RESUMO
Individuals with congenital heart disease (CHD) have an increased risk of neurodevelopmental impairments. Given the hypothesized complexity linking genomics, atypical brain structure, cardiac diagnoses and their management, and neurodevelopmental outcomes, unsupervised methods may provide unique insight into neurodevelopmental variability in CHD. Using data from the Pediatric Cardiac Genomics Consortium Brain and Genes study, we identified data-driven subgroups of individuals with CHD from measures of brain structure. Using structural magnetic resonance imaging (MRI; N = 93; cortical thickness, cortical volume, and subcortical volume), we identified subgroups that differed primarily on cardiac anatomic lesion and language ability. In contrast, using diffusion MRI (N = 88; white matter connectivity strength), we identified subgroups that were characterized by differences in associations with rare genetic variants and visual-motor function. This work provides insight into the differential impacts of cardiac lesions and genomic variation on brain growth and architecture in patients with CHD, with potentially distinct effects on neurodevelopmental outcomes.
Assuntos
Encéfalo , Cardiopatias Congênitas , Imageamento por Ressonância Magnética , Humanos , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/genética , Feminino , Masculino , Criança , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Adolescente , Adulto Jovem , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto , Pré-Escolar , Imagem de Difusão por Ressonância Magnética , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/patologia , Transtornos do Neurodesenvolvimento/genéticaRESUMO
Patients with congenital heart disease (CHD) demonstrate altered structural brain network connectivity. However, there is large variability between reported results and little information is available to identify those patients at highest risk for brain alterations. Thus, we aimed to investigate if network connectivity measures were associated with the individual patient's cumulative load of clinical risk factors and with family-environmental factors in a cohort of adolescents with CHD. Further, we investigated associations with executive function impairments. In 53 adolescents with CHD who underwent open-heart surgery during infancy, and 75 healthy controls, diffusion magnetic resonance imaging and neuropsychological assessment was conducted at a mean age of 13.2 ± 1.3 years. Structural connectomes were constructed using constrained spherical deconvolution tractography. Graph theory and network-based statistics were applied to investigate network connectivity measures. A cumulative clinical risk (CCR) score was built by summing up binary risk factors (neonatal, cardiac, neurologic) based on clinically relevant thresholds. The role of family-environmental factors (parental education, parental mental health, and family function) was investigated. An age-adjusted executive function summary score was built from nine neuropsychological tests. While network integration and segregation were preserved in adolescents with CHD, they showed lower edge strength in a dense subnetwork. A higher CCR score was associated with lower network segregation, edge strength, and executive function performance. Edge strength was particularly reduced in a subnetwork including inter-frontal and fronto-parietal-thalamic connections. There was no association with family-environmental factors. Poorer executive functioning was associated with lower network integration and segregation. We demonstrated evidence for alterations of network connectivity strength in adolescents with CHD - particularly in those patients who face a cumulative exposure to multiple clinical risk factors over time. Quantifying the cumulative load of risk early in life may help to better predict trajectories of brain development in order to identify and support the most vulnerable patients as early as possible.
Assuntos
Conectoma , Função Executiva , Cardiopatias Congênitas , Rede Nervosa , Humanos , Adolescente , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/cirurgia , Cardiopatias Congênitas/fisiopatologia , Cardiopatias Congênitas/complicações , Função Executiva/fisiologia , Masculino , Feminino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Fatores de Risco , Criança , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Testes Neuropsicológicos , Imagem de Difusão por Ressonância MagnéticaRESUMO
PURPOSE: To develop a highly-accelerated, real-time phase contrast (rtPC) MRI pulse sequence with 40 fps frame rate (25 ms effective temporal resolution). METHODS: Highly-accelerated golden-angle radial sparse parallel (GRASP) with over regularization may result in temporal blurring, which in turn causes underestimation of peak velocity. Thus, we amplified GRASP performance by synergistically combining view-sharing (VS) and k-space weighted image contrast (KWIC) filtering. In 17 pediatric patients with congenital heart disease (CHD), the conventional GRASP and the proposed GRASP amplified by VS and KWIC (or GRASP + VS + KWIC) reconstruction for rtPC MRI were compared with respect to clinical standard PC MRI in measuring hemodynamic parameters (peak velocity, forward volume, backward volume, regurgitant fraction) at four locations (aortic valve, pulmonary valve, left and right pulmonary arteries). RESULTS: The proposed reconstruction method (GRASP + VS + KWIC) achieved better effective spatial resolution (i.e., image sharpness) compared with conventional GRASP, ultimately reducing the underestimation of peak velocity from 17.4% to 6.4%. The hemodynamic metrics (peak velocity, volumes) were not significantly (p > 0.99) different between GRASP + VS + KWIC and clinical PC, whereas peak velocity was significantly (p < 0.007) lower for conventional GRASP. RtPC with GRASP + VS + KWIC also showed the ability to assess beat-to-beat variation and detect the highest peak among peaks. CONCLUSION: The synergistic combination of GRASP, VS, and KWIC achieves 25 ms effective temporal resolution (40 fps frame rate), while minimizing the underestimation of peak velocity compared with conventional GRASP.
Assuntos
Meios de Contraste , Cardiopatias Congênitas , Humanos , Criança , Imageamento por Ressonância Magnética/métodos , Pulmão , Artéria Pulmonar , Cardiopatias Congênitas/diagnóstico por imagemRESUMO
BACKGROUND: Due to medical and surgical advancements, the population of adult patients with congenital heart disease (ACHD) is growing. Despite successful therapy, ACHD patients face structural sequalae, placing them at increased risk for heart failure and arrhythmias. Left and right ventricular function are important predictors for adverse clinical outcomes. In acquired heart disease it has been shown that echocardiographic deformation imaging is of superior prognostic value as compared to conventional parameters as ejection fraction. However, in adult congenital heart disease, the clinical significance of deformation imaging has not been systematically assessed and remains unclear. METHODS: According to the Preferred Reporting Items for Systematic Reviews checklist, this systematic review included studies that reported on the prognostic value of echocardiographic left and/or right ventricular strain by 2-dimensional speckle tracking for hard clinical end-points (death, heart failure hospitalization, arrhythmias) in the most frequent forms of adult congenital heart disease. RESULTS: In total, 19 contemporary studies were included. Current data shows that left ventricular and right ventricular global longitudinal strain (GLS) predict heart failure, transplantation, ventricular arrhythmias and mortality in patients with Ebstein's disease and tetralogy of Fallot, and that GLS of the systemic right ventricle predicts heart failure and mortality in patients post atrial switch operation or with a congenitally corrected transposition of the great arteries. CONCLUSIONS: Deformation imaging can potentially impact the clinical decision making in ACHD patients. Further studies are needed to establish disease-specific reference strain values and ranges of impaired strain that would indicate the need for medical or structural intervention.
Assuntos
Ecocardiografia , Cardiopatias Congênitas , Insuficiência Cardíaca , Humanos , Cardiopatias Congênitas/diagnóstico por imagem , Prognóstico , Ecocardiografia/métodos , Adulto , Insuficiência Cardíaca/diagnóstico por imagem , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia , Anomalia de Ebstein/diagnóstico por imagem , Anomalia de Ebstein/fisiopatologia , Arritmias Cardíacas/diagnóstico por imagem , Transplante de CoraçãoRESUMO
PRKACA-related, atrial defects-polydactyly-multiple congenital malformation syndrome is a recently described skeletal ciliopathy, which is caused by disease-causing variants in PRKACA. The primary phenotypic description includes atrial septal defects, and limb anomalies including polydactyly and short limbs. To date, only four molecularly proven patients have been reported in the literature with a recurrent variant, c.409G>A p.Gly137Arg in PRKACA. In this study, we report the fifth affected individual with the same variant and review the clinical features and radiographic findings of this rare syndrome.
Assuntos
Anormalidades Múltiplas , Polidactilia , Humanos , Polidactilia/genética , Polidactilia/patologia , Polidactilia/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Anormalidades Múltiplas/diagnóstico , Feminino , Comunicação Interatrial/genética , Comunicação Interatrial/diagnóstico por imagem , Comunicação Interatrial/diagnóstico , Comunicação Interatrial/patologia , Masculino , Fenótipo , Mutação/genética , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/diagnóstico por imagem , ÍndiaRESUMO
Neonates with congenital heart disease (CHD) and ductal-dependent pulmonary blood flow (DD-PBF) require early intervention. Historically, this intervention was most often a surgical systemic-to-pulmonary shunt (SPS; e.g., Blalock-Thomas-Taussig shunt). However, over the past two decades an alternative to SPS has emerged in the form of transcatheter ductal artery stenting (DAS). While many reports have indicated safety and durability of the DAS approach, few studies compare outcomes between DAS and SPS. The reports that do exist are comprised primarily of small-cohort single-center reviews. Two multicenter retrospective studies suggest that DAS is associated with similar or superior survival compared to SPS. These studies offer the best evidence to-date, and yet both have important limitations. The authors describe herein the rationale and design of the COMPASS (COmparison of Methods for Pulmonary blood flow Augmentation: Shunt vs. Stent) Trial (NCT05268094, IDE G210212). The COMPASS Trial aims to randomize 236 neonates with DD-PBF to either DAS or SPS across approximately 27 pediatric centers in North America. The goal of this trial is to compare important clinical outcomes between DAS and SPS over the first year of life in a cohort of neonates balanced by randomization to assess whether one method of palliation demonstrates therapeutic superiority.
Assuntos
Cardiopatias Congênitas , Artéria Pulmonar , Circulação Pulmonar , Ensaios Clínicos Controlados Aleatórios como Assunto , Stents , Humanos , Cardiopatias Congênitas/fisiopatologia , Cardiopatias Congênitas/cirurgia , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/terapia , Resultado do Tratamento , Recém-Nascido , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/cirurgia , Fatores de Tempo , Cateterismo Cardíaco/instrumentação , Cateterismo Cardíaco/efeitos adversos , Estudos ProspectivosRESUMO
BACKGROUND: Atrioventricular valve regurgitation (AVVR) is a devastating complication in children and young adults with congenital heart disease (CHD), particularly in patients with single ventricle physiology. Transcatheter edge-to-edge repair (TEER) is a rapidly expanding, minimally invasive option for the treatment of AVVR in adults that avoids the morbidity and mortality associated with open heart surgery. However, application of TEER in in CHD and in children is quite novel. We describe the development of a peri-procedural protocol including image-derived pre-intervention simulation, with successful application to four patients. AIMS: To describe the initial experience using the MitraClip system for TEER of dysfunctional systemic atrioventricular valves in patients with congential heart disease within a pediatric hospital. METHODS: A standardized screening and planning process was developed using cardiac magnetic resonance imaging, three dimensional echocardiography and both virtual and physical simulation. Procedures were performed using the MitraClip G4 system and patients were clinically followed post-intervention. RESULTS: A series of four CHD patients with at least severe AVVR were screened for suitability for TEER with the MitraClip system: three patients had single ventricle physiology and Fontan palliation, and one had repair of a common atrioventricular canal defect. Each patient had at least severe systemic AVVR and was considered at prohibitively high risk for surgical repair. Each patient underwent a standardized preprocedural screening protocol and image-derived modeling followed by the TEER procedure with successful clip placement at the intended location in all cases. CONCLUSIONS: The early results of our protocolized efforts to introduce TEER repair of severe AV valve regurgitation with MitraClip into the CHD population within our institution are encouraging. Further investigations of the use of TEER in this challenging population are warranted.
Assuntos
Técnica de Fontan , Cardiopatias Congênitas , Defeitos dos Septos Cardíacos , Implante de Prótese de Valva Cardíaca , Insuficiência da Valva Mitral , Criança , Humanos , Hospitais Pediátricos , Resultado do Tratamento , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/cirurgia , Defeitos dos Septos Cardíacos/cirurgia , Técnica de Fontan/efeitos adversos , Técnica de Fontan/métodos , Implante de Prótese de Valva Cardíaca/efeitos adversos , Implante de Prótese de Valva Cardíaca/métodos , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/cirurgiaRESUMO
We describe the safe and effective percutaneous pulmonary thrombectomy in an 18-year-old female with a Fontan circulation using the FlowTriever® device (Inari Medical®, Irvine, US). Aspiration thrombectomy of both pulmonary arteries was performed using 24 and 16 F FlowTriever® catheters retrieving large amounts of thrombus material resulting in near total angiographic recanalization.
Assuntos
Técnica de Fontan , Artéria Pulmonar , Trombectomia , Humanos , Adolescente , Feminino , Técnica de Fontan/efeitos adversos , Trombectomia/instrumentação , Resultado do Tratamento , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/cirurgia , Sucção , Desenho de Equipamento , Embolia Pulmonar/diagnóstico por imagem , Embolia Pulmonar/terapia , Embolia Pulmonar/fisiopatologia , Embolia Pulmonar/cirurgia , Embolia Pulmonar/etiologia , Cardiopatias Congênitas/cirurgia , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/fisiopatologia , Dispositivos de Acesso VascularRESUMO
Patients with functionally univentricular hearts are usually palliated surgically. There have been several reports of successful attempts to complete the Fontan procedure without surgery. The pathways created at the time of the preconditioning were largely reminiscent of the lateral tunnel Fontan. However, this approach is still confidentially limited to a small number of centers. In 2013, we designed a circuit that mimics the actual surgical technique of extracardiac total cavopulmonary connection to allow for transcatheter completion in an animal study. A polytetrafluoroethylene conduit was connected between the pulmonary artery and the inferior vena cava (IVC). The superior anastomosis was occluded to avoid flow between IVC and superior vena cava (SVC). The conduit was connected to the right atrium (RA) and a large fenestration was created to allow free flow from the IVC to the RA. Extrapolating our approach, a center reported the successful transcatheter completion of an extracardiac Fontan in a 6-year-old child. However, this technique is not directly transposable to our population of patients who require preconditioning in infancy. We report here an innovative extension of this technique that may allow preparing patients in infancy, ideally at the time of the Glenn in the future, to receive an extracardiac Fontan at 2 years/11 kg without additional surgery.
Assuntos
Cateterismo Cardíaco , Técnica de Fontan , Cardiopatias Congênitas , Técnica de Fontan/efeitos adversos , Cateterismo Cardíaco/instrumentação , Humanos , Cardiopatias Congênitas/cirurgia , Cardiopatias Congênitas/fisiopatologia , Cardiopatias Congênitas/diagnóstico por imagem , Artéria Pulmonar/cirurgia , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/diagnóstico por imagem , Veia Cava Inferior/diagnóstico por imagem , Veia Cava Inferior/cirurgia , Veia Cava Inferior/fisiopatologia , Politetrafluoretileno , Coração Univentricular/cirurgia , Coração Univentricular/fisiopatologia , Coração Univentricular/diagnóstico por imagem , Desenho de Prótese , Resultado do Tratamento , Hemodinâmica , Animais , Prótese VascularRESUMO
OBJECTIVES: Assessment of myocardial strain by feature tracking magnetic resonance imaging (FT-MRI) in human fetuses with and without congenital heart disease (CHD) using cardiac Doppler ultrasound (DUS) gating. METHODS: A total of 43 human fetuses (gestational age 28-41 weeks) underwent dynamic cardiac MRI at 3 T. Cine balanced steady-state free-precession imaging was performed using fetal cardiac DUS gating. FT-MRI was analyzed using dedicated post-processing software. Endo- and epicardial contours were manually delineated from fetal cardiac 4-chamber views, followed by automated propagation to calculate global longitudinal strain (GLS) of the left (LV) and right ventricle (RV), LV radial strain, and LV strain rate. RESULTS: Strain assessment was successful in 38/43 fetuses (88%); 23 of them had postnatally confirmed diagnosis of CHD (e.g., coarctation, transposition of great arteries) and 15 were heart healthy. Five fetuses were excluded due to reduced image quality. In fetuses with CHD compared to healthy controls, median LV GLS (- 13.2% vs. - 18.9%; p < 0.007), RV GLS (- 7.9% vs. - 16.2%; p < 0.006), and LV strain rate (1.4 s-1 vs. 1.6 s-1; p < 0.003) were significantly higher (i.e., less negative). LV radial strain was without a statistically significant difference (20.7% vs. 22.6%; p = 0.1). Bivariate discriminant analysis for LV GLS and RV GLS revealed a sensitivity of 67% and specificity of 93% to differentiate between fetuses with CHD and healthy fetuses. CONCLUSION: Myocardial strain was successfully assessed in the human fetus, performing dynamic fetal cardiac MRI with DUS gating. Our study indicates that strain parameters may allow for differentiation between fetuses with and without CHD. CLINICAL RELEVANCE STATEMENT: Myocardial strain analysis by cardiac MRI with Doppler ultrasound gating and feature tracking may provide a new diagnostic approach for evaluation of fetal cardiac function in congenital heart disease. KEY POINTS: ⢠MRI myocardial strain analysis has not been performed in human fetuses so far. ⢠Myocardial strain was assessed in human fetuses using cardiac MRI with Doppler ultrasound gating. ⢠MRI myocardial strain may provide a new diagnostic approach to evaluate fetal cardiac function.
Assuntos
Coração Fetal , Cardiopatias Congênitas , Humanos , Feminino , Gravidez , Cardiopatias Congênitas/diagnóstico por imagem , Coração Fetal/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Técnicas de Imagem de Sincronização Cardíaca/métodosRESUMO
Percutaneous transhepatic lymphatic embolization (PTLE) and peroral esophagogastroduodenoscopy (EGD) duodenal mucosal radiofrequency (RF) ablation were performed to manage protein-losing enteropathy (PLE) in patients with congenital heart disease. Five procedures were performed in 4 patients (3 men and 1 woman; median age, 49 years; range, 31-71 years). Transhepatic lymphangiography demonstrated abnormal periduodenal lymphatic channels. After methylene blue injection through transhepatic access, subsequent EGD evaluation showed methylene blue extravasation at various sites in the duodenal mucosa. Endoscopic RF ablation of the leakage sites followed by PTLE using 3:1 ethiodized oil-to-n-butyl cyanoacrylate glue ratio resulted in improved symptoms and serum albumin levels (before procedure, 2.6 g/dL [SD ± 0.2]; after procedure, 3.5 g/dL [SD ± 0.4]; P = .004) over a median follow-up of 16 months (range, 5-20 months). Transhepatic lymphangiography and methylene blue injection with EGD evaluation of the duodenal mucosa can help diagnose PLE. Combined PTLE and EGD-RF ablation is an option to treat patients with PLE.
Assuntos
Duodeno , Embolização Terapêutica , Mucosa Intestinal , Linfografia , Enteropatias Perdedoras de Proteínas , Humanos , Enteropatias Perdedoras de Proteínas/terapia , Enteropatias Perdedoras de Proteínas/etiologia , Enteropatias Perdedoras de Proteínas/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Resultado do Tratamento , Duodeno/diagnóstico por imagem , Duodeno/irrigação sanguínea , Mucosa Intestinal/diagnóstico por imagem , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/cirurgia , Cardiopatias Congênitas/terapia , Embucrilato/administração & dosagem , Ablação por Radiofrequência , Óleo Etiodado/administração & dosagem , Endoscopia do Sistema Digestório , Terapia Combinada , Azul de Metileno/administração & dosagem , Vasos Linfáticos/diagnóstico por imagemRESUMO
PURPOSE OF REVIEW: Speckle tracking echocardiography (STE)-derived measures of myocardial mechanics, referred to herewithin as strain measurements, directly assess myocardial contractility and provide a nuanced assessment of ventricular function. This review provides an overview of strain measurements and their current clinical value and utility in decision making in pediatric cardiology. RECENT FINDINGS: Strain measurements are advancing understanding of how cardiac dysfunction occurs in children with acquired and congenital heart disease (CHD). Global strain measurements can detect early changes in cardiac function and are reliable methods of serially monitoring systolic function in children. Global strain measurements are increasingly reported in echocardiographic assessment of ventricular function alongside ejection fraction. Research is increasingly focused on how strain measurements can help improve clinical management, risk stratification, and prognostic insight. Although more research is needed, preliminary studies provide hope that there will be clinical benefit for strain in pediatric cardiology management. SUMMARY: Strain measurements provide a more detailed assessment of ventricular function than conventional measures of echocardiographic functional assessment. Strain measurements are increasingly being used to advance understanding of normal and abnormal myocardial contractility, to increase sensitivity to detect early cardiac dysfunction, and to improve prognostic management in children with acquired and CHD.
Assuntos
Tomada de Decisão Clínica , Ecocardiografia , Cardiopatias Congênitas , Humanos , Criança , Ecocardiografia/métodos , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/fisiopatologia , Contração Miocárdica/fisiologia , Prognóstico , Cardiopatias/diagnóstico por imagem , Cardiopatias/fisiopatologiaRESUMO
BACKGROUND: Free-running cardiac and respiratory motion-resolved whole-heart five-dimensional (5D) cardiovascular magnetic resonance (CMR) can reduce scan planning and provide a means of evaluating respiratory-driven changes in clinical parameters of interest. However, respiratory-resolved imaging can be limited by user-defined parameters which create trade-offs between residual artifact and motion blur. In this work, we develop and validate strategies for both correction of intra-bin and compensation of inter-bin respiratory motion to improve the quality of 5D CMR. METHODS: Each component of the reconstruction framework was systematically validated and compared to the previously established 5D approach using simulated free-running data (N = 50) and a cohort of 32 patients with congenital heart disease. The impact of intra-bin respiratory motion correction was evaluated in terms of image sharpness while inter-bin respiratory motion compensation was evaluated in terms of reconstruction error, compression of respiratory motion, and image sharpness. The full reconstruction framework (intra-acquisition correction and inter-acquisition compensation of respiratory motion [IIMC] 5D) was evaluated in terms of image sharpness and scoring of image quality by expert reviewers. RESULTS: Intra-bin motion correction provides significantly (p < 0.001) sharper images for both simulated and patient data. Inter-bin motion compensation results in significant (p < 0.001) lower reconstruction error, lower motion compression, and higher sharpness in both simulated (10/11) and patient (9/11) data. The combined framework resulted in significantly (p < 0.001) sharper IIMC 5D reconstructions (End-expiration (End-Exp): 0.45 ± 0.09, End-inspiration (End-Ins): 0.46 ± 0.10) relative to the previously established 5D implementation (End-Exp: 0.43 ± 0.08, End-Ins: 0.39 ± 0.09). Similarly, image scoring by three expert reviewers was significantly (p < 0.001) higher using IIMC 5D (End-Exp: 3.39 ± 0.44, End-Ins: 3.32 ± 0.45) relative to 5D images (End-Exp: 3.02 ± 0.54, End-Ins: 2.45 ± 0.52). CONCLUSION: The proposed IIMC reconstruction significantly improves the quality of 5D whole-heart MRI. This may be exploited for higher resolution or abbreviated scanning. Further investigation of the diagnostic impact of this framework and comparison to gold standards is needed to understand its full clinical utility, including exploration of respiratory-driven changes in physiological measurements of interest.
Assuntos
Artefatos , Cardiopatias Congênitas , Interpretação de Imagem Assistida por Computador , Valor Preditivo dos Testes , Humanos , Reprodutibilidade dos Testes , Feminino , Masculino , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/fisiopatologia , Adulto , Adulto Jovem , Imageamento por Ressonância Magnética , Adolescente , Mecânica Respiratória , Técnicas de Imagem de Sincronização Respiratória , Criança , Pessoa de Meia-Idade , Respiração , Imagem Cinética por Ressonância MagnéticaRESUMO
BACKGROUND: Cardiovascular magnetic resonance (CMR) is an important imaging modality for the assessment and management of adult patients with congenital heart disease (CHD). However, conventional techniques for three-dimensional (3D) whole-heart acquisition involve long and unpredictable scan times and methods that accelerate scans via k-space undersampling often rely on long iterative reconstructions. Deep-learning-based reconstruction methods have recently attracted much interest due to their capacity to provide fast reconstructions while often outperforming existing state-of-the-art methods. In this study, we sought to adapt and validate a non-rigid motion-corrected model-based deep learning (MoCo-MoDL) reconstruction framework for 3D whole-heart MRI in a CHD patient cohort. METHODS: The previously proposed deep-learning reconstruction framework MoCo-MoDL, which incorporates a non-rigid motion-estimation network and a denoising regularization network within an unrolled iterative reconstruction, was trained in an end-to-end manner using 39 CHD patient datasets. Once trained, the framework was evaluated in eight CHD patient datasets acquired with seven-fold prospective undersampling. Reconstruction quality was compared with the state-of-the-art non-rigid motion-corrected patch-based low-rank reconstruction method (NR-PROST) and against reference images (acquired with three-or-four-fold undersampling and reconstructed with NR-PROST). RESULTS: Seven-fold undersampled scan times were 2.1 ± 0.3 minutes and reconstruction times were â¼30 seconds, approximately 240 times faster than an NR-PROST reconstruction. Image quality comparable to the reference images was achieved using the proposed MoCo-MoDL framework, with no statistically significant differences found in any of the assessed quantitative or qualitative image quality measures. Additionally, expert image quality scores indicated the MoCo-MoDL reconstructions were consistently of a higher quality than the NR-PROST reconstructions of the same data, with the differences in 12 of the 22 scores measured for individual vascular structures found to be statistically significant. CONCLUSION: The MoCo-MoDL framework was applied to an adult CHD patient cohort, achieving good quality 3D whole-heart images from â¼2-minute scans with reconstruction times of â¼30 seconds.
Assuntos
Aprendizado Profundo , Cardiopatias Congênitas , Interpretação de Imagem Assistida por Computador , Valor Preditivo dos Testes , Humanos , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/fisiopatologia , Reprodutibilidade dos Testes , Adulto , Masculino , Feminino , Adulto Jovem , Imageamento Tridimensional , Fatores de Tempo , Imageamento por Ressonância Magnética , Imagem Cinética por Ressonância MagnéticaRESUMO
Cardiovascular magnetic resonance (CMR) has become the reference standard for quantitative and qualitative assessment of ventricular function, blood flow, and myocardial tissue characterization. There is a preponderance of large CMR studies and registries in adults; However, similarly powered studies are lacking for the pediatric and congenital heart disease (PCHD) population. To date, most CMR studies in children are limited to small single or multicenter studies, thereby limiting the conclusions that can be drawn. Within the PCHD CMR community, a collaborative effort has been successfully employed to recognize knowledge gaps with the aim to embolden the development and initiation of high-quality, large-scale multicenter research. In this publication, we highlight the underlying challenges and provide a practical guide toward the development of larger, multicenter initiatives focusing on PCHD populations, which can serve as a model for future multicenter efforts.
Assuntos
Cardiopatias Congênitas , Estudos Multicêntricos como Assunto , Valor Preditivo dos Testes , Humanos , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/fisiopatologia , Criança , Big Data , Imageamento por Ressonância Magnética , Projetos de Pesquisa , Fatores Etários , Adolescente , Pré-EscolarRESUMO
BACKGROUND: Three dimensional, whole-heart (3DWH) MRI is an established non-invasive imaging modality in patients with congenital heart disease (CHD) for the diagnosis of cardiovascular morphology and for clinical decision making. Current techniques utilise diaphragmatic navigation (dNAV) for respiratory motion correction and gating and are frequently limited by long acquisition times. This study proposes and evaluates the diagnostic performance of a respiratory gating-free framework, which considers respiratory image-based navigation (iNAV), and highly accelerated variable density Cartesian sampling in concert with non-rigid motion correction and low-rank patch-based denoising (iNAV-3DWH-PROST). The method is compared to the clinical dNAV-3DWH sequence in adult patients with CHD. METHODS: In this prospective single center study, adult patients with CHD who underwent the clinical dNAV-3DWH MRI were also scanned with the iNAV-3DWH-PROST. Diagnostic confidence (4-point Likert scale) and diagnostic accuracy for common cardiovascular lesions was assessed by three readers. Scan times and diagnostic confidence were compared using the Wilcoxon-signed rank test. Co-axial vascular dimensions at three anatomic landmarks were measured, and agreement between the research and the corresponding clinical sequence was assessed with Bland-Altman analysis. RESULTS: The study included 60 participants (mean age ± [SD]: 33 ± 14 years; 36 men). The mean acquisition time of iNAV-3DWH-PROST was significantly lower compared with the conventional clinical sequence (3.1 ± 0.9 min vs 13.9 ± 3.9 min, p < 0.0001). Diagnostic confidence was higher for the iNAV-3DWH-PROST sequence compared with the clinical sequence (3.9 ± 0.2 vs 3.4 ± 0.8, p < 0.001), however there was no significant difference in diagnostic accuracy. Narrow limits of agreement and mean bias less than 0.08 cm were found between the research and the clinical vascular measurements. CONCLUSIONS: The iNAV-3DWH-PROST framework provides efficient, high quality and robust 3D whole-heart imaging in significantly shorter scan time compared to the standard clinical sequence.
Assuntos
Cardiopatias Congênitas , Imageamento Tridimensional , Valor Preditivo dos Testes , Humanos , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/fisiopatologia , Masculino , Adulto , Estudos Prospectivos , Feminino , Reprodutibilidade dos Testes , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , RespiraçãoRESUMO
AIMS: Common to adult electrophysiology studies (EPSs), intracardiac echocardiography (ICE) use in paediatric and congenital heart disease (CHD) EPS is limited. The purpose of this study was to assess the efficacy of ICE use and incidence of associated complications in paediatric and CHD EPS. METHODS AND RESULTS: This single-centre retrospective matched cohort study reviewed EPS between 2013 and 2022. Demographics, CHD type, and EPS data were collected. Intracardiac echocardiography cases were matched 1:1 to no ICE controls to assess differences in complications, ablation success, fluoroscopy exposure, procedure duration, and arrhythmia recurrence. Cases and controls with preceding EPS within 5 years were excluded. Intracardiac echocardiography cases without an appropriate match were excluded from comparative analyses but included in the descriptive cohort. We performed univariable and multivariable logistic regression to assess associations between variables and outcomes. A total of 335 EPS were reviewed, with ICE used in 196. The median age of ICE cases was 15 [interquartile range (IQR) 12-17; range 3-47] years, and median weight 57 [IQR 45-71; range 15-134] kg. There were no ICE-related acute or post-procedural complications. There were 139 ICE cases matched to no ICE controls. Baseline demographics and anthropometrics were similar between cases and controls. Fluoroscopy exposure (P = 0.02), procedure duration (P = 0.01), and arrhythmia recurrence (P = 0.01) were significantly lower in ICE cases. CONCLUSION: Intracardiac echocardiography in paediatric and CHD ablations is safe and reduces procedure duration, fluoroscopy exposure, and arrhythmia recurrence. However, not every arrhythmia substrate requires ICE use. Thoughtful selection will ensure the judicious and strategic application of ICE to enhance outcomes.
Assuntos
Ablação por Cateter , Cardiopatias Congênitas , Adulto , Humanos , Criança , Estudos Retrospectivos , Estudos de Coortes , Resultado do Tratamento , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/cirurgia , Ecocardiografia/métodos , Fluoroscopia , Ablação por Cateter/efeitos adversos , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/cirurgiaRESUMO
RASopathies are a heterogeneous group of genetic syndromes caused by germline mutations in a group of genes that encode components or regulators of the Ras/mitogen-activated protein kinase (MAPK) signaling pathway. RASopathies include neurofibromatosis type 1, Legius syndrome, Noonan syndrome, Costello syndrome, cardiofaciocutaneous syndrome, central conducting lymphatic anomaly, and capillary malformation-arteriovenous malformation syndrome. These disorders are grouped together as RASopathies based on our current understanding of the Ras/MAPK pathway. Abnormal activation of the Ras/MAPK pathway plays a major role in development of RASopathies. The individual disorders of RASopathies are rare, but collectively they are the most common genetic condition (one in 1000 newborns). Activation or dysregulation of the common Ras/MAPK pathway gives rise to overlapping clinical features of RASopathies, involving the cardiovascular, lymphatic, musculoskeletal, cutaneous, and central nervous systems. At the same time, there is much phenotypic variability in this group of disorders. Benign and malignant tumors are associated with certain disorders. Recently, many institutions have established multidisciplinary RASopathy clinics to address unique therapeutic challenges for patients with RASopathies. Medications developed for Ras/MAPK pathway-related cancer treatment may also control the clinical symptoms due to an abnormal Ras/MAPK pathway in RASopathies. Therefore, radiologists need to be aware of the concept of RASopathies to participate in multidisciplinary care. As with the clinical manifestations, imaging features of RASopathies are overlapping and at the same time diverse. As an introduction to the concept of RASopathies, the authors present major representative RASopathies, with emphasis on their imaging similarities and differences. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.
Assuntos
Síndrome de Costello , Displasia Ectodérmica , Cardiopatias Congênitas , Síndrome de Noonan , Recém-Nascido , Humanos , Síndrome de Noonan/diagnóstico por imagem , Síndrome de Noonan/genética , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/genética , Displasia Ectodérmica/diagnóstico por imagem , Displasia Ectodérmica/genética , RadiologistasRESUMO
OBJECTIVES: Despite nearly universal prenatal ultrasound screening programs, congenital heart defects (CHD) are still missed, which may result in severe morbidity or even death. Deep machine learning (DL) can automate image recognition from ultrasound. The main aim of this study was to assess the performance of a previously developed DL model, trained on images from a tertiary center, using fetal ultrasound images obtained during the second-trimester standard anomaly scan in a low-risk population. A secondary aim was to compare initial screening diagnosis, which made use of live imaging at the point-of-care, with diagnosis by clinicians evaluating only stored images. METHODS: All pregnancies with isolated severe CHD in the Northwestern region of The Netherlands between 2015 and 2016 with available stored images were evaluated, as well as a sample of normal fetuses' examinations from the same region and time period. We compared the accuracy of the initial clinical diagnosis (made in real time with access to live imaging) with that of the model (which had only stored imaging available) and with the performance of three blinded human experts who had access only to the stored images (like the model). We analyzed performance according to ultrasound study characteristics, such as duration and quality (scored independently by investigators), number of stored images and availability of screening views. RESULTS: A total of 42 normal fetuses and 66 cases of isolated CHD at birth were analyzed. Of the abnormal cases, 31 were missed and 35 were detected at the time of the clinical anatomy scan (sensitivity, 53%). Model sensitivity and specificity were 91% and 78%, respectively. Blinded human experts (n = 3) achieved mean ± SD sensitivity and specificity of 55 ± 10% (range, 47-67%) and 71 ± 13% (range, 57-83%), respectively. There was a statistically significant difference in model correctness according to expert-graded image quality (P = 0.03). The abnormal cases included 19 lesions that the model had not encountered during its training; the model's performance in these cases (16/19 correct) was not statistically significantly different from that for previously encountered lesions (P = 0.41). CONCLUSIONS: A previously trained DL algorithm had higher sensitivity than initial clinical assessment in detecting CHD in a cohort in which over 50% of CHD cases were initially missed clinically. Notably, the DL algorithm performed well on community-acquired images in a low-risk population, including lesions to which it had not been exposed previously. Furthermore, when both the model and blinded human experts had access to only stored images and not the full range of images available to a clinician during a live scan, the model outperformed the human experts. Together, these findings support the proposition that use of DL models can improve prenatal detection of CHD. © 2023 International Society of Ultrasound in Obstetrics and Gynecology.
Assuntos
Aprendizado Profundo , Cardiopatias Congênitas , Feminino , Recém-Nascido , Gravidez , Humanos , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/epidemiologia , Diagnóstico Pré-Natal/métodos , Ultrassonografia Pré-Natal/métodos , Sensibilidade e EspecificidadeRESUMO
OBJECTIVE: Fetuses with single ventricle physiology (SVP) exhibit reductions in fetal cerebral oxygenation, with associated delays in fetal brain growth and neurodevelopmental outcomes. Maternal supplemental oxygen (MSO) has been proposed to improve fetal brain growth, but current evidence on dosing, candidacy and outcomes is limited. In this pilot study, we evaluated the safety and feasibility of continuous low-dose MSO in the setting of SVP. METHODS: This single-center, open-label, pilot phase-1 safety and feasibility clinical trial included 25 pregnant individuals with a diagnosis of fetal SVP. Participants self-administered continuous MSO using medical-grade oxygen concentrators for up to 24 h per day from the second half of gestation until delivery. The primary aim was the evaluation of the safety profile and feasibility of MSO. A secondary preliminary analysis was performed to assess the impact of MSO on the fetal circulation using echocardiography and late-gestation cardiovascular magnetic resonance imaging. Early outcomes were assessed, including perinatal growth and preoperative brain injury, and neurodevelopmental outcomes were assessed at 18 months using the Bayley Scales of Infant and Toddler Development 3rd edition, and compared with those of a contemporary fetal SVP cohort (n = 217) that received the normal standard of care (SOC). RESULTS: Among the 25 participants, the median maternal age at conception was 35 years, and fetal SVP diagnoses included 16 with right ventricle dominant, eight with left ventricle dominant and one with indeterminate ventricular morphology. Participants started the trial at approximately 29 + 2 weeks' gestation and self-administered MSO for a median of 16.1 h per day for 63 days, accumulating a median of 1029 h of oxygen intake from enrolment until delivery. The only treatment-associated adverse events were nasal complications that were resolved typically by attaching a humidifier unit to the oxygen concentrator. No premature closure of the ductus arteriosus or unexpected fetal demise was observed. In the secondary analysis, MSO was not associated with any changes in fetal growth, middle cerebral artery pulsatility index, cerebroplacental ratio or head-circumference-to-abdominal-circumference ratio Z-scores over gestation compared with SOC. Although MSO was associated with changes in umbilical artery pulsatility index Z-score over the study period compared with SOC (P = 0.02), this was probably due to initial baseline differences in placental resistance. At late-gestation cardiovascular magnetic resonance imaging, MSO was not associated with an increase in fetal cerebral oxygen delivery. Similarly, no differences were observed in neonatal outcomes, including preoperative brain weight Z-score and brain injury, mortality by 18 months of age and neurodevelopmental outcomes at 18 months of age. CONCLUSIONS: This pilot phase-1 clinical trial indicates that low-dose MSO therapy is safe and well tolerated in pregnancies diagnosed with fetal SVP. However, our protocol was not associated with an increase in fetal cerebral oxygen delivery or improvements in early neurological or neurodevelopmental outcomes. © 2024 International Society of Ultrasound in Obstetrics and Gynecology.