Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(10): 4298-4307, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36857046

RESUMO

Biodegradation using enzyme-based systems is a promising approach to minimize antibiotic loads in the environment. Aminoglycosides are refractory antibiotics that are generally considered non-biodegradable. Here, we provide evidence that kanamycin, a common aminoglycoside antibiotic, can be degraded by an environmental bacterium through deglycosylation of its 4'-amino sugar. The unprecedented deglycosylation inactivation of kanamycin is initiated by a novel periplasmic dehydrogenase complex, which we designated AquKGD, composed of a flavin adenine dinucleotide-dependent dehydrogenase (AquKGDα) and a small subunit (AquKGDγ) containing a twin-arginine signal sequence. We demonstrate that the formation of the AquKGDα-AquKGDγ complex is required for both the degradation activity of AquKGD and its translocation into the periplasm. Native AquKGD was successfully expressed in the periplasmic space of Escherichia coli, and physicochemical analysis indicated that AquKGD is a stable enzyme. AquKGD showed excellent degradation performance, and complete elimination of kanamycin from actual kanamycin manufacturing waste was achieved with immobilized AquKGD. Ecotoxicity and cytotoxicity tests suggest that AquKGD-mediated degradation produces less harmful degradation products. Thus, we propose a novel enzymatic antibiotic inactivation strategy for effective and safe treatment of recalcitrant kanamycin residues.


Assuntos
Antibacterianos , Canamicina , Antibacterianos/farmacologia , Antibacterianos/química , Canamicina/farmacologia , Canamicina/química , Canamicina/metabolismo , Periplasma/metabolismo , Escherichia coli/metabolismo , Oxirredutases/metabolismo
2.
Planta ; 256(1): 14, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35713718

RESUMO

MAIN CONCLUSION: An efficient method of DNA-free gene-editing in potato protoplasts was developed using linearized DNA fragments, UBIQUITIN10 promoters of several plant species, kanamycin selection, and transient overexpression of the BABYBOOM transcription factor. Plant protoplasts represent a reliable experimental system for the genetic manipulation of desired traits using gene editing. Nevertheless, the selection and regeneration of mutated protoplasts are challenging and subsequent recovery of successfully edited plants is a significant bottleneck in advanced plant breeding technologies. In an effort to alleviate the obstacles related to protoplasts' transgene expression and protoplasts' regeneration, a new method was developed. In so doing, it was shown that linearized DNA could efficiently transfect potato protoplasts and that UBIQUITIN10 promoters from various plants could direct transgene expression in an effective manner. Also, the inhibitory concentration of kanamycin was standardized for transfected protoplasts, and the NEOMYCIN PHOSPHOTRANSFERASE2 (NPT2) gene could be used as a potent selection marker for the enrichment of transfected protoplasts. Furthermore, transient expression of the BABYBOOM (BBM) transcription factor promoted the regeneration of protoplast-derived calli. Together, these methods significantly increased the selection for protoplasts that displayed high transgene expression, and thereby significantly increased the rate of gene editing events in protoplast-derived calli to 95%. The method developed in this study facilitated gene-editing in tetraploid potato plants and opened the way to sophisticated genetic manipulation in polyploid organisms.


Assuntos
Edição de Genes , Solanum tuberosum , Sistemas CRISPR-Cas/genética , DNA/metabolismo , Edição de Genes/métodos , Genoma de Planta , Canamicina/metabolismo , Melhoramento Vegetal/métodos , Protoplastos/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Tetraploidia , Fatores de Transcrição/genética , Transfecção
3.
J Bacteriol ; 204(1): JB0040721, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34570627

RESUMO

Type I toxin-antitoxin systems consist of a small protein (under 60 amino acids) whose overproduction can result in cell growth stasis or death, and a small RNA that represses translation of the toxin mRNA. Despite their potential toxicity, type I toxin proteins are increasingly linked to improved survival of bacteria in stressful environments and antibiotic persistence. While the interaction of toxin mRNAs with their cognate antitoxin sRNAs in some systems are well characterized, additional translational control of many toxins and their biological roles are not well understood. Using an ectopic overexpression system, we show that the efficient translation of a chromosomally encoded type I toxin, ZorO, requires mRNA processing of its long 5' untranslated region (UTR; Δ28 UTR). The severity of ZorO induced toxicity on growth inhibition, membrane depolarization, and ATP depletion were significantly increased if expressed from the Δ28 UTR versus the full-length UTR. ZorO did not form large pores as evident via a liposomal leakage assay, in vivo morphological analyses, and measurement of ATP loss. Further, increasing the copy number of the entire zor-orz locus significantly improved growth of bacterial cells in the presence of kanamycin and increased the minimum inhibitory concentration against kanamycin and gentamycin; however, no such benefit was observed against other antibiotics. This supports a role for the zor-orz locus as a protective measure against specific stress agents and is likely not part of a general stress response mechanism. Combined, these data shed more insights into the possible native functions for type I toxin proteins. IMPORTANCE Bacterial species can harbor gene pairs known as type I toxin-antitoxin systems where one gene encodes a small protein that is toxic to the bacteria producing it and a second gene that encodes a small RNA antitoxin to prevent toxicity. While artificial overproduction of type I toxin proteins can lead to cell growth inhibition and cell lysis, the endogenous translation of type I toxins appears to be tightly regulated. Here, we show translational regulation controls production of the ZorO type I toxin and prevents subsequent negative effects on the cell. Further, we demonstrate a role for zorO and its cognate antitoxin in improved growth of E. coli in the presence of aminoglycoside antibiotics.


Assuntos
Antitoxinas , Toxinas Bacterianas , Proteínas de Escherichia coli , Escherichia coli , Sistemas Toxina-Antitoxina , Trifosfato de Adenosina/metabolismo , Aminoglicosídeos , Antibacterianos/metabolismo , Antitoxinas/genética , Antitoxinas/metabolismo , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Canamicina/metabolismo , RNA/metabolismo , RNA Mensageiro/genética , Sistemas Toxina-Antitoxina/genética , Sistemas Toxina-Antitoxina/fisiologia
4.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471121

RESUMO

(1) Background: Compounds with multitarget activity are of interest in basic research to explore molecular foundations of promiscuous binding and in drug discovery as agents eliciting polypharmacological effects. Our study has aimed to systematically identify compounds that form complexes with proteins from distinct classes and compare their bioactive conformations and molecular properties. (2) Methods: A large-scale computational investigation was carried out that combined the analysis of complex X-ray structures, ligand binding modes, compound activity data, and various molecular properties. (3) Results: A total of 515 ligands with multitarget activity were identified that included 70 organic compounds binding to proteins from different classes. These multiclass ligands (MCLs) were often flexible and surprisingly hydrophilic. Moreover, they displayed a wide spectrum of binding modes. In different target structure environments, binding shapes of MCLs were often similar, but also distinct. (4) Conclusions: Combined structural and activity data analysis identified compounds with activity against proteins with distinct structures and functions. MCLs were found to have greatly varying shape similarity when binding to different protein classes. Hence, there were no apparent canonical binding shapes indicating multitarget activity. Rather, conformational versatility characterized MCL binding.


Assuntos
Quimioinformática , Proteínas/química , Proteínas/metabolismo , Cristalografia por Raios X , Ligação de Hidrogênio , Indometacina/química , Indometacina/metabolismo , Canamicina/química , Canamicina/metabolismo , Ligantes , Lipídeos/química , Ligação Proteica
5.
Anal Chem ; 91(18): 11803-11811, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31426630

RESUMO

Kinases are widely distributed in nature and are implicated in many human diseases. Thus, an understanding of their activity and regulation is of fundamental importance. Several kinases are known to be inhibited by ADP. However, thorough investigation of this phenomenon is hampered by the lack of a simple and effective assay for studying this inhibition. We now present a quick, general approach for measuring the effects of reaction products on kinase activity. The method, based on isothermal titration calorimetry, is the first universal, reporter-free, continuous assay for probing kinase inhibition or activation by ADP. In applications to an aminoglycoside phosphotransferase [APH(3')-IIIa] and pantothenate kinases from Escherichia coli (EcPanK) and Pseudomonas aeruginosa (PaPanK), we found ADP to be an efficient inhibitor of all three kinases, with inhibition constant (Ki) values similar to or lower than the Michaelis-Menten constant (Km) values of ATP. Interestingly, ADP was an activator at low concentrations and an inhibitor at high concentrations for EcPanK. This unusual effect was quantitatively modeled and attributed to cooperative interactions between the two subunits of the dimeric enzyme. Importantly, our results suggest that, at typical bacterial intracellular concentrations of ATP and ADP (approximately 1.5 mM and 180 µM, respectively), all three kinases are partially inhibited by ADP, allowing enzyme activity to rapidly respond to changes in the levels of both metabolites.


Assuntos
Difosfato de Adenosina/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Difosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Calorimetria/métodos , Ativação Enzimática , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Canamicina/química , Canamicina/metabolismo , Cinética , Fosfotransferases (Aceptor do Grupo Álcool)/química , Pseudomonas aeruginosa/enzimologia , Reprodutibilidade dos Testes
6.
Mikrochim Acta ; 186(7): 448, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197488

RESUMO

The authors describe a colorimetric method for determination of kanamycin by using gold nanoparticles (AuNPs) as the element of signal-conversion and by applying hybridization chain reaction-assisted signal amplification. The assay is carried out by monitoring the absorbance change and color change adding salt to the reaction solution containing kanamycin (analyte), hairpin DNA probe, and AuNPs. Three hairpin DNA probes with sticky ends were absorbed on the AuNPs via their sticky ends. Cating with DNA prevents them from salt-induced aggregation (which leads to a color change from red to blue) in the complete absence of kanamycin. In contrast, in the presence of kanamycin, the aptamer hairpin DNA probe binds kanamycin, and the newly exposed section of DNA triggers a cascade of hybridization chain reactions with formation of numerous dsDNAs. On addition of salt, the AuNPs form blue aggregates due to the repulsion between dsDNA and AuNPs. Under optimal conditions, the ration of absorbance at 520 and 630 nm drops with the kanamycin concentration in the range from 1 to 40 µM, and the limit of detection is 0.68 µM. The assay can selectively distinguish kanamycin from other antibiotics. The method was applied to kanamycin detection in (spiked) milk samples and gave excellent recoveries. Graphical abstract Schematic presentation of colorimetric method for kanamycin detection using gold nanoparticles modified with hairpin DNA probes and hybridization chain reaction-assisted amplification.


Assuntos
Antibacterianos/análise , Colorimetria/métodos , Canamicina/análise , Nanopartículas Metálicas/química , Animais , Antibacterianos/metabolismo , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Sondas de DNA/química , Sondas de DNA/genética , Contaminação de Alimentos/análise , Ouro/química , Sequências Repetidas Invertidas , Canamicina/metabolismo , Limite de Detecção , Leite/química , Técnicas de Amplificação de Ácido Nucleico , Hibridização de Ácido Nucleico
7.
Rapid Commun Mass Spectrom ; 32(20): 1822-1828, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30030935

RESUMO

RATIONALE: Worldwide efforts are underway to determine the extent of antimicrobial resistance (AMR). In 2015, the World Health Organization (WHO) founded the Global Antimicrobial Surveillance System (GLASS) focusing on surveillance and dissemination of data. In addition, the WHO advocates method development focused on rapid determination and close to real-time monitoring of antibiotic usage and its effectiveness. Rapid determination of aminoglycoside modification by O-phosphorylation, the most prevalent mechanism of clinical resistance, was performed using direct flow and liquid chromatography/mass spectrometry (LC/MS). METHODS: A strain of Escherichia coli carrying a plasmid encoding an aminoglycoside modification enzyme (O-phosphotransferase) was incubated with kanamycin, an aminoglycoside. The antibiotic and its modified form were observed using direct flow and LC/MS. Direct flow high-resolution mass spectrometry (HRMS) using a Thermo Fisher Q-Exactive hybrid quadrupole-orbitrap mass spectrometer was employed for quantitative analysis and structural elucidation. Liquid chromatography coupled with the AB Sciex QTRAP 6500+ was also used for quantitative analysis. RESULTS: Detection of phosphorylated kanamycin was achieved in less than 4 h of incubation. Calibration curves for modified kanamycin from 2.5-250 and 10-200 µg mL-1  µg mL-1 were obtained for LC/MS and direct injection high-resolution experiments, respectively. The high-resolution measurements were employed for conformation and structural elucidation of the novel precursor and product ion biomarkers with high mass accuracy (≤7 ppm). These results confirm previous in vitro O-phosphotransferase metabolite measurements. CONCLUSIONS: A new analytical method capable of determination and quantification of the most common form of aminoglycoside resistance (via phosphorylation) was developed requiring short incubation times for a positive confirmation 100-fold lower than the minimum inhibitory concentration (MIC). High-resolution data simultaneously revealed quantitative abilities and provided numerous novel product ions confirming placement of the phosphate group on kanamycin.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Canamicina , Espectrometria de Massas em Tandem/métodos , Escherichia coli , Canamicina/análise , Canamicina/química , Canamicina/metabolismo , Fosforilação , Fosfotransferases/metabolismo , Proteínas Recombinantes/metabolismo
8.
Rapid Commun Mass Spectrom ; 32(17): 1549-1556, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29781236

RESUMO

RATIONALE: The occurrence of antibiotic-resistant bacteria is a worldwide issue that has the potential, if not addressed, to eliminate classes of antibiotics that have extended life expectancy in the last century. An approach to confront this threat is the development of technologies that greatly accelerate the detection of antibiotic resistance to minimize unnecessary treatment involving antibiotics. Development of an analytical method for rapid detection of aminoglycoside resistance using liquid chromatography/mass spectrometry (LC/MS) has not been reported in the literature and is described here. METHODS: A strain of Escherichia coli carrying a plasmid encoding an aminoglycoside-modifide enzyme (N-acetyltransferase) was incubated with kanamycin, an aminoglycoside. The antibiotic and its modified form were observed using LC/MS. An ABSciex QTrap 6500+ was used for kinetic and quantitative analysis and high-resolution structural elucidation was performed using a Thermo Fisher Q-Exactive hybrid quadrupole-orbitrap mass spectrometer. RESULTS: Detection of kanamycin modification was achieved in less than an hour of incubation. Calibration curves for both modified and unmodified kanamycin from 0.5 to 50 µg mL-1 were obtained. Generation and depletion of modified and unmodified kanamycin as a function of time were performed. High-resolution mass spectrometry was employed for confirmation and structural elucidation of the novel precursor and product ion biomarkers with high mass accuracy (≤7 ppm). CONCLUSIONS: A newly developed analytical method is able to determine bacterial resistance to aminoglycosides (via acetylation of kanamycin), qualitatively and quantitatively, within 30 minutes and 6 hours of incubation with kanamycin, respectively. High-resolution data support the placement of an acetyl group on kanamycin confirming aminoglycoside resistance and its mechanism. Quantification was achieved for both forms of the antibiotic 50- to 100-fold lower than the minimum inhibitory concentration for the resistant bacteria and can be used to replace conventional antimicrobial susceptibility tests.


Assuntos
Acetiltransferases/metabolismo , Antibacterianos/química , Cromatografia Líquida/métodos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Canamicina/química , Espectrometria de Massas em Tandem/métodos , Acetiltransferases/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/química , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/química , Canamicina/metabolismo , Canamicina/farmacologia , Cinética
9.
Proteins ; 85(7): 1258-1265, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28316100

RESUMO

Kinetic, thermodynamic, and structural properties of the aminoglycoside N3-acetyltransferase-VIa (AAC-VIa) are determined. Among the aminoglycoside N3-acetyltransferases, AAC-VIa has one of the most limited substrate profiles. Kinetic studies showed that only five aminoglycosides are substrates for this enzyme with a range of fourfold difference in kcat values. Larger differences in KM (∼40-fold) resulted in ∼30-fold variation in kcat /KM . Binding of aminoglycosides to AAC-VIa was enthalpically favored and entropically disfavored with a net result of favorable Gibbs energy (ΔG < 0). A net deprotonation of the enzyme, ligand, or both accompanied the formation of binary and ternary complexes. This is opposite of what was observed with several other aminoglycoside N3-acetyltransferases, where ligand binding causes more protonation. The change in heat capacity (ΔCp) was different in H2 O and D2 O for the binary enzyme-sisomicin complex but remained the same in both solvents for the ternary enzyme-CoASH-sisomicin complex. Unlike, most other aminoglycoside-modifying enzymes, the values of ΔCp were within the expected range of protein-carbohydrate interactions. Solution behavior of AAC-VIa was also different from the more promiscuous aminoglycoside N3-acetyltransferases and showed a monomer-dimer equilibrium as detected by analytical ultracentrifugation (AUC). Binding of ligands shifted the enzyme to monomeric state. Data also showed that polar interactions were the most dominant factor in dimer formation. Overall, thermodynamics of ligand-protein interactions and differences in protein behavior in solution provide few clues on the limited substrate profile of this enzyme despite its >55% sequence similarity to the highly promiscuous aminoglycoside N3-acetyltransferase. Proteins 2017; 85:1258-1265. © 2017 Wiley Periodicals, Inc.


Assuntos
Acetiltransferases/química , Antibacterianos/química , Proteínas de Bactérias/química , Enterobacter cloacae/química , Prótons , Sisomicina/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Motivos de Aminoácidos , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Óxido de Deutério/química , Enterobacter cloacae/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Gentamicinas/química , Gentamicinas/metabolismo , Canamicina/química , Canamicina/metabolismo , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sisomicina/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato , Termodinâmica , Tobramicina/química , Tobramicina/metabolismo , Água/química
10.
Biochim Biophys Acta Biomembr ; 1859(11): 2242-2252, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28847502

RESUMO

Biological membranes are natural barriers to the transport of molecules and drugs within human bodies. Many antibacterial agents need to cross these membranes to reach their target and elicit specific effects. Kanamycin A belongs to the family of aminoglycoside antibiotics that target cellular RNA to inhibit bacterial and viral replication. Previous studies have shown that aminoglycosides bind to mammalian but disrupt bacterial membranes. In this study, molecular dynamics (MD) simulations and infrared (IR) spectroscopy were applied to investigate the initial, first key interactions of kanamycin A, as a representative aminoglycoside, with both bacterial and mammalian lipid bilayers at the molecular level. Computational studies revealed strong hydrogen bonding interactions between the hydroxyl and amino groups of the aminoglycoside with the ester carbonyl and phosphate groups of the lipids. IR spectroscopy provided experimental verification of the important role of the lipid's ester carbonyl, phosphate and hydroxyl groups for aminoglycoside binding. The bacterial membrane became disordered upon aminoglycoside addition, whereas the mammalian membrane became stiffer and more ordered. This indicates the bacterial membrane disruption observed by previous studies.


Assuntos
Membrana Celular/metabolismo , Canamicina/metabolismo , Bicamadas Lipídicas/metabolismo , Animais , Sítios de Ligação , Membrana Celular/efeitos dos fármacos , Humanos , Canamicina/química , Canamicina/farmacocinética , Bicamadas Lipídicas/química , Mamíferos , Membranas Artificiais , Modelos Moleculares , Simulação de Dinâmica Molecular , Espectrofotometria Atômica , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier
11.
J Am Chem Soc ; 138(34): 10945-9, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27494027

RESUMO

Bacterial infection caused by intracellular pathogens, such as Mycobacterium, Salmonella, and Brucella, is a burgeoning global health epidemic that necessitates urgent action. However, the therapeutic value of a number of antibiotics, including aminoglycosides, against intracellular pathogenic bacteria is compromised due to their inability to traverse eukaryotic membranes. For this significant problem to be addressed, a cleavable conjugate of the antibiotic kanamycin and a nonmembrane lytic, broad-spectrum antimicrobial peptide with efficient mammalian cell penetration, P14LRR, was prepared. This approach allows kanamycin to enter mammalian cells as a conjugate linked via a tether that breaks down in the reducing environment within cells. Potent antimicrobial activity of the P14KanS conjugate was demonstrated in vitro, and this reducible conjugate effectively cleared intracellular pathogenic bacteria within macrophages more potently than that of a conjugate lacking the disulfide moiety. Notably, successful clearance of Mycobacterium tuberculosis within macrophages was observed with the dual antibiotic conjugate, and Salmonella levels were significantly reduced in an in vivo Caenorhabditis elegans model.


Assuntos
Bactérias/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Espaço Intracelular/metabolismo , Espaço Intracelular/microbiologia , Canamicina/química , Canamicina/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Transporte Biológico , Peptídeos Penetradores de Células/farmacologia , Espaço Intracelular/efeitos dos fármacos , Canamicina/farmacologia , Testes de Sensibilidade Microbiana , Compostos de Sulfidrila/química
12.
Appl Microbiol Biotechnol ; 100(21): 9355-9364, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27531514

RESUMO

Anaerobic digestion is an effective method for reducing the by-product of waste-activated sludge (WAS) from wastewater treatment plants and for producing bioenergy from WAS. However, only a limited number of studies have attempted to improve anaerobic digestion by targeting the microbial interactions in WAS. In this study, we examined whether different antibiotics positively, negatively, or neutrally influence methane fermentation by evaluating changes in the microbial community and functions in WAS. Addition of azithromycin promoted the microbial communities related to the acidogenic and acetogenic stages, and a high concentration of soluble proteins and a high activity of methanogens were detected. Chloramphenicol inhibited methane production but did not affect the bacteria that contribute to the hydrolysis, acidogenesis, and acetogenesis digestion stages. The addition of kanamycin, which exhibits the same methane productivity as a control (antibiotic-free WAS), did not affect all of the microbial communities during anaerobic digestion. This study demonstrates the simultaneous functions and interactions of diverse bacteria and methanogenic Archaea in different stages of the anaerobic digestion of WAS. The ratio of Caldilinea, Methanosarcina, and Clostridium may correspond closely to the trend of methane production in each antibiotic. The changes in microbial activities and function by antibiotics facilitate a better understanding of bioenergy production.


Assuntos
Antibacterianos/metabolismo , Bactérias/classificação , Bactérias/efeitos dos fármacos , Biota/efeitos dos fármacos , Metano/metabolismo , Esgotos/microbiologia , Anaerobiose , Archaea/classificação , Azitromicina/metabolismo , Cloranfenicol/metabolismo , Canamicina/metabolismo
13.
Chembiochem ; 15(4): 587-94, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24478228

RESUMO

Selective inhibition of one kinase over another is a critical issue in drug development. For antimicrobial development, it is particularly important to selectively inhibit bacterial kinases, which can phosphorylate antimicrobial compounds such as aminoglycosides, without affecting human kinases. Previous work from our group showed the development of a MALDI-MS/MS assay for the detection of small molecule modulators of the bacterial aminoglycoside kinase APH3'IIIa. Herein, we demonstrate the development of an enhanced kinase MALDI-MS/MS assay involving simultaneous assaying of two kinase reactions, one for APH3'IIIa, and the other for human protein kinase A (PKA), which leads to an output that provides direct information on selectivity and mechanism of action. Specificity of the respective enzyme substrates were verified, and the assay was validated through generation of Z'-factors of 0.55 for APH3'IIIa with kanamycin and 0.60 for PKA with kemptide. The assay was used to simultaneously screen a kinase-directed library of mixtures of ten compounds each against both enzymes, leading to the identification of selective inhibitors for each enzyme as well as one non-selective inhibitor following mixture deconvolution.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas de Bactérias/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Humanos , Canamicina/química , Canamicina/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Especificidade por Substrato
14.
Biochem J ; 454(2): 191-200, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23758273

RESUMO

Activity of the aminoglycoside phosphotransferase APH(3')-Ia leads to resistance to aminoglycoside antibiotics in pathogenic Gram-negative bacteria, and contributes to the clinical obsolescence of this class of antibiotics. One strategy to rescue compromised antibiotics such as aminoglycosides is targeting the enzymes that confer resistance with small molecules. We demonstrated previously that ePK (eukaryotic protein kinase) inhibitors could inhibit APH enzymes, owing to the structural similarity between these two enzyme families. However, limited structural information of enzyme-inhibitor complexes hindered interpretation of the results. In addition, cross-reactivity of compounds between APHs and ePKs represents an obstacle to their use as aminoglycoside adjuvants to rescue aminoglycoside antibiotic activity. In the present study, we structurally and functionally characterize inhibition of APH(3')-Ia by three diverse chemical scaffolds, anthrapyrazolone, 4-anilinoquinazoline and PP (pyrazolopyrimidine), and reveal distinctions in the binding mode of anthrapyrazolone and PP compounds to APH(3')-Ia compared with ePKs. Using this observation, we identify PP derivatives that select against ePKs, attenuate APH(3')-Ia activity and rescue aminoglycoside antibiotic activity against a resistant Escherichia coli strain. The structures described in the present paper and the inhibition studies provide an important opportunity for structure-based design of compounds to target aminoglycoside phosphotransferases for inhibition, potentially overcoming this form of antibiotic resistance.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Canamicina Quinase/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Acinetobacter baumannii/enzimologia , Antracenos/química , Antracenos/metabolismo , Antracenos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Canamicina/química , Canamicina/metabolismo , Canamicina/farmacologia , Canamicina Quinase/química , Canamicina Quinase/genética , Canamicina Quinase/metabolismo , Testes de Sensibilidade Microbiana , Conformação Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Quinazolinas/química , Quinazolinas/metabolismo , Quinazolinas/farmacologia , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
15.
Sensors (Basel) ; 14(2): 3737-55, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24566637

RESUMO

Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminoglycoside antibiotic kanamycin A with the aim of constructing a robust and functional assay that can be used for water analysis. With this work we show that aptamers that were derived from a Capture-SELEX procedure targeting against kanamycin A also display binding to related aminoglycoside antibiotics. The binding patterns differ among all tested aptamers so that there are highly substance specific aptamers and more group specific aptamers binding to a different variety of aminoglycoside antibiotics. Also the region of the aminoglycoside antibiotics responsible for aptamer binding can be estimated. Affinities of the different aptamers for their target substance, kanamycin A, are measured with different approaches and are in the micromolar range. Finally, the proof of principle of an assay for detection of kanamycin A in a real water sample is given.


Assuntos
Aminoglicosídeos/metabolismo , Antibacterianos/metabolismo , Aptâmeros de Nucleotídeos/metabolismo , Aminoglicosídeos/análise , Antibacterianos/análise , Aptâmeros de Nucleotídeos/química , Sequência de Bases , DNA de Cadeia Simples/química , Fluoresceína/química , Canamicina/análise , Canamicina/metabolismo , Magnetismo , Técnicas Analíticas Microfluídicas/instrumentação , Técnica de Seleção de Aptâmeros , Temperatura
16.
Protein J ; 43(1): 12-23, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37932619

RESUMO

Eis (Enhanced intracellular survival) protein is an aminoglycoside acetyltransferase enzyme classified under the family - GNAT (GCN5-related family of N-acetyltransferases) secreted by Mycobacterium tuberculosis (Mtb). The enzymatic activity of Eis results in the acetylation of kanamycin, thereby impairing the drug's action. In this study, we expressed and purified recombinant Eis (rEis) to determine the enzymatic activity of Eis and its potential inhibitor. Glide-enhanced precision docking was used to perform molecular docking with chosen ligands. Quercetin was found to interact Eis with a maximum binding affinity of -8.379 kcal/mol as compared to other ligands. Quercetin shows a specific interaction between the positively charged amino acid arginine in Eis and the aromatic ring of quercetin through π-cation interaction. Further, the effect of rEis was studied on the antibiotic activity of kanamycin A in the presence and absence of quercetin. It was observed that the activity of rEis aminoglycoside acetyltransferase decreased with increasing quercetin concentration. The results from the disk diffusion assay confirmed that increasing the concentration of quercetin inhibits the rEis protein activity. In conclusion, quercetin may act as a potential Eis inhibitor.


Assuntos
Aminoglicosídeos , Mycobacterium tuberculosis , Aminoglicosídeos/química , Aminoglicosídeos/metabolismo , Aminoglicosídeos/farmacologia , Quercetina/farmacologia , Quercetina/metabolismo , Proteínas de Bactérias/química , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Canamicina/farmacologia , Canamicina/química , Canamicina/metabolismo , Acetiltransferases/genética , Acetiltransferases/química , Inibidores Enzimáticos/química
17.
Biochemistry ; 52(30): 5125-32, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23837529

RESUMO

The upsurge in drug-resistant tuberculosis (TB) is an emerging global problem. The increased expression of the enhanced intracellular survival (Eis) protein is responsible for the clinical resistance to aminoglycoside (AG) antibiotics of Mycobacterium tuberculosis . Eis from M. tuberculosis (Eis_Mtb) and M. smegmatis (Eis_Msm) function as acetyltransferases capable of acetylating multiple amines of many AGs; however, these Eis homologues differ in AG substrate preference and in the number of acetylated amine groups per AG. The AG binding cavity of Eis_Mtb is divided into two narrow channels, whereas Eis_Msm contains one large cavity. Five bulky residues lining one of the AG binding channels of Eis_Mtb, His119, Ile268, Trp289, Gln291, and Glu401, have significantly smaller counterparts in Eis_Msm, Thr119, Gly266, Ala287, Ala289, and Gly401, respectively. To identify the residue(s) responsible for AG binding in Eis_Mtb and for the functional differences from Eis_Msm, we have generated single, double, triple, quadruple, and quintuple mutants of these residues in Eis_Mtb by mutating them into their Eis_Msm counterparts, and we tested their acetylation activity with three structurally diverse AGs: kanamycin A (KAN), paromomyin (PAR), and apramycin (APR). We show that penultimate C-terminal residue Glu401 plays a critical role in the overall activity of Eis_Mtb. We also demonstrate that the identities of residues Ile268, Trp289, and Gln291 (in Eis_Mtb nomenclature) dictate the differences between the acetylation efficiencies of Eis_Mtb and Eis_Msm for KAN and PAR. Finally, we show that the mutation of Trp289 in Eis_Mtb into Ala plays a role in APR acetylation.


Assuntos
Acetiltransferases/metabolismo , Aminoglicosídeos/metabolismo , Antibióticos Antituberculose/metabolismo , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Acetilação , Acetiltransferases/química , Acetiltransferases/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoglicosídeos/química , Aminoglicosídeos/farmacologia , Antibióticos Antituberculose/química , Antibióticos Antituberculose/farmacologia , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Farmacorresistência Bacteriana Múltipla , Canamicina/química , Canamicina/metabolismo , Canamicina/farmacologia , Cinética , Conformação Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Nebramicina/análogos & derivados , Nebramicina/química , Nebramicina/metabolismo , Nebramicina/farmacologia , Paromomicina/química , Paromomicina/metabolismo , Paromomicina/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
18.
Proteins ; 81(1): 63-80, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22907688

RESUMO

Aminoglycoside antibiotics are used against severe bacterial infections. They bind to the bacterial ribosomal RNA and interfere with the translation process. However, bacteria produce aminoglycoside modifying enzymes (AME) to resist aminoglycoside actions. AMEs form a variable group and yet they specifically recognize and efficiently bind aminoglycosides, which are also diverse in terms of total net charge and the number of pseudo-sugar rings. Here, we present the results of 25 molecular dynamics simulations of three AME representatives and aminoglycoside ribosomal RNA binding site, unliganded and complexed with an aminoglycoside, kanamycin A. A comparison of the aminoglycoside binding sites in these different receptors revealed that the enzymes efficiently mimic the nucleic acid environment of the ribosomal RNA binding cleft. Although internal dynamics of AMEs and their interaction patterns with aminoglycosides differ, the energetical analysis showed that the most favorable sites are virtually the same in the enzymes and RNA. The most copied interactions were of electrostatic nature, but stacking was also replicated in one AME:kanamycin complex. In addition, we found that some water-mediated interactions were very stable in the simulations of the complexes. We show that our simulations reproduce well findings from NMR or X-ray structural studies, as well as results from directed mutagenesis. The outcomes of our analyses provide new insight into aminoglycoside resistance mechanism that is related to the enzymatic modification of these drugs.


Assuntos
Canamicina/química , RNA Bacteriano/química , RNA Ribossômico/química , Transferases/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Simulação por Computador , Escherichia coli/genética , Canamicina/metabolismo , Simulação de Dinâmica Molecular , RNA Bacteriano/metabolismo , RNA Ribossômico/metabolismo , Eletricidade Estática , Termodinâmica , Transferases/metabolismo , Água/química
19.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 6): 1138-49, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23695258

RESUMO

Staphylococci cause a wide range of diseases in humans and animals, and the proteins of the multiple antibiotic-resistance repressor (MarR) family in staphylococci function as regulators of protein expression and confer resistance to multiple antibiotics. Diverse mechanisms such as biofilm formation, drug transport, drug modification etc. are associated with this resistance. In this study, crystal structures of the Staphylococcus aureus MarR homologue SAR2349 and its complex with salicylate and the aminoglycoside antibiotic kanamycin have been determined. The structure of SAR2349 shows for the first time that a MarR protein can interact directly with different classes of ligands simultaneously and highlights the importance and versatility of regulatory systems in bacterial antibiotic resistance. The three-dimensional structures of TcaR from S. epidermidis in complexes with chloramphenicol and with the aminoglycoside antibiotic streptomycin were also investigated. The crystal structures of the TcaR and SAR2349 complexes illustrate a general antibiotic-regulated resistance mechanism that may extend to other MarR proteins. To reveal the regulatory mechanism of the MarR proteins, the protein structures of this family were further compared and three possible mechanisms of regulation are proposed. These results are of general interest because they reveal a remarkably broad spectrum of ligand-binding modes of the multifunctional MarR proteins. This finding provides further understanding of antimicrobial resistance mechanisms in pathogens and strategies to develop new therapies against pathogens.


Assuntos
Canamicina/química , Proteínas Repressoras/química , Salicilatos/química , Staphylococcus aureus/química , Staphylococcus epidermidis/química , Sítios de Ligação , Resistência Microbiana a Medicamentos , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Canamicina/metabolismo , Modelos Moleculares , Proteínas Repressoras/metabolismo , Salicilatos/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus epidermidis/metabolismo , Difração de Raios X
20.
Nat Prod Rep ; 30(1): 11-20, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23179168

RESUMO

The 2-deoxystreptamine-containing aminoglycosides, such as neomycin, kanamycin and gentamicin, are an important class of antibiotics. A detailed understanding of the complete biosynthetic pathway of aminoglycosides and their biosynthetic enzymes will allow us to not only generate more robust antibiotic agents or drugs with other altered biological activities, but also to produce clinically important semi-synthetic antibiotics by direct fermentation. This Highlight focuses on recent advances in the characterization of their biosynthetic enzymes and pathway as well as some chemo-enzymatic and metabolic engineering approaches for the biological production of natural, semi-synthetic, and novel aminoglycosides.


Assuntos
Aminoglicosídeos/biossíntese , Antibacterianos/biossíntese , Aminoglicosídeos/química , Aminoglicosídeos/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Vias Biossintéticas , Gentamicinas/química , Gentamicinas/metabolismo , Hexosaminas/biossíntese , Hexosaminas/química , Hexosaminas/metabolismo , Canamicina/química , Canamicina/metabolismo , Estrutura Molecular , Neomicina/química , Neomicina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA