiring exogenous genetic material. METHODS: This study aims to investigate the potential biological outcomes of tumor-myeloid cell fusion by generating tumor-macrophage hybrid cells. Two clones with markedly different tumorigenicity were selected, and RNA-seq was used to compare their RNA expressions with that of the control cells. Based on the results that the hybrid cells showed differential activation in several upstream regulator pathways that impact their biological behaviors, the hybrid cells' abilities to recruit stromal cells and establish angiogenesis as well as their cell cycle distributions were investigated through in vitro and in vivo studies. RESULTS: Although both hybrid clones demonstrated p53 activation and reduced growth rates, they exhibited distinct cell cycle distributions and ability to grow in vivo. Notably, while one clone was highly tumorigenic, the other showed little tumorigenicity. Despite these differences, both hybrid clones were potent environmental modifiers, exhibiting significant abilities to recruit stromal and immune cells and establish angiogenesis. CONCLUSIONS: The study revealed that tumor-somatic cell fusion is a potent environmental modifier that can modulate tumor survival and evolution, despite its relatively low occurrence. These findings suggest that tumor-somatic cell fusion could be a promising target for developing new cancer therapies. Furthermore, this study provides an experimental animal platform to investigate cancer-myeloid fusion and highlights the potential role of tumor-somatic cell fusion in modulating the tumor environment.


Assuntos
Neoplasias , Animais , Neoplasias/genética , Neoplasias/patologia , Células Híbridas/patologia , Fusão Celular , Comunicação Celular , Macrófagos/patologia
2.
Cell Mol Life Sci ; 79(5): 283, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513611

RESUMO

Mitochondria play important roles in the regulation of key cellular processes, including energy metabolism, oxidative stress response, and signaling towards cell death or survival, and are distinguished by carrying their own genome (mtDNA). Mitochondrial dysfunction has emerged as a prominent cellular mechanism involved in neurodegeneration, including Parkinson's disease (PD), a neurodegenerative movement disorder, characterized by progressive loss of dopaminergic neurons and the occurrence of proteinaceous Lewy body inclusions. The contribution of mtDNA variants to PD pathogenesis has long been debated and is still not clearly answered. Cytoplasmic hybrid (cybrid) cell models provided evidence for a contribution of mtDNA variants to the PD phenotype. However, conclusive evidence of mtDNA mutations as genetic cause of PD is still lacking. Several models have shown a role of somatic, rather than inherited mtDNA variants in the impairment of mitochondrial function and neurodegeneration. Accordingly, several nuclear genes driving inherited forms of PD are linked to mtDNA quality control mechanisms, and idiopathic as well as familial PD tissues present increased mtDNA damage. In this review, we highlight the use of cybrids in this PD research field and summarize various aspects of how and to what extent mtDNA variants may contribute to the etiology of PD.


Assuntos
DNA Mitocondrial , Doença de Parkinson , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Neurônios Dopaminérgicos/metabolismo , Humanos , Células Híbridas/metabolismo , Células Híbridas/patologia , Mitocôndrias/metabolismo , Doença de Parkinson/patologia
3.
Biochemistry (Mosc) ; 87(4): 380-390, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35527376

RESUMO

Cancer is one of the most common diseases worldwide, and its treatment is associated with many challenges such as drug and radioresistance and formation of metastases. These difficulties are due to tumor heterogeneity, which has many causes. One may be the cell fusion, a process that is relevant to both physiological (e.g., wound healing) and pathophysiological (cancer and viral infection) processes. This literature review aimed to summarize the existing data on the hybrid/atypical forms of circulating cancer cells and their role in tumor progression. For that, the bioinformatics search in universal databases, such as PubMed, NCBI, and Google Scholar was conducted by using the keywords "hybrid cancer cells", "cancer cell fusion", etc. In this review the latest information related to the hybrid tumor cells, theories of their genesis, characteristics of different variants with data from our own researches are presented. Many aspects of the hybrid cell research are still in their infancy. However, with the level of knowledge already accumulated, circulating hybrids such as CAML and CHC could be considered as promising biomarkers of cancerous tumors, and even more as a new approach to cancer treatment.


Assuntos
Células Neoplásicas Circulantes , Contagem de Células , Fusão Celular , Humanos , Células Híbridas/patologia , Células Neoplásicas Circulantes/patologia
4.
BMC Cancer ; 20(1): 446, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430004

RESUMO

BACKGROUND: Several physiological (fertilization, placentation, wound healing) and pathophysiological processes (infection with enveloped viruses, cancer) depend on cell fusion. In cancer it was postulated that the fusion of cancer cells with normal cells such as macrophages or stem cells may not only give rise to hybrid cells exhibiting novel properties, such as an increased metastatic capacity and drug resistance, but possibly also cancer stem/ initiating cell properties. Hence, hybrid clone cells (M13HS, M13MDA435 and M13MDA231) that were derived from spontaneous fusion events of human M13SV1-EGFP-Neo breast epithelial cells and HS578T-Hyg, MDA-MB-435-Hyg and MDA-MB-231-Hyg cancer cells were investigated regarding potential in vitro cancer stem/ initiating cell properties. METHODS: CD44/CD24 expression pattern and ALDH1 activity of parental cells and hybrid clones was determined by flow cytometry. A colony formation and mammosphere formation assay was applied to determine the cells' capability to form colonies and mammospheres. Sox9, Slug and Snail expression levels were determined by Western blot analysis. RESULTS: Flow cytometry revealed that all hybrid clone cells were CD44+/CD24-/low, but differed markedly among each other regarding ALDH1 activity. Likewise, each hybrid clone possessed a unique colony formation and mammosphere capacity as well as unique Snail, Slug and Sox9 expression patterns. Nonetheless, comparison of hybrid clones revealed that M13HS hybrids exhibited more in vitro cancer stem/ initiating cell properties than M13MDA231 and M13MDA435 hybrids, such as more ALDH1 positive cells or an increased capacity to form colonies and mammospheres. CONCLUSION: The fate whether cancer stem/ initiating cells may originate from cell fusion events likely depends on the specific characteristics of the parental cells.


Assuntos
Neoplasias da Mama/patologia , Células Epiteliais/patologia , Células Híbridas/patologia , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias da Mama/metabolismo , Antígeno CD24/metabolismo , Fusão Celular , Movimento Celular , Células Epiteliais/metabolismo , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Células Híbridas/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição SOX9/metabolismo , Células Tumorais Cultivadas
5.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348862

RESUMO

Cancer is one of the most common diseases worldwide, and treatment bears many challenges such as drug and radioresistance and formation of metastases. These difficulties are due to tumor heterogeneity, which has many origins. One may be cell fusion, a process that is relevant in both physiological (e.g., wound healing) and pathophysiological (cancer and viral infection) processes. In this study, we examined if cell fusion between mesenchymal stem/stromal cells (MSCs) and breast cancer (BC) cells occurs and if newly generated hybrid cells may exhibit cancer stem/initiating cell (CS/IC) characteristics. Therefore, several methods such as mammosphere assay, AldeRed assay, flow cytometry (CD24, CD44, CD104) and Western blot analysis (of epithelial to mesenchymal transition markers such as SNAIL, SLUG and Twist) were applied. In short, four different hybrid clones, verified by short tandem repeat (STR) analysis, were analyzed; each expressed an individual phenotype that seemed not to be explicitly related to either a more stem cell or cancer cell phenotype. These results show that cancer cells and MSCs are able to fuse spontaneously in vitro, thereby giving rise to hybrid cells with new properties, which likely indicate that cell fusion may be a trigger for tumor heterogeneity.


Assuntos
Neoplasias da Mama/patologia , Fusão Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Células Híbridas/patologia , Células-Tronco Mesenquimais/patologia , Células-Tronco Neoplásicas/patologia , Apoptose , Neoplasias da Mama/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Humanos , Células Híbridas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células Tumorais Cultivadas
6.
Int J Mol Sci ; 21(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143259

RESUMO

Collagen, the main non-cellular component of the extracellular matrix (ECM), is profoundly reorganized during tumorigenesis and has a strong impact on tumor behavior. The main source of collagen in tumors is cancer-associated fibroblasts. Cancer cells can also participate in the synthesis of ECM; however, the contribution of both types of cells to collagen rearrangements during the tumor progression is far from being clear. Here, we investigated the processes of collagen biosynthesis and remodeling in parallel with the transcriptome changes during cancer cells and fibroblasts interactions. Combining immunofluorescence, RNA sequencing, and second harmonic generation microscopy, we have explored the relationships between the ratio of epithelial (E) and mesenchymal (M) components of hybrid E/M cancer cells, their ability to activate fibroblasts, and the contributions of both cell types to collagen remodeling. To this end, we studied (i) co-cultures of colorectal cancer cells and normal fibroblasts in a collagen matrix, (ii) patient-derived cancer-associated fibroblasts, and (iii) mouse xenograft models. We found that the activation of normal fibroblasts that form dense collagen networks consisting of large, highly oriented fibers depends on the difference in E/M ratio in the cancer cells. The more-epithelial cells activate the fibroblasts more strongly, which correlates with a dense and highly ordered collagen structure in tumors in vivo. The more-mesenchymal cells activate the fibroblasts to a lesser degree; on the other hand, this cell line has a higher innate collagen remodeling capacity. Normal fibroblasts activated by cancer cells contribute to the organization of the extracellular matrix in a way that is favorable for migratory potency. At the same time, in co-culture with epithelial cancer cells, the contribution of fibroblasts to the reorganization of ECM is more pronounced. Therefore, one can expect that targeting the ability of epithelial cancer cells to activate normal fibroblasts may provide a new anticancer therapeutic strategy.


Assuntos
Biomarcadores Tumorais/metabolismo , Fibroblastos Associados a Câncer/patologia , Colágeno/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Fibroblastos/patologia , Células Híbridas/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Fibroblastos Associados a Câncer/metabolismo , Proliferação de Células , Técnicas de Cocultura , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Matriz Extracelular , Feminino , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Células Híbridas/metabolismo , Camundongos , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
BMC Cancer ; 17(1): 515, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28768501

RESUMO

BACKGROUND: The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. METHODS: Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. RESULTS: M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS hybrid clones exhibited a mesenchymal phenotype and, with the exception of one hybrid clone, responded to EGF with an increased migratory activity. CONCLUSION: Fusion of human breast epithelial cells and human breast cancer cells can give rise to hybrid clone cells that possess certain CS/IC properties, suggesting that cell fusion might be a mechanism underlying how tumor cells exhibiting a CS/IC phenotype could originate.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Evolução Clonal , Células Epiteliais/metabolismo , Células Híbridas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Família Aldeído Desidrogenase 1 , Biomarcadores , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Evolução Clonal/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Imunofluorescência , Expressão Gênica , Humanos , Células Híbridas/patologia , Isoenzimas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Retinal Desidrogenase/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Esferoides Celulares , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco
8.
Patol Fiziol Eksp Ter ; 61(2): 92-7, 2017.
Artigo em Russo | MEDLINE | ID: mdl-29215849

RESUMO

Aim. This review article describes literature sources devoted to the investigation of mitochondrial dysfunction using cytoplasmic hybrids (cybrids). The presented studies were carried out on cultures of cybrid cell lines HL60, MOL T-4, A549, 143B, HeLa, Arpe-19, HEK-293, SH-SY5Y and NT2. According to the analysis of scientific world literature, some of the most promising models for studying mitochondrial dysfunction are cell cultures without mitochondria (rho0) and cytoplasmic hybrids containing one or several mutations of mitochondrial genome. In the review scientific researches on studying biochemical and molecular cellular pathological processes in cybrid cells in various human diseases such as Alzheimer's disease and mild cognitive impairment, MERRF and MELAS syndromes, Leber's optic atrophy and Parkinson's disease were considered. Material dedicated to cybrids as potential models for the study of treatment possibilities was presented separately. Conclusion. The analyzed in the review rho0-cell cultures and cybrid lines containing mtDNA mutations may be models for the study of mitochondrial genome dysfunctions, biochemical and molecular cellular pathological processes. It is worth noting that in various cell cultures, similar tendencies are observed in functional activity changes of rho0-cell and cybrids compared with native cell lines. For example, such tendencies as reduction of oxygen consumption level, morphological changes of mitochondrial structure, resistance to apoptosis, reduction of ATP consumption level, increase in glucose consumption, activity deterioration of some respiratory chain complexes.


Assuntos
Células Híbridas/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Células A549 , Fusão Celular , Células HEK293 , Células HL-60 , Células HeLa , Humanos , Células Híbridas/patologia , Mitocôndrias/patologia , Doenças Mitocondriais
9.
Blood ; 124(2): 259-62, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24855209

RESUMO

Recent investigations of chromosomal aberrations in chronic lymphocytic leukemia (CLL) led to a better understanding of the molecular causes of CLL. Here we report a rearrangement between MAML2 (mastermind-like protein 2) and CXCR4 (specific receptor for CXC chemokine stromal cell-derived factor-1) in CLL cells of a patient with a t(2;11)(q22.1;q21) chromosomal translocation. The rearrangement between MAML2 and CXCR4, created by a t(2;11)(q22.1;q21) translocation, results in a new fusion gene in which a portion of CXCR4 is linked to the MAML2 gene. This fusion gene encodes for CXCR4/MAML2 protein chimera in which the N-terminal basic domain of MAML2 is replaced by the N-terminal domain of CXCR4.


Assuntos
Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 2/genética , Proteínas de Ligação a DNA/genética , Leucemia Linfocítica Crônica de Células B/genética , Proteínas Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Receptores CXCR4/genética , Fatores de Transcrição/genética , Translocação Genética , Animais , Sequência de Bases , Análise Citogenética , Proteínas de Ligação a DNA/química , Humanos , Células Híbridas/metabolismo , Células Híbridas/patologia , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , Proteínas Nucleares/química , Receptores CXCR4/química , Transativadores , Fatores de Transcrição/química , Células Tumorais Cultivadas
10.
Tumour Biol ; 37(4): 5025-30, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26537586

RESUMO

Spontaneous cell-cell fusion has been recognized to be an important mechanism for tissue and organ development and repair. In cancer, cell fusion is critically involved in tumourigenesis, metastasis and drug resistance, as illustrated by in vitro experiments. However, there has been no direct detection of tumour cell fusion or hybridization in an in vivo tumour environment, and the features of hybridized cells under selective pressures, such as chemotherapy, are unknown. Here, we expressed two fluorescent marker proteins in the human breast cancer cell line SKBR3 to detect tumour cell hybridization in vivo and performed a xenograft chemotherapy experiment in mice to evaluate the chemotherapeutic response of the hybrids. The mice treated by epirubicin showed that chemotherapy promoted tumour cell hybridization in vivo, which elicited the production of more hybrids in the outer section of the tumour. These results provide the first in vivo evidence of tumour cell fusion and indicate that chemotherapy may contribute to a poor prognosis by enriching for fused cells, which are more malignant. It is therefore necessary to reassess chemotherapy strategies.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Epirubicina/administração & dosagem , Prognóstico , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Epirubicina/efeitos adversos , Feminino , Humanos , Células Híbridas/efeitos dos fármacos , Células Híbridas/patologia , Camundongos , Metástase Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cytotherapy ; 18(4): 570-80, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26971685

RESUMO

BACKGROUND AIMS: Dendritic cell (DC)-tumor cell hybrids have been used clinically in cancer immunotherapy, but their advantage over the simple mixture of tumor cells and DCs is still a matter of controversy. In this study, we compared DC-tumor cell hybrids with the non-fused mixture of DC and tumor cells directly in their ability to induce a specific immune response. METHODS: Hybrids were obtained by electrofusion of tumor cells and monocyte-derived DCs. Cell phenotype was evaluated by flow cytometry and antigen-presenting ability by co-culture with syngeneic T cells followed by tetramer analysis and interferon (IFN)-γ ELISPOT. RESULTS: Less than half the cells in the mixture expressed DC co-stimulatory molecules. Furthermore, DCs in the mixture had significantly lower expression of MHC class I molecules than DCs in the fusion. Conversely, nearly all CD11c(+)Her2/neu(+) hybrids expressed CD80, CD86, CD83, HLA-DR and MHC class I from both tumor cells and DCs. Using tumor cells constitutively expressing a cytomegalovirus (CMV) antigen, we show that expansion of CMV-specific cytotoxic T lymphocytes (CTLs) restricted by DCs' MHC class I molecules was higher when DC-tumor hybrids were the stimulators. Furthermore, only hybrids stimulated CTLs to produce IFN-γ in response to CMV-positive target cells. CONCLUSIONS: These data show the superiority of DC-tumor cell hybrids over their simple mixture as T-cell stimulators. Hybrids expressed more co-stimulatory and MHC molecules, induced higher antigen-specific T-cell expansion and were the only cells able to induce IFN-γ-producing antigen-specific T cells. Thus, these data offer further support for cancer immunotherapeutic approaches using DC-tumor cell hybrids.


Assuntos
Células Dendríticas/imunologia , Células Híbridas/imunologia , Imunidade Celular , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Apresentação de Antígeno , Vacinas Anticâncer/imunologia , Fusão Celular , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/patologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Células Híbridas/patologia , Neoplasias/patologia , Linfócitos T Citotóxicos/imunologia
12.
Biochim Biophys Acta ; 1842(2): 220-31, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24252614

RESUMO

Mitochondrial dysfunction is an early pathological feature of Alzheimer's disease (AD). The underlying mechanisms and strategies to repair it remain unclear. Here, we demonstrate for the first time the direct consequences and potential mechanisms of mitochondrial functional defects associated with abnormal mitochondrial dynamics in AD. Using cytoplasmic hybrid (cybrid) neurons with incorporated platelet mitochondria from AD and age-matched non-AD human subjects into mitochondrial DNA (mtDNA)-depleted neuronal cells, we observed that AD cybrid cells had significant changes in morphology and function; such changes associate with altered expression and distribution of dynamin-like protein (DLP1) and mitofusin 2 (Mfn2). Treatment with antioxidant protects against AD mitochondria-induced extracellular signal-regulated kinase (ERK) activation and mitochondrial fission-fusion imbalances. Notably, inhibition of ERK activation not only attenuates aberrant mitochondrial morphology and function but also restores the mitochondrial fission and fusion balance. These effects suggest a role of oxidative stress-mediated ERK signal transduction in modulation of mitochondrial fission and fusion events. Further, blockade of the mitochondrial fission protein DLP1 by a genetic manipulation with a dominant negative DLP1 (DLP1(K38A)), its expression with siRNA-DLP1, or inhibition of mitochondrial division with mdivi-1 attenuates mitochondrial functional defects observed in AD cybrid cells. Our results provide new insights into mitochondrial dysfunction resulting from changes in the ERK-fission/fusion (DLP1) machinery and signaling pathway. The protective effect of mdivi-1 and inhibition of ERK signaling on maintenance of normal mitochondrial structure and function holds promise as a potential novel therapeutic strategy for AD.


Assuntos
Doença de Alzheimer/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Células Híbridas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Antioxidantes/farmacologia , Dinaminas , Feminino , GTP Fosfo-Hidrolases/genética , Humanos , Células Híbridas/patologia , Immunoblotting , Masculino , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Mutação , Neurônios/metabolismo , Neurônios/patologia , Probucol/farmacologia , Quinazolinonas/farmacologia , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
13.
Exp Cell Res ; 328(1): 156-163, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25016285

RESUMO

Most previous studies have linked cancer-macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression.


Assuntos
Carcinoma de Células Escamosas/patologia , Fusão Celular , Células Endoteliais da Veia Umbilical Humana/citologia , Células Híbridas/patologia , Neoplasias Bucais/patologia , Fusão Nuclear , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Comunicação Celular , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Imunofluorescência , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células Híbridas/efeitos dos fármacos , Células Híbridas/metabolismo , Hibridização in Situ Fluorescente , Queratina-18/metabolismo , Camundongos , Camundongos Nus , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Células Tumorais Cultivadas , Vimentina/metabolismo
14.
Chin J Cancer ; 33(3): 133-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24589183

RESUMO

This perspective article highlights the leukocyte-cancer cell hybrid theory as a mechanism for cancer metastasis. Beginning from the first proposal of the theory more than a century ago and continuing today with the first proof for this theory in a human cancer, the hybrid theory offers a unifying explanation for metastasis. In this scenario, leukocyte fusion with a cancer cell is a secondary disease superimposed upon the early tumor, giving birth to a new, malignant cell with a leukocyte-cancer cell hybrid epigenome.


Assuntos
Células da Medula Óssea , Células Híbridas/patologia , Metástase Neoplásica , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/patologia , Fusão Celular , Humanos
15.
Sci Rep ; 14(1): 7350, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538742

RESUMO

Persistently high, worldwide mortality from cancer highlights the unresolved challenges of disease surveillance and detection that impact survival. Development of a non-invasive, blood-based biomarker would transform survival from cancer. We demonstrate the functionality of ultra-high content analyses of a newly identified population of tumor cells that are hybrids between neoplastic and immune cells in patient matched tumor and peripheral blood specimens. Using oligonucleotide conjugated antibodies (Ab-oligo) permitting cyclic immunofluorescence (cyCIF), we present analyses of phenotypes among tumor and peripheral blood hybrid cells. Interestingly, the majority of circulating hybrid cell (CHC) subpopulations were not identified in tumor-associated hybrids. These results highlight the efficacy of ultra-high content phenotypic analyses using Ab-oligo based cyCIF applied to both tumor and peripheral blood specimens. The combination of a multiplex phenotypic profiling platform that is gentle enough to analyze blood to detect and evaluate disseminated tumor cells represents a novel approach to exploring novel tumor biology and potential utility for developing the population as a blood-based biomarker in cancer.


Assuntos
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Biomarcadores Tumorais , Células Híbridas/patologia , Anticorpos , Fenótipo
16.
BMC Cell Biol ; 14: 44, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24073846

RESUMO

BACKGROUND: A few reports suggested that low levels of Wnt signaling might drive cell reprogramming, but these studies could not establish a clear relationship between Wnt signaling and self-renewal networks. There are ongoing debates as to whether and how the Wnt/ß-catenin signaling is involved in the control of pluripotency gene networks. Additionally, whether physiological ß-catenin signaling generates stem-like cells through interactions with other pathways is as yet unclear. The nasopharyngeal carcinoma HONE1 cells have low expression of ß-catenin and wild-type expression of p53, which provided a possibility to study regulatory mechanism of stemness networks induced by physiological levels of Wnt signaling in these cells. RESULTS: Introduction of increased ß-catenin signaling, haploid expression of ß-catenin under control by its natural regulators in transferred chromosome 3, resulted in activation of Wnt/ß-catenin networks and dedifferentiation in HONE1 hybrid cell lines, but not in esophageal carcinoma SLMT1 hybrid cells that had high levels of endogenous ß-catenin expression. HONE1 hybrid cells displayed stem cell-like properties, including enhancement of CD24(+) and CD44(+) populations and generation of spheres that were not observed in parental HONE1 cells. Signaling cascades were detected in HONE1 hybrid cells, including activation of p53- and RB1-mediated tumor suppressor pathways, up-regulation of Nanog-, Oct4-, Sox2-, and Klf4-mediated pluripotency networks, and altered E-cadherin expression in both in vitro and in vivo assays. qPCR array analyses further revealed interactions of physiological Wnt/ß-catenin signaling with other pathways such as epithelial-mesenchymal transition, TGF-ß, Activin, BMPR, FGFR2, and LIFR- and IL6ST-mediated cell self-renewal networks. Using ß-catenin shRNA inhibitory assays, a dominant role for ß-catenin in these cellular network activities was observed. The expression of cell surface markers such as CD9, CD24, CD44, CD90, and CD133 in generated spheres was progressively up-regulated compared to HONE1 hybrid cells. Thirty-four up-regulated components of the Wnt pathway were identified in these spheres. CONCLUSIONS: Wnt/ß-catenin signaling regulates self-renewal networks and plays a central role in the control of pluripotency genes, tumor suppressive pathways and expression of cancer stem cell markers. This current study provides a novel platform to investigate the interaction of physiological Wnt/ß-catenin signaling with stemness transition networks.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Nasofaríngeas/metabolismo , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/genética , beta Catenina/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Carcinoma , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Células Híbridas/metabolismo , Células Híbridas/patologia , Fator 4 Semelhante a Kruppel , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/antagonistas & inibidores , beta Catenina/genética
17.
Am J Pathol ; 180(6): 2504-15, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22542847

RESUMO

Breast cancer progression involves cancer cell heterogeneity, with generation of invasive/metastatic breast cancer cells within populations of nonmetastatic cells of the primary tumor. Sequential genetic mutations, epithelial-to-mesenchymal transition, interaction with local stroma, and formation of hybrids between cancer cells and normal bone marrow-derived cells have been advocated as tumor progression mechanisms. We report herein the spontaneous in vitro formation of heterotypic hybrids between human bone marrow-derived multipotent stromal cells (MSCs) and two different breast carcinoma cell lines, MDA-MB-231 (MDA) and MA11. Hybrids showed predominantly mesenchymal morphological characteristics, mixed gene expression profiles, and increased DNA ploidy. Both MA11 and MDA hybrids were tumorigenic in immunodeficient mice, and some MDA hybrids had an increased metastatic capacity. Both in culture and as xenografts, hybrids underwent DNA ploidy reduction and morphological reversal to breast carcinoma-like morphological characteristics, while maintaining a mixed breast cancer-mesenchymal expression profile. Analysis of coding single-nucleotide polymorphisms by RNA sequencing revealed genetic contributions from both parental partners to hybrid tumors and metastasis. Because MSCs migrate and localize to breast carcinoma, our findings indicate that formation of MSC-breast cancer cell hybrids is a potential mechanism of the generation of invasive/metastatic breast cancer cells. Our findings reconcile the fusion theory of cancer progression with the common observation that breast cancer metastases are generally aneuploid, but not tetraploid, and are histopathologically similar to the primary neoplasm.


Assuntos
Neoplasias da Mama/patologia , Heterogeneidade Genética , Células-Tronco Multipotentes/patologia , Células-Tronco Neoplásicas/patologia , Células Estromais/patologia , Animais , Neoplasias da Mama/genética , Fusão Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Técnicas de Cocultura , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Células Híbridas/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Microscopia de Fluorescência , Transplante de Neoplasias , Ploidias , Polimorfismo de Nucleotídeo Único , Transplante Heterólogo , Células Tumorais Cultivadas
18.
ACS Nano ; 17(8): 7352-7365, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37037487

RESUMO

The intrinsic features and functions of platelets and mesenchymal stem cells (MSCs) indicate their great potential in the treatment of intracerebral hemorrhage (ICH). However, neither of them can completely overcome ICH because of the stealth process and the complex pathology of ICH. Here, we fabricate hybrid cells for versatile and highly efficient ICH therapy by fusing MSCs with platelets and loading with lysophosphatidic acid-modified PbS quantum dots (LPA-QDs). The obtained LPA-QDs@FCs (FCs = fusion cells) not only inherit the capabilities of both platelets and MSCs but also exhibit clearly enhanced proliferation activated by LPA. After systemic administration, many proliferating LPA-QDs@FCs rapidly accumulate in ICH areas for responding to the vascular damage and inflammation and then efficiently prevent both the primary and secondary injuries of ICH but with no obvious side effects. Moreover, the treatment process can be tracked by near-infrared II fluorescence imaging with highly spatiotemporal resolution, providing a promising solution for ICH therapy.


Assuntos
Hemorragia Cerebral , Células-Tronco Mesenquimais , Ratos , Animais , Humanos , Ratos Sprague-Dawley , Células Híbridas/patologia , Proliferação de Células
19.
Adv Biol (Weinh) ; 7(2): e2200206, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36449636

RESUMO

Circulating tumor cells and hybrid cells formed by the fusion of tumor cells with normal cells are leading players in metastasis and have prognostic relevance. This study applies single-cell RNA sequencing to profile CD45-negative and CD45-positive circulating epithelial cells (CECs) in nonmetastatic breast cancer patients. CECs are represented by transcriptionally-distinct populations that include both aneuploid and diploid cells. CD45- CECs are predominantly aneuploid, but one population contained more diploid than aneuploid cells. CD45+ CECs mostly diploid: only two populations have aneuploid cells. Diploid CD45+ CECs annotated as different immune cells, surprisingly harbored many copy number aberrations, and positively correlated to tumor grade. It is noteworthy that cancer-associated signaling pathways areabundant only in one aneuploid CD45- CEC population, which may represent an aggressive subset of circulating tumor cells. Thus, CD45- and CD45+ CECs are highly heterogeneous in breast cancer patients and include aneuploid cells, which are most likely circulating tumor and hybrid cells, respectively, and diploid cells. DNA ploidy analysis can be an effective instrument for identifying tumor and hybrid cells among CECs. Further follow-up study is needed to determine which subsets of circulating tumor and hybrid cells contribute to breast cancer metastasis.


Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Células Neoplásicas Circulantes/patologia , Células Epiteliais/patologia , Aneuploidia , Células Híbridas/patologia
20.
J Hematol Oncol ; 16(1): 46, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138326

RESUMO

BACKGROUND: Bone metastasis is the leading cause of death in patients with prostate cancer (PCa) and currently has no effective treatment. Disseminated tumor cells in bone marrow often obtain new characteristics to cause therapy resistance and tumor recurrence. Thus, understanding the status of disseminated prostate cancer cells in bone marrow is crucial for developing a new treatment. METHODS: We analyzed the transcriptome of disseminated tumor cells from a single cell RNA-sequencing data of PCa bone metastases. We built a bone metastasis model through caudal artery injection of tumor cells, and sorted the tumor hybrid cells by flow cytometry. We performed multi-omics analysis, including transcriptomic, proteomic and phosphoproteomic analysis, to compare the difference between the tumor hybrid cells and parental cells. In vivo experiments were performed to analyze the tumor growth rate, metastatic and tumorigenic potential, drug and radiation sensitivity in hybrid cells. Single cell RNA-sequencing and CyTOF were performed to analyze the impact of hybrid cells on tumor microenvironment. RESULTS: Here, we identified a unique cluster of cancer cells in PCa bone metastases, which expressed myeloid cell markers and showed a significant change in pathways related to immune regulation and tumor progression. We found that cell fusion between disseminated tumor cells and bone marrow cells can be source of these myeloid-like tumor cells. Multi-omics showed the pathways related to cell adhesion and proliferation, such as focal adhesion, tight junction, DNA replication, and cell cycle, were most significantly changed in these hybrid cells. In vivo experiment showed hybrid cells had a significantly increased proliferative rate, and metastatic potential. Single cell RNA-sequencing and CyTOF showed tumor-associated neutrophils/monocytes/macrophages were highly enriched in hybrid cells-induced tumor microenvironment with a higher immunosuppressive capacity. Otherwise, the hybrid cells showed an enhanced EMT phenotype with higher tumorigenicity, and were resistant to docetaxel and ferroptosis, but sensitive to radiotherapy. CONCLUSION: Taken together, our data demonstrate that spontaneous cell fusion in bone marrow can generate myeloid-like tumor hybrid cells that promote the progression of bone metastasis, and these unique population of disseminated tumor cells can provide a potential therapeutic target for PCa bone metastasis.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Humanos , Masculino , Medula Óssea/patologia , Proteômica , Recidiva Local de Neoplasia/patologia , Neoplasias da Próstata/patologia , Neoplasias Ósseas/metabolismo , Células Híbridas/metabolismo , Células Híbridas/patologia , Células da Medula Óssea/patologia , RNA/metabolismo , Linhagem Celular Tumoral , Metástase Neoplásica/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA