Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Mod Pathol ; 33(2): 228-234, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31383968

RESUMO

Asbestos describes a group of naturally occurring fibrous silicate mineral compounds that have been associated with a number of respiratory maladies, including mesothelioma and lung cancer. In addition, based primarily on epidemiologic studies, asbestos has been implicated as a risk factor for laryngeal and pharyngeal squamous cell carcinoma (SCC). The main objective of this work was to strengthen existing evidence via empirical demonstration of persistent asbestos fibers embedded in the tissue surrounding laryngeal and pharyngeal SCC, thus providing a more definitive biological link between exposure and disease. Six human papillomavirus (HPV)-negative laryngeal (n = 4) and pharyngeal (n = 2) SCC cases with a history working in an asbestos-exposed occupation were selected from a large population-based case-control study of head and neck cancer. A laryngeal SCC case with no history of occupational asbestos exposure was included as a control. Tissue cores were obtained from adjacent nonneoplastic tissue in tumor blocks from the initial primary tumor resection, and mineral fiber analysis was performed using a scanning electron microscope equipped with an energy dispersive X-ray analyzer (EDXA). Chrysotile asbestos fiber bundles were identified in 3/6 of evaluated cases with a history of occupational asbestos exposure. All three cases had tumors originating in the larynx. In addition, a wollastonite fiber of unclear significance was identified one of the HPV-negative pharyngeal SCC cases. No mineral fibers were identified in adjacent tissue of the case without occupational exposure. The presence of asbestos fibers in the epithelial tissue surrounding laryngeal SCC in cases with a history of occupational asbestos exposure adds a key line of physical evidence implicating asbestos as an etiologic factor.


Assuntos
Asbestos Serpentinas/efeitos adversos , Neoplasias Laríngeas/etiologia , Exposição Ocupacional/efeitos adversos , Carcinoma de Células Escamosas de Cabeça e Pescoço/etiologia , Idoso , Asbestos Serpentinas/análise , Estudos de Casos e Controles , Células Epiteliais/química , Células Epiteliais/ultraestrutura , Humanos , Neoplasias Laríngeas/química , Neoplasias Laríngeas/ultraestrutura , Laringe/química , Laringe/ultraestrutura , Masculino , Pessoa de Meia-Idade , Fibras Minerais/efeitos adversos , Fibras Minerais/análise , Medição de Risco , Fatores de Risco , Carcinoma de Células Escamosas de Cabeça e Pescoço/química , Carcinoma de Células Escamosas de Cabeça e Pescoço/ultraestrutura
2.
Biochim Biophys Acta Mol Cell Res ; 1866(4): 623-637, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30658075

RESUMO

Molecular alterations in cell death pathways and imbalances in regulators of up- or downstream signaling pathways can lead to resistance to cell death, which is one of the hallmarks of cancer. These signaling modifications are strategies that tumor cells use to resist chemotherapy and that contribute to the high recurrence rate of head and neck squamous cell carcinoma (HNSCC). The SET oncoprotein is a PP2A inhibitor that accumulates in HNSCC and represents a promising therapeutic target. Here we report the role that SET protein plays in resistance to death of two HNSCC cell lines: Cal 27 and HN13. SET protein regulated intracellular redox balance by controlling cellular localization of APE 1 - an endonuclease that is part of the SET complex and regulates antioxidant gene transcription. SET protein knockdown (siSET) associated with tert-butyl hydroperoxide-induced oxidative stress sensitized Cal 27 and HN13 cells to apoptosis via the extrinsic and intrinsic pathways, respectively. SET protein upregulated autophagy in HNSCC cells in a PP2A-dependent manner and apparently regulated ULK1 expression. The fact that siSET lowered Bcl-2 phosphorylation levels indicated that SET protein interfered with an alternative pathway that modulated autophagy in HNSCC cells. Overall, SET protein regulated intracellular redox state and sustained autophagy in HNSCC cells, which may explain resistance to death of HNSCC cells. Altogether, the findings reported herein support SET protein as therapeutic target for HNSCC.


Assuntos
Autofagia , Neoplasias de Cabeça e Pescoço/metabolismo , Chaperonas de Histonas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Fatores de Transcrição/metabolismo , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a DNA , Neoplasias de Cabeça e Pescoço/ultraestrutura , Humanos , Oxirredução , Estresse Oxidativo , Carcinoma de Células Escamosas de Cabeça e Pescoço/ultraestrutura
3.
J Mol Med (Berl) ; 96(9): 929-938, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30022281

RESUMO

The functional relationship between apoptosis and autophagy in anticancer drug treatment is extremely complex, and the molecular machinery is obscure. This study aims to investigate the efficacy of CYT997, a novel microtubule-disrupting agent, in head and neck squamous cell carcinomas (HNSCCs) and complete the autophagy-apoptosis puzzle involved in drug action. We report here that CYT997 exhibits anticancer activity by triggering oxidative stress-associated apoptosis in HNSCC cells. Interestingly, upregulation of autophagy by mTOR-dependent pathways appears to have a cytoprotective role in preventing apoptosis by inhibiting CYT997-induced excessively high levels of reactive oxygen species (ROS). Blockade of autophagy by ATG7 depletion or addition of autophagy inhibitor hydroxychloroquine (HCQ) sensitizes HNSCC cells to CYT997 as evidenced by enhanced ROS-associated apoptosis. Moreover, HCQ exhibits a good synergism with CYT997 on induction of apoptosis in HNSCC xenografts without cytotoxicity, suggesting combined treatment of CYT997 with autophagy inhibitors would increase the anticancer efficacy of CYT997. These findings unveil the importance of ROS in crosstalk between autophagy and apoptosis in CYT997 treatment, raising concerns that genetic or pharmacologic blockade of autophagy should be considered in the design of new therapeutics for HNSCC. KEY MESSAGES: • CYT997 exhibits anticancer activity by induction of ROS-associated apoptosis. • mTOR-dependent cytoprotective autophagy prevents CYT997-induced apoptosis. • Blockade of autophagy augments CYT997 efficacy by enhanced ROS-associated apoptosis. • Combination of autophagy inhibitors with CYT997 is more effective against HNSCC.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Animais , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/ultraestrutura , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA