Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34878095

RESUMO

Expansion of interstitial cells in the adult kidney is a hallmark of chronic disease, whereas their proliferation during fetal development is necessary for organ formation. An intriguing difference between adult and neonatal kidneys is that the neonatal kidney has the capacity to control interstitial cell proliferation when the target number has been reached. In this study, we define the consequences of inactivating the TGFß/Smad response in the mouse interstitial cell lineage. We find that pathway inactivation through loss of Smad4 leads to overproliferation of interstitial cells regionally in the kidney medulla. Analysis of markers for BMP and TGFß pathway activation reveals that loss of Smad4 primarily reduces TGFß signaling in the interstitium. Whereas TGFß signaling is reduced in these cells, marker analysis shows that Wnt/ß-catenin signaling is increased. Our analysis supports a model in which Wnt/ß-catenin-mediated proliferation is attenuated by TGFß/Smad to ensure that proliferation ceases when the target number of interstitial cells has been reached in the neonatal medulla.


Assuntos
Proliferação de Células , Rim/metabolismo , Proteína Smad4/metabolismo , Animais , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Rim/citologia , Rim/crescimento & desenvolvimento , Células Mesangiais/citologia , Células Mesangiais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Smad4/genética , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt
2.
J Biol Chem ; 299(4): 103074, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36858200

RESUMO

Heparin can block pathological responses associated with diabetic nephropathy in animal models and human patients. Our previous studies showed that the interaction of heparin on the surface of rat mesangial cells (RMCs) entering G1 of cell division in hyperglycemic glucose: 1) blocked glucose uptake by glucose transporter 4; 2) inhibited cytosolic uridine diphosphate-glucose elevation that would occur within 6 h from G0/G1; and 3) prevented subsequent activation of hyaluronan synthesis in intracellular compartments and subsequent inflammatory responses. However, specific proteins that interact with heparin are unresolved. Here, we showed by live cell imaging that fluorescent heparin was rapidly internalized into the cytoplasm and then into the endoplasmic reticulum, Golgi, and nuclei compartments. Biotinylated-heparin was applied onto the surface of growth arrested G0/G1 RMCs in order to extract heparin-binding protein(s). SDS-PAGE gels showed two bands at ∼70 kDa in the extract that were absent when unlabeled heparin was used to compete. Trypsin digests of the bands were analyzed by MS and identified as calreticulin and prelamin A/C. Immunostaining with their antibodies identified the presence of calreticulin on the G0/G1 RMC cell surface. Previous studies have shown that calreticulin can be on the cell surface and can interact with the LDL receptor-related protein, which has been implicated in glucose transport by interaction with glucose transporter 4. Thus, cell surface calreticulin can act as a heparin receptor through a mechanism involving LRP1, which prevents the intracellular responses in high glucose and reprograms the cells to synthesize an extracellular hyaluronan matrix after division.


Assuntos
Calreticulina , Divisão Celular , Fase G1 , Glucose , Heparina , Hiperglicemia , Células Mesangiais , Fase de Repouso do Ciclo Celular , Animais , Humanos , Ratos , Calreticulina/metabolismo , Células Cultivadas , Mesângio Glomerular/metabolismo , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Heparina/farmacologia , Heparina/metabolismo , Ácido Hialurônico/metabolismo , Células Mesangiais/citologia , Células Mesangiais/metabolismo , Hiperglicemia/metabolismo
3.
J Biol Chem ; 295(42): 14262-14278, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32732288

RESUMO

Interaction of transforming growth factor-ß (TGFß)-induced canonical signaling with the noncanonical kinase cascades regulates glomerular hypertrophy and matrix protein deposition, which are early features of glomerulosclerosis. However, the specific target downstream of the TGFß receptor involved in the noncanonical signaling is unknown. Here, we show that TGFß increased the catalytic loop phosphorylation of platelet-derived growth factor receptor ß (PDGFRß), a receptor tyrosine kinase expressed abundantly in glomerular mesangial cells. TGFß increased phosphorylation of the PI 3-kinase-interacting Tyr-751 residue of PDGFRß, thus activating Akt. Inhibition of PDGFRß using a pharmacological inhibitor and siRNAs blocked TGFß-stimulated phosphorylation of proline-rich Akt substrate of 40 kDa (PRAS40), an intrinsic inhibitory component of mTORC1, and prevented activation of mTORC1 in the absence of any effect on Smad 2/3 phosphorylation. Expression of constitutively active myristoylated Akt reversed the siPDGFRß-mediated inhibition of mTORC1 activity; however, co-expression of the phospho-deficient mutant of PRAS40 inhibited the effect of myristoylated Akt, suggesting a definitive role of PRAS40 phosphorylation in mTORC1 activation downstream of PDGFRß in mesangial cells. Additionally, we demonstrate that PDGFRß-initiated phosphorylation of PRAS40 is required for TGFß-induced mesangial cell hypertrophy and fibronectin and collagen I (α2) production. Increased activating phosphorylation of PDGFRß is also associated with enhanced TGFß expression and mTORC1 activation in the kidney cortex and glomeruli of diabetic mice and rats, respectively. Thus, pursuing TGFß noncanonical signaling, we identified how TGFß receptor I achieves mTORC1 activation through PDGFRß-mediated Akt/PRAS40 phosphorylation to spur mesangial cell hypertrophy and matrix protein accumulation. These findings provide support for targeting PDGFRß in TGFß-driven renal fibrosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Fibronectinas/metabolismo , Humanos , Córtex Renal/metabolismo , Células Mesangiais/citologia , Células Mesangiais/metabolismo , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Fosforilação/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
4.
BMC Nephrol ; 22(1): 368, 2021 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-34742256

RESUMO

BACKGROUND: LncRNA NNT-AS1 (NNT-AS1) has been extensively studied as the causative agent in propagation and progression of lung and bladder cancers, and cholangiocarcinoma. However, its significance in proliferation and inflammation of diabetic nephropathy is enigmatic. This study focuses on the molecular mechanisms followed by NNT-AS1 to establish diabetic nephropathy (DN) and its potential miRNA target. METHODS: Bioinformatics analysis to identify potential miRNA target of NNT-AS1 and smad4 transcription factor was conducted using LncBase and TargetScan, and was subsequently confirmed by luciferase reporter assay. Relative quantitative expression of NNT-AS1 in human glomerular mesangial cells (HGMCs) was detected through quantitative real-time PCR and WB analysis. Cell proliferation was detected through CCK-8 assay, whereas, ELISA was conducted to evaluate the expression of inflammatory cytokines. Following this, relative expression of miR-214-5p and smad4 were confirmed through qRT-PCR and western blot analysis. RESULTS: Results from the experiments manifested up-regulated levels of NNT-AS1 and smad4 in the blood samples of DN patients as well as in HGMCs, whereas, downregulated levels of miR-214-5p were measured in the HGMCs suggesting the negative correlation between NNT-AS1 and miR-214-5p. Potential binding sites of NNT-AS1 showed miR-214-5p as its direct target and NNT-AS1 as potential absorber for this microRNA, in turn increasing the expression of transcription factor smad4. CONCLUSION: The data suggests that NNT-AS1 can be positively used as a potential biomarker and indicator of DN and causes extracellular matrix (ECM) accumulation and inflammation of human mesangial cells.


Assuntos
Proliferação de Células , Nefropatias Diabéticas/fisiopatologia , Matriz Extracelular/metabolismo , Inflamação/fisiopatologia , Células Mesangiais/citologia , NADP Trans-Hidrogenase Específica para A ou B/fisiologia , RNA Longo não Codificante/fisiologia , Glicemia/metabolismo , Nefropatias Diabéticas/sangue , Regulação para Baixo , Humanos , Células Mesangiais/metabolismo , MicroRNAs/sangue , MicroRNAs/genética , Proteínas Mitocondriais/sangue , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , NADP Trans-Hidrogenase Específica para A ou B/sangue , NADP Trans-Hidrogenase Específica para A ou B/genética , RNA Longo não Codificante/sangue , RNA Longo não Codificante/genética , Proteína Smad4/sangue , Proteína Smad4/genética , Regulação para Cima
5.
Biochem Biophys Res Commun ; 529(3): 740-746, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32736701

RESUMO

Endocytosis by podocytes is gaining increased attention as a biologic means of removing large proteins such as serum albumin from the glomerular barrier. Some of this function has been attributed to the megalin/cubilin (Lrp2/Cubn) receptor complex and the albumin recycling protein FcRn (Fcgrt). However, whether other glomerular cells possess the potential to perform this same phenomenon or express these proteins remains uncharacterized. Mesangial cells are uniquely positioned in glomeruli and represent a cell type capable of performing several diverse functions. Here, the expression of megalin and FcRn in murine mesangial cells along with the megalin adaptor protein Dab-2 (Dab2) was shown for the first time. Cubilin mRNA expression was detected, but the absence of the cubilin partner amnionless (Amn) suggested that cubilin is minimally functional, if at all, in these cells. Mesangial cell endocytosis of albumin was characterized and shown to involve a receptor-mediated process. Albumin endocytosis was significantly impaired (p < 0.01) under inducible megalin knockdown conditions in stably transduced mesangial cells. The current work provides both the novel identification of megalin and FcRn in mesangial cells and the functional demonstration of megalin-mediated albumin endocytosis.


Assuntos
Endocitose , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Células Mesangiais/citologia , Soroalbumina Bovina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Bovinos , Linhagem Celular , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Mesangiais/metabolismo , Camundongos , Receptores Fc/metabolismo
6.
Bioorg Med Chem ; 28(24): 115833, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33166928

RESUMO

Diabetic nephropathy (DN) is a severe microvascular complication of diabetes mellitus. High glucose has resulted in oxidative stress and following renal fibrosis as the crucial nodes of this disease. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor regulating transcription of many antioxidant genes and suppressing synthesis of extracellular matrix. To discover Nrf2 activators targeting DN, we have evaluated polypodiside using cell-based assays. The results showed polypodiside inhibited the high glucose-induced self-limited proliferation of glomerular meangial cells. Activation of Nrf2 and enhanced transcription to antioxidant response elements were observed in the presence of polypodiside. Oxidative stress and accumulation of extracellular matrix induced by high glucose in glomerular meangial cells have been ameliorated by polypodiside. Further investigations revealed the effects of polypodiside on glomerular meangial cells were associated with activation of Nrf2. Co-immunoprecipitation of Nrf2 disclosed polypodiside disrupted the Kelch-like ECH-associated protein-1 (Keap1)-Nrf2 interaction. Molecular docking elucidated polypodiside could enter the Nrf2 binding cavity of Keap1 via interacting with the residues encompassing that cavity. These findings indicate polypodiside is a Keap1-dependent Nrf2 activator affording the catabatic effects against oxidative stress and accumulation of extracellular matrix in glomerular meangial cells under high glucose.


Assuntos
Matriz Extracelular/metabolismo , Glucosídeos/farmacologia , Fator 2 Relacionado a NF-E2/agonistas , Estresse Oxidativo/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ácidos Cumáricos/química , Avaliação Pré-Clínica de Medicamentos , Matriz Extracelular/efeitos dos fármacos , Glucose/farmacologia , Glucosídeos/química , Glucosídeos/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Células Mesangiais/citologia , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Polypodium/química , Polypodium/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Clin Exp Pharmacol Physiol ; 47(7): 1203-1211, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32077518

RESUMO

C1qTNF-related protein 6 (CTRP6) is a member of the CTRP family and exerts a key role in the progression of diabetes mellitus. However, the role of CTRP6 in diabetic nephropathy remains unknown. The present study was designed to examine the roles of CTRP6 in diabetic nephropathy and explore the potential molecular mechanisms. Our results showed that the expression level of CTRP6 was significantly increased in high glucose (HG)-stimulated glomerular mesangial cells (MCs). The following loss/gain-of-function assays demonstrated that CTRP6 knockdown significantly inhibited HG-induced reactive oxygen species (ROS) production in MCs. CTRP6 knockdown caused significant decreases in tumour necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-6 production levels in HG-induced MCs. Moreover, knockdown of CTRP6 inhibited HG-stimulated extracellular matrix (ECM) accumulation in MCs characterized by decreased expression and production levels of fibronectin (FN) and collagen IV (Col IV). Furthermore, CTRP6 knockdown suppressed HG-induced the activation of Akt/NF-κB pathway in MCs, while overexpression of CTRP6 exhibited the opposite effects. Treatment with LY294002, an inhibitor of Akt, reversed the induction effects of CTRP6 overexpression on ROS production, inflammation and ECM accumulation in MCs. In conclusion, these findings demonstrated that CTRP6 knockdown inhibits HG-induced ROS production, inflammation and ECM accumulation in MCs, which were mediated by the inactivation of the Akt/NF-κB pathway. The roles of CTRP6 in diabetic nephropathy provided evidence for its therapeutic potential for the treatment of diabetic nephropathy.


Assuntos
Colágeno/genética , Matriz Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Células Mesangiais/citologia , NF-kappa B/metabolismo , Estresse Oxidativo/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular , Colágeno/deficiência , Humanos , Inflamação/genética , Células Mesangiais/metabolismo
8.
Int J Mol Sci ; 21(9)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403414

RESUMO

Combined androgen blockade using bicalutamide (Bic) is a therapeutic choice for treating prostate cancer (PCa). However, even at regular clinical dosages, Bic frequently shows adverse effects associated with cardiovascular and renal damage. Previously, we found that Bic selectively damaged mesangial cells compared to tubular cells and in an in vivo rat model, we also found renal damage caused by Bic. In the present study, a rat mesangial cell model was used to further the investigation. Results indicated that Bic enhanced lactate dehydrogenase release, reactive oxygen species (ROS) production, lysosome population and kidney injury molecule-1 and decreased N-cadherin. Bic elicited mitochondrial swelling and reduced the mitochondrial potential, resulting in severe suppression of the oxygen consumption rate (OCR), maximum respiration and ATP production. The hypoxia-inducible factor (HIF)-1 transcriptional activity and messenger RNA were significantly upregulated in dose-dependent manners. The HIF-1 protein reached a peak value at 24 h then rapidly decayed. BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 and cleaved caspase-3 were dose-dependently upregulated by Bic (60 M) and that eventually led to cell apoptosis. It is suggested that Bic induces renal damage via ROS and modulates HIF-1 pathway and clinically, some protective agents like antioxidants are recommended for co-treatment.


Assuntos
Anilidas/farmacologia , Fator 1 Induzível por Hipóxia/genética , Rim/efeitos dos fármacos , Células Mesangiais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Nitrilas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Compostos de Tosil/farmacologia , Antagonistas de Androgênios/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caderinas/metabolismo , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Rim/metabolismo , Rim/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células Mesangiais/citologia , Células Mesangiais/metabolismo , Mitocôndrias/metabolismo , Ratos , Regulação para Cima/efeitos dos fármacos
9.
J Cell Mol Med ; 23(8): 5654-5671, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31184423

RESUMO

Mesangioproliferative glomerulonephritis (MsPGN) is characterized by the proliferation of glomerular mesangial cells (GMCs) and accumulation of extracellular matrix (ECM), followed by glomerulosclerosis and renal failure of patients. Although our previous studies have demonstrated that sublytic C5b-9 complex formed on the GMC membrane could trigger GMC proliferation and ECM expansion of rat Thy-1 nephritis (Thy-1N) as an animal model of MsPGN, their mechanisms are still not fully elucidated. In the present studies, we found that the levels of response gene to complement 32 (RGC-32), myeloid zinc finger 1 (MZF1), phosphorylated extracellular signal-regulated kinase 5 (phosphorylated ERK5, p-ERK5), F-box only protein 28 (FBXO28) and TNF receptor-associated factor 6 (TRAF6) were all markedly up-regulated both in the renal tissues of rats with Thy-1N (in vivo) and in the GMCs upon sublytic C5b-9 stimulation (in vitro). Further in vitro experiments revealed that up-regulated FBXO28 and TRAF6 could form protein complex binding to ERK5 and enhance ERK5 K63-ubiquitination and subsequent phosphorylation. Subsequently, ERK5 activation contributed to MZF1 expression and MZF1-dependent RGC-32 up-regulation, finally resulting in GMC proliferative response. Furthermore, the MZF1-binding element within RGC-32 promoter and the functions of FBXO28 domains were identified. Additionally, knockdown of renal FBXO28, TRAF6, ERK5, MZF1 and RGC-32 genes respectively markedly reduced GMC proliferation and ECM production in Thy-1N rats. Together, these findings indicate that sublytic C5b-9 induces GMC proliferative changes in rat Thy-1N through ERK5/MZF1/RGC-32 axis activated by the FBXO28-TRAF6 complex, which might provide a new insight into MsPGN pathogenesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Células Mesangiais/citologia , Células Mesangiais/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Transativadores/metabolismo , Animais , Proliferação de Células , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Lisina/metabolismo , Masculino , Células Mesangiais/ultraestrutura , Regiões Promotoras Genéticas/genética , Ratos Sprague-Dawley , Transdução de Sinais , Antígenos Thy-1 , Transativadores/genética , Transcrição Gênica , Ubiquitinação
10.
J Cell Biochem ; 120(4): 5729-5736, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30362596

RESUMO

C1q/tumour necrosis factor-related protein-3 (CTRP3) is a member of CTRP family, and its blood level is reduced in human and rodent models of obesity and diabetes. However, the role of CTRP3 in diabetic nephropathy remains unclear. This study was designed to examine the effects of CTRP3 on cell proliferation and extracellular matrix (ECM) accumulation in human glomerular mesangial cells (MCs) in response to high glucose (HG), and explore the potential molecular mechanisms. Our results demonstrated that the expression of CTRP3 was significantly decreased by HG stimulation in MCs. In addition, CTRP3 overexpression inhibited MCs proliferation, reactive oxygen species level, and ECM production in HG-stimulated MCs. Mechanistically, CTRP3 overexpression inhibited the activation of the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) pathway in HG-stimulated MCs. Taken together, these findings indicated that CTRP3 attenuated HG-induced MC proliferation and ECM production through the inactivation of the JAK2/STAT3 signaling pathway. Thus, CTRP3 may be a potential therapeutic target for the treatment of diabetic nephropathy.


Assuntos
Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Células Mesangiais/citologia , Fatores de Necrose Tumoral/metabolismo , Células Cultivadas , Matriz Extracelular/efeitos dos fármacos , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Edulcorantes/farmacologia , Fatores de Necrose Tumoral/genética
11.
Biochem Biophys Res Commun ; 514(4): 1101-1107, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31097225

RESUMO

Mesangial cell (MCs) proliferation is an essential component of glomerulonephritis. To find some bio-markers of mesangial cell proliferation, we investigate the relationship between transfer RNA fragments (tRFs) and proliferating mesangial cells. The model of proliferating mesangial cells was built by using transforming growth factor-1(TGF-ß1) treated mesangial cells. Then we analyzed the expression of tRFs in normal mesangial cells and mesangial cells treated by TGF-ß1 through high-throughput sequencing technique. qRT-PCR was conducted to validate the differently expressed tRFs in normal mesangial cells and mesangial cells treated by TGF-ß1. tDR-000064 and tDR-000103 were notably down-regulated in mesangial cells treated by TGF-ß1 compared with normal mesangial cells. Then we confirmed that tDR-000064 and tDR-000103 were correlated with proliferation of mesangial cells through receiver operating characteristic curve analysis. Furthermore, Gene ontology (GO) and pathway analysis demonstrated that the two dys-regulated tRFs were mostly involved in mesangial cells and TGF-ß1 receptor-mediated signaling pathway. Our research provides a comprehensive analysis of tRFs in proliferating mesangial cells. (Figure 1A).


Assuntos
Células Mesangiais/citologia , RNA de Transferência/genética , Fator de Crescimento Transformador beta1/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Perfilação da Expressão Gênica , Glomerulosclerose Segmentar e Focal/metabolismo , Células Mesangiais/metabolismo , RNA de Transferência/isolamento & purificação , RNA de Transferência/metabolismo , Ratos
12.
Biochem Biophys Res Commun ; 520(3): 627-633, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31623827

RESUMO

Kidney regenerative medicine is expected to be the solution to the shortage of organs for transplantation. In a previous report, we transplanted exogenous renal progenitor cells (RPCs) including nephron progenitor cells (NPCs), stromal progenitor cells (SPCs), and the ureteric bud (UB) into the nephrogenic zone of animal embryos and succeeded in regenerating new nephrons from exogenous NPCs through a fetal developmental program. However, it was unknown whether the renal stromal lineage cells were regenerated from SPCs. The present study aimed to verify the differentiation of SPCs into mesangial cells and renal stromal lineage cells. Here, we found that simply transplanting RPCs, including SPCs, into the nephrogenic zone of wild-type fetal mice was insufficient for differentiation of SPCs. Therefore, to enrich the purity of SPCs, we sorted cells from RPCs by targeting platelet-derived growth factor receptor alpha (PDGFRa) which is a cell surface marker for immature stromal cells and transplanted the PDGFRa-positive sorted cells. As a result, we succeeded in regenerating a large number of mesangial cells and other renal stromal lineage cells including interstitial fibroblasts, vascular pericytes, and juxtaglomerular cells. We have established the method for regeneration of stromal cells from exogenous SPCs that may contribute to various fields, such as regenerative medicine and kidney embryology, and the creation of disease models for renal stromal disorders.


Assuntos
Rim/embriologia , Células Mesangiais/fisiologia , Regeneração/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Feminino , Proteínas de Fluorescência Verde/genética , Humanos , Rim/citologia , Rim/fisiologia , Masculino , Células Mesangiais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Gravidez , Medicina Regenerativa , Transplante de Células-Tronco , Células Estromais/citologia , Células Estromais/fisiologia , Células Estromais/transplante
13.
Cell Biol Int ; 43(7): 760-769, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30958627

RESUMO

Previous studies show that the proliferation of human mesangial cells (HMCs) played a significant part in the pathogenesis of Henoch-Schönlein purpura nephritis (HSPN). The aim of this study was to explore the proliferation of HMCs induced by IgA1 isolated from the sera of HSP patients. HMCs were cultured in three different types of media, including IgA1 from patients with HSP (HSP IgA1 group), healthy children (healthy IgA1 group) and medium (control group). The proliferation of HMCs incubated with IgA1 was determined by cell counting kit-8 assay and bromodeoxyuridine incorporation. The expression of ERK1/2 and phosphatidylinositol 3 kinase/protein kinase B/mammalian targets of the rapamycin (PI3K/AKt/mTOR) signals and transferrin receptor (TfR/CD71) was detected with the methods of immunoblotting. The results indicated that the proliferation of HMCs significantly increased in the HSP IgA1 group compared with that in the control group or the healthy IgA1 group (P < 0.001). Moreover, we found that IgA1 isolated from HSP patients activated ERK and PI3K/AKt/mTOR signals, and markedly increased TfR/CD71 expression in HMCs. These effects induced by IgA1 isolated from patients with HSP were inhibited by human TfR polyclonal antibody (hTfR pAb) and soluble human transferrin receptor (sTfR), indicating that IgA1-induced HMC proliferation and ERK1/2 and PI3K/AKt/mTOR activation were dependent on TfR/CD71 engagement. Altogether, these data suggested that TfR/CD71 overexpression and ERK1/2 and PI3K/AKt/mTOR activation were engaged in HMC proliferation induced by IgA1 from HSP patients, which might be related to the mesangial injury of HSPN.


Assuntos
Antígenos CD/metabolismo , Glomerulonefrite , Vasculite por IgA , Imunoglobulina A , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Mesangiais , Fosfatidilinositol 3-Quinases/metabolismo , Receptores da Transferrina/metabolismo , Proliferação de Células , Células Cultivadas , Criança , Feminino , Glomerulonefrite/imunologia , Glomerulonefrite/metabolismo , Humanos , Vasculite por IgA/imunologia , Vasculite por IgA/metabolismo , Imunoglobulina A/farmacologia , Imunoglobulina A/fisiologia , Masculino , Células Mesangiais/citologia , Células Mesangiais/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Kidney Blood Press Res ; 44(6): 1339-1351, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31661692

RESUMO

AIM: This study aimed to investigate the effect of norcantharidin (NCTD) on human mesangial cells (HMCs) apoptosis in vitro and further examine its molecular mechanism. METHODS: HMCs were divided into 5 groups: control group, 25% fetal bovine serum (FBS)-treated group, and NCTD groups (NCTD [2.5, 5 and 10 µg/mL] + 25% FBS, respectively). Cell proliferation was determined by MTT assay, while apoptosis was evaluated by Hoechest 33258 staining, the level of cytochrome c, immunohistochemistry, and apoptotic-related proteins/gene expression. RESULTS: Cell viability was inhibited in NCTD-treated HMCs in a dose-dependent manner. The number of apoptotic cells and the content of cytochrome c were significantly increased by NCTD treatment but that of mitochondrial membrane was decreased. Moreover, the expression of bcl-2 and caspase-3 was prompted by NCTD, but the expression of bax, MMP-2, and MMP-9 in 25% FBS-treated HMCs was inhibited. In addition, NCTD markedly unregulated the expression of apoptosis-related gene/protein, including p-Erk1/2, phosphorylated-Jun N-terminal kinase (JNK), p-p38, and p53. CONCLUSION: NCTD enhances 25% FBS-treated HMC apoptosis in vitro, and this effect may be attributed to the modulation of the ERK, JNK, and p38 mitogen-activated protein kinase signaling pathways.


Assuntos
Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Mesangiais/citologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo
15.
Clin Exp Pharmacol Physiol ; 46(9): 813-820, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31267567

RESUMO

The aim of this study was to investigate the role of metformin in high glucose-induced mesangial cell proliferation, inflammation and extracellular matrix (ECM) accumulation and to elucidate the underlying mechanism of metformin function. An MTT assay was used to examine rat mesangial cell (RMC) proliferation. The levels of TNF-α, IL-6 and TGF-ß in RMCs were determined by ELISA. The protein expression of fibronectin, collagen IV and autophagy-related proteins (Beclin-1, LC3-I and LC3-II) in RMCs was detected using western blot. Fluorescence microscopy analysis was carried out to evaluate RMC autophagy. Our results showed that high glucose-induced RMC proliferation, inflammation and ECM expression, but these effects were markedly reduced by metformin. We confirmed that metformin suppressed high glucose-induced RMC proliferation, inflammation and ECM expression via induction of autophagy. Mechanistic investigation demonstrated an axis of SIRT1-FOXO1 in RMC autophagy. Our data indicated that metformin inhibits high glucose-induced mesangial cell proliferation, inflammation and ECM expression through a SIRT1-FOXO1-autophagy axis.


Assuntos
Autofagia/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Proteína Forkhead Box O1/metabolismo , Glucose/farmacologia , Células Mesangiais/efeitos dos fármacos , Metformina/farmacologia , Sirtuína 1/metabolismo , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células Mesangiais/citologia , Células Mesangiais/metabolismo , Ratos
16.
Adv Exp Med Biol ; 1165: 165-194, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31399966

RESUMO

The main cellular constituents in glomerular mesangium are mesangial cells, which account for approximately 30-40% of the total cells in the glomerulus. Together with the mesangial matrix, mesangial cells form the glomerular basement membrane (GBM) in the glomerulus, whose main function is to perform the filtration. Under the pathologic conditions, mesangial cells are activated, leading to hyperproliferation and excess extracellular matrix (ECM). Moreover, mesangial cells also secrete several kinds of inflammatory cytokines, adhesion molecules, chemokines, and enzymes, all of which participate in the process of renal glomerular fibrosis. During the past years, researchers have revealed the roles of mesangial cells and the associated signal pathways involved in renal fibrosis. In this section, we will discuss how mesangial cells are activated and its contributions to renal fibrosis, as well as the molecular mechanisms and novel anti-fibrotic agents. Full understanding of the contributions of mesangial cells to renal fibrosis will benefit the clinical drug developing.


Assuntos
Mesângio Glomerular/citologia , Nefropatias/fisiopatologia , Células Mesangiais/citologia , Moléculas de Adesão Celular , Quimiocinas , Citocinas , Matriz Extracelular , Fibrose , Humanos , Rim/patologia , Glomérulos Renais
17.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661773

RESUMO

The alteration of mesangial matrix (MM) components in mesangium, such as type IV collagen (COL4) and type I collagen (COL1), is commonly found in progressive glomerular disease. Mesangial cells (MCs) responding to altered MM, show critical changes in cell function. This suggests that the diseased MM structure could play an important role in MC behavior. To investigate how MC behavior is influenced by the diseased MM 3D nanostructure, we fabricated the titanium dioxide (TiO2)-based nanopatterns that mimic diseased MM nanostructures. Immortalized mouse MCs were used to assess the influence of disease-mimic nanopatterns on cell functions, and were compared with a normal-mimic nanopattern. The results showed that the disease-mimic nanopattern induced disease-like behavior, including increased proliferation, excessive production of abnormal MM components (COL1 and fibronectin) and decreased normal MM components (COL4 and laminin α1). In contrast, the normal-mimic nanopattern actually resulted in cells displaying normal proliferation and the production of normal MM components. In addition, increased expressions of α-smooth muscle actin (α-SMA), transforming growth factor ß1 (TGF-ß1) and integrin α5ß1 were detected in cells grown on the disease-mimic nanopattern. These results indicated that the disease-mimic nanopattern induced disease-like cell behavior. These findings will help further establish a disease model that mimics abnormal MM nanostructures and also to elucidate the molecular mechanisms underlying glomerular disease.


Assuntos
Nefropatias/metabolismo , Nefropatias/patologia , Células Mesangiais/citologia , Células Mesangiais/metabolismo , Actinas/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Colágeno Tipo IV/metabolismo , Fibronectinas/metabolismo , Mesângio Glomerular/citologia , Integrinas/metabolismo , Laminina/metabolismo , Células Mesangiais/patologia , Células Mesangiais/ultraestrutura , Camundongos , Nanoestruturas/química , Nanoestruturas/toxicidade , Nanoestruturas/ultraestrutura , Titânio/química , Fator de Crescimento Transformador beta/metabolismo
18.
J Cell Biochem ; 119(4): 3404-3416, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29131380

RESUMO

Lipopolysaccharide (LPS) released from gram-negative bacteria stimulates immune responses in infected cells. Epigenetic modifications such as DNA methylation and protein methylation modulate LPS-induced innate immune gene expressions. Expression of the Klotho protein decreased with LPS treatment in rats. In a cellular model, information regarding the effect of LPS on Klotho expression was meager. In the present study, we demonstrated that LPS triggered global DNA and protein methylation in glomerular mesangial MES-13 cells. LPS upregulated protein expressions of enzymes central to cellular methylation reactions, especially protein arginine methyltransferase 6 (PRMT6) in MES-13 cells. Expression of the Klotho protein was diminished by LPS and was restored by 5-Aza-2'-deoxycytidine (5-Aza-2'-dc), AMI-1, and ammonium pyrrolidinedithiocarbamate (PDTC), but not adenosine aldehyde (AdOx). NF-κB was identified as a substrate for arginine methylation and interacted with PRMT6 in MES-13 cells. Inhibition of PRMT activity by AMI-1 blocked LPS-induced NF-κB nuclear translocation in MES-13 cells. Our data indicate that NF-κB negatively regulated Klotho expression with an interaction with PRMT6, which was upregulated by LPS in MES-13 cells.


Assuntos
Glucuronidase/metabolismo , Lipopolissacarídeos/farmacologia , Células Mesangiais/citologia , NF-kappa B/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Células Cultivadas , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Klotho , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Metilação , Camundongos , Regulação para Cima
19.
Cell Physiol Biochem ; 47(6): 2522-2533, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29991026

RESUMO

BACKGROUND/AIMS: Sphingosine 1-phosphate (S1P) is considered as a key molecule regulating various cell functions including cell growth and death. It is produced by two sphingosine kinases (SK) denoted as SK-1 and SK-2. Whereas SK-1 has been extensively studied and has been appointed a role in promoting cell growth, the function of SK-2 is controversial, and both pro-proliferative and pro-apoptotic functions have been suggested. In this study we investigated whether renal mesangial cells isolated from transgenic mice overexpressing the human Sphk2 gene (hSK2-tg) showed an altered cell response towards growth-inducing and apoptotic stimuli. METHODS: hSK2-tg mice were generated by using a Quick KnockinR strategy. Renal mesangial cells were isolated by a differential sieving method and further cultivated in vitro. Lipids were quantified by mass spectrometry. Protein expression was determined by Western blot analysis, cell proliferation was determined by 3H-thymidine incorporation, and apoptosis was determined by a DNA fragmentation ELISA. RESULTS: We show here that kidneys and mesangial cells from hSK2-tg mice express the hSK2 as well as the endogenous mouse mSK2. hSK2 and mSK2 predominantly resided in the cytosol of quiescent transgenic cells. However, S1P accumulated strongly in the nucleus and only minimally in the cytosol of transgenic cells. Functionally, hSK2-tg cells proliferated less than control cells under normal growth conditions and were also more sensitive towards stress-induced apoptosis. On the molecular level, this was reflected by reduced ERK and Akt/PKB activation, and upon staurosporine treatment, by a sensitized mitochondrial pathway as manifested by reduced anti-apoptotic Bcl-XL expression and increased cleavage of caspase-9, downstream caspase-3 and PARP-1. CONCLUSION: Altogether, these data demonstrate that SK-2 exerts an antiproliferative and apoptosis-sensitizing effect in renal mesangial cells which suggests that selective inhibitors of SK-2 may promote proliferation and reduce apoptosis and this may have impact on the outcome of proliferation-associated diseases such as mesangioproliferative glomerulonephritis.


Assuntos
Apoptose , Proliferação de Células , Sistema de Sinalização das MAP Quinases , Células Mesangiais/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Humanos , Células Mesangiais/citologia , Camundongos , Camundongos Transgênicos , Fosfotransferases (Aceptor do Grupo Álcool)/genética
20.
Cell Physiol Biochem ; 49(3): 985, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30196298

RESUMO

Chronic kidney disease is an incurable to date pathology with a continuously growing incidence that contributes to the increase of the number of deaths worldwide. With currently no efficient prognostic or therapeutic options being available, the only possibility for treatment of end-stage renal disease is renal replacement therapy through dialysis or transplantation. Understanding the molecular mechanisms participating in the progression of renal diseases and uncovering the pathways implicated will permit the identification of novel and more efficient targets of therapy. Connexin43 was recently identified as a novel player in the development of chronic kidney disease. It was found de novo expressed and/or differentially localized in various renal cell populations during progression of renal disease, indicating an abnormal connexin signaling, both in patients and animal models. Subsequent in vivo studies demonstrated that connexin43 is involved in mediating inflammatory and fibrotic processes contributing to renal damage. Genetic, pharmaco-genetic or peptide-based inhibition of connexin43 in animal models and cell culture systems was successful in preventing the progression of the pathology and preserving the cell phenotypes. This review will summarize the recent advances on connexin43 in the field of kidney diseases and discuss the potential of future connexin43-based therapies against chronic kidney disease.


Assuntos
Conexina 43/metabolismo , Insuficiência Renal Crônica/patologia , Conexina 43/antagonistas & inibidores , Conexina 43/genética , Humanos , Rim/metabolismo , Células Mesangiais/citologia , Células Mesangiais/metabolismo , Oligonucleotídeos Antissenso/uso terapêutico , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/uso terapêutico , Podócitos/citologia , Podócitos/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA