Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 714, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048950

RESUMO

BACKGROUND: Elaeocarpus spp. stem blight, caused by Pseudocryphonectria elaeocarpicola, is a destructive disease, which will significantly reduce the productivity and longevity of Elaeocarpus spp. plants, especially in the Guangdong Province of China. However, few information is available for P. elaeocarpicola. To unravel the potential adaptation mechanism of stem adaptation, the whole genome of P. elaeocarpicola was sequenced by using the DNBSEQ and PacBio platforms. RESULTS: P. elaeocarpicola harbors 44.49 Mb genome with 10,894 predicted coding genes. Genome analysis revealed that the P. elaeocarpicola genome encodes a plethora of pathogenicity-related genes. Analysis of carbohydrate-active enzymes (CAZymes) revealed a rich variety of enzymes participated in plant cell wall degradation, which could effectively degrade cellulose, hemicellulose and xyloglucans in the plant cell wall and promote the invasion of the host plant. There are 213 CAZyme families found in P. elaeocarpicola, among which glycoside hydrolase (GH) family has the largest number, far exceeding other tested fungi by 53%. Besides, P. elaeocarpicola has twice as many genes encoding chitin and cellulose degradation as Cryphonectria parasitica, which belong to the same family. The predicted typical secreted proteins of P. elaeocarpicola are numerous and functional, including many known virulence effector factors, indicating that P. elaeocarpicola has great potential to secrete virulence effectors to promote pathogenicity on host plants. AntiSMASH revealed that the genome encoded 61 secondary metabolic gene clusters including 86 secondary metabolic core genes which was much higher than C. parasitica (49). Among them, two gene cluster of P. elaeocarpicola, cluster12 and cluster52 showed 100% similarity with the mycotoxins synthesis clusters from Aspergillus steynii and Alternaria alternata, respectively. In addition, we annotated cytochrome P450 related enzymes, transporters, and transcription factors in P. elaeocarpicola, which are important virulence determinants of pathogenic fungi. CONCLUSIONS: Taken together, our study represents the first genome assembly for P. elaeocarpicola and reveals the key virulence factors in the pathogenic process of P. elaeocarpicola, which will promote our understanding of its pathogenic mechanism. The acquired knowledge lays a foundation for further exploration of molecular interactions with the host and provide target for management strategies in future research.


Assuntos
Ascomicetos , Genoma Fúngico , Doenças das Plantas , Ascomicetos/genética , Ascomicetos/patogenicidade , Doenças das Plantas/microbiologia , Casca de Planta/microbiologia , Filogenia , Adaptação Fisiológica/genética , Sequenciamento Completo do Genoma
2.
BMC Plant Biol ; 24(1): 488, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825683

RESUMO

BACKGROUND: The periderm is basic for land plants due to its protective role during radial growth, which is achieved by the polymers deposited in the cell walls. In most trees, like holm oak, the first periderm is frequently replaced by subsequent internal periderms yielding a heterogeneous outer bark made of a mixture of periderms and phloem tissues, known as rhytidome. Exceptionally, cork oak forms a persistent or long-lived periderm which results in a homogeneous outer bark of thick phellem cell layers known as cork. Cork oak and holm oak distribution ranges overlap to a great extent, and they often share stands, where they can hybridize and produce offspring showing a rhytidome-type bark. RESULTS: Here we use the outer bark of cork oak, holm oak, and their natural hybrids to analyse the chemical composition, the anatomy and the transcriptome, and further understand the mechanisms underlying periderm development. We also include a unique natural hybrid individual corresponding to a backcross with cork oak that, interestingly, shows a cork-type bark. The inclusion of hybrid samples showing rhytidome-type and cork-type barks is valuable to approach cork and rhytidome development, allowing an accurate identification of candidate genes and processes. The present study underscores that abiotic stress and cell death are enhanced in rhytidome-type barks whereas lipid metabolism and cell cycle are enriched in cork-type barks. Development-related DEGs showing the highest expression, highlight cell division, cell expansion, and cell differentiation as key processes leading to cork or rhytidome-type barks. CONCLUSION: Transcriptome results, in agreement with anatomical and chemical analyses, show that rhytidome and cork-type barks are active in periderm development, and suberin and lignin deposition. Development and cell wall-related DEGs suggest that cell division and expansion are upregulated in cork-type barks whereas cell differentiation is enhanced in rhytidome-type barks.


Assuntos
Casca de Planta , Quercus , Quercus/genética , Quercus/crescimento & desenvolvimento , Casca de Planta/genética , Casca de Planta/química , Casca de Planta/metabolismo , Transcriptoma , Hibridização Genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Lipídeos
3.
BMC Plant Biol ; 24(1): 383, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724888

RESUMO

Taxus chinensis (Taxus cuspidata Sieb. et Zucc.) is a traditional medicinal plant known for its anticancer substance paclitaxel, and its growth age is also an important factor affecting its medicinal value. However, how age affects the physiological and metabolic characteristics and active substances of T. chinensis is still unclear. In this study, carbon and nitrogen accumulation, contents of active substances and changes in primary metabolites in barks and annual leaves of T. chinensis of different diameter classes were investigated by using diameter classes instead of age. The results showed that leaves and barks of small diameter class (D1) had higher content of non-structural carbohydrates and C, which were effective in enhancing defense capacity, while N content was higher in medium (D2) and large diameter classes (D3). Active substances such as paclitaxel, baccatin III and cephalomannine also accumulated significantly in barks of large diameter classes. Moreover, 21 and 25 differential metabolites were identified in leaves and barks of different diameter classes, respectively. The differential metabolites were enhanced the TCA cycle and amino acid biosynthesis, accumulate metabolites such as organic acids, and promote the synthesis and accumulation of active substances such as paclitaxel in the medium and large diameter classes. These results revealed the carbon and nitrogen allocation mechanism of different diameter classes of T. chinensis, and its relationship with medicinal components, providing a guidance for the harvesting and utilization of wild T. chinensis.


Assuntos
Carbono , Metabolômica , Nitrogênio , Folhas de Planta , Taxus , Taxus/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Folhas de Planta/metabolismo , Casca de Planta/metabolismo , Casca de Planta/química
4.
BMC Plant Biol ; 24(1): 84, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308239

RESUMO

BACKGROUND: Cinnamomum cassia Presl, classified in the Lauraceae family, is widely used as a spice, but also in medicine, cosmetics, and food. Aroma is an important factor affecting the medicinal and flavoring properties of C. cassia, and is mainly determined by volatile organic compounds (VOCs); however, little is known about the composition of aromatic VOCs in C. cassia and their potential molecular regulatory mechanisms. Here, integrated transcriptomic and volatile metabolomic analyses were employed to provide insights into the formation regularity of aromatic VOCs in C. cassia bark at five different harvesting times. RESULTS: The bark thickness and volatile oil content were significantly increased along with the development of the bark. A total of 724 differentially accumulated volatiles (DAVs) were identified in the bark samples, most of which were terpenoids. Venn analysis of the top 100 VOCs in each period showed that twenty-eight aromatic VOCs were significantly accumulated in different harvesting times. The most abundant VOC, cinnamaldehyde, peaked at 120 months after planting (MAP) and dominated the aroma qualities. Five terpenoids, α-copaene, ß-bourbonene, α-cubebene, α-funebrene, and δ-cadinene, that peaked at 240 MAP could also be important in creating C. cassia's characteristic aroma. A list of 43,412 differentially expressed genes (DEGs) involved in the biosynthetic pathways of aromatic VOCs were identified, including phenylpropanoids, mevalonic acid (MVA) and methylerythritol phosphate (MEP). A gene-metabolite regulatory network for terpenoid and phenylpropanoid metabolism was constructed to show the key candidate structural genes and transcription factors involved in the biosynthesis of terpenoids and phenylpropanoids. CONCLUSIONS: The results of our research revealed the composition and changes of aromatic VOCs in C. cassia bark at different harvesting stages, differentiated the characteristic aroma components of cinnamon, and illuminated the molecular mechanism of aroma formation. These foundational results will provide technical guidance for the quality breeding of C. cassia.


Assuntos
Cinnamomum aromaticum , Cinnamomum aromaticum/química , Casca de Planta/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Terpenos/análise
5.
Planta ; 259(6): 138, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687380

RESUMO

MAIN CONCLUSION: The identification of a functional cinnamoyl-CoA reductase enzyme from Cinnamomum cassia involved in trans-cinnamaldehyde biosynthesis offers the potential for enhancing trans-cinnamaldehyde production through genetic engineering. A significant accumulation of trans-cinnamaldehyde has been found in the bark tissues of C. cassia, used in traditional Chinese medicine. trans-Cinnamaldehyde exhibits various pharmacological properties such as anti-inflammatory, analgesic, and protection of the stomach and the digestive tract. However, further elucidation and characterization of the biosynthetic pathway for trans-cinnamaldehyde is required. In this study, we conducted an integrated analysis of trans-cinnamaldehyde accumulation profiles and transcriptomic data from five different C. cassia tissues to identify the genes involved in its biosynthesis. The transcriptome data we obtained included nearly all genes associated with the trans-cinnamaldehyde pathway, with the majority demonstrating high abundance in branch barks and trunk barks. We successfully cloned four C. cassia cinnamoyl-CoA reductases (CcCCRs), a key gene in trans-cinnamaldehyde biosynthesis. We found that the recombinant CcCCR1 protein was the only one that more efficiently converted cinnamoyl-CoA into trans-cinnamaldehyde. CcCCR1 exhibited approximately 14.7-fold higher catalytic efficiency (kcat/Km) compared to the Arabidopsis thaliana cinnamoyl-CoA reductase 1 (AtCCR1); therefore, it can be utilized for engineering higher trans-cinnamaldehyde production as previously reported. Molecular docking studies and mutagenesis experiments also validated the superior catalytic activity of CcCCR1 compared to AtCCR1. These findings provide valuable insights for the functional characterization of enzyme-coding genes and hold potential for future engineering of trans-cinnamaldehyde biosynthetic pathways.


Assuntos
Acroleína , Acroleína/análogos & derivados , Aldeído Oxirredutases , Cinnamomum aromaticum , Acroleína/metabolismo , Cinnamomum aromaticum/genética , Cinnamomum aromaticum/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Casca de Planta/genética , Casca de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
6.
New Phytol ; 242(3): 1000-1017, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433329

RESUMO

Drought affects the complex interactions between Norway spruce, the bark beetle Ips typographus and associated microorganisms. We investigated the interplay of tree water status, defense and carbohydrate reserves with the incidence of bark beetle attack and infection of associated fungi in mature spruce trees. We installed roofs to induce a 2-yr moderate drought in a managed spruce stand to examine a maximum of 10 roof and 10 control trees for resin flow (RF), predawn twig water potentials, terpene, phenolic and carbohydrate bark concentrations, and bark beetle borings in field bioassays before and after inoculation with Endoconidiophora polonica and Grosmannia penicillata. Drought-stressed trees showed more attacks and significantly longer fungal lesions than controls, but maintained terpene resin defenses at predrought levels. Reduced RF and lower mono- and diterpene, but not phenolic concentrations were linked with increased host selection. Bark beetle attack and fungi stimulated chemical defenses, yet G. penicillata reduced phenolic and carbohydrate contents. Chemical defenses did not decrease under mild, prolonged drought in our simulated small-scale biotic infestations. However, during natural mass attacks, reductions in carbon fixation under drought, in combination with fungal consumption of carbohydrates, may deplete tree defenses and facilitate colonization by I. typographus.


Assuntos
Besouros , Picea , Gorgulhos , Animais , Secas , Picea/microbiologia , Casca de Planta/química , Doenças das Plantas/microbiologia , Terpenos , Fenóis , Noruega , Água/análise , Carboidratos/análise
7.
New Phytol ; 243(1): 72-81, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703003

RESUMO

Woody plants display some photosynthetic activity in stems, but the biological role of stem photosynthesis and the specific contributions of bark and wood to carbon uptake and oxygen evolution remain poorly understood. We aimed to elucidate the functional characteristics of chloroplasts in stems of different ages in Fraxinus ornus. Our investigation employed diverse experimental approaches, including microsensor technology to assess oxygen production rates in whole stem, bark, and wood separately. Additionally, we utilized fluorescence lifetime imaging microscopy (FLIM) to characterize the relative abundance of photosystems I and II (PSI : PSII chlorophyll ratio) in bark and wood. Our findings revealed light-induced increases in O2 production in whole stem, bark, and wood. We present the radial profile of O2 production in F. ornus stems, demonstrating the capability of stem chloroplasts to perform light-dependent electron transport. Younger stems exhibited higher light-induced O2 production and dark respiration rates than older ones. While bark emerged as the primary contributor to net O2 production under light conditions, our data underscored that wood chloroplasts are also photosynthetically active. The FLIM analysis unveiled a lower PSI abundance in wood than in bark, suggesting stem chloroplasts are not only active but also acclimate to the spectral composition of light reaching inner compartments.


Assuntos
Luz , Oxigênio , Caules de Planta , Madeira , Caules de Planta/metabolismo , Caules de Planta/efeitos da radiação , Oxigênio/metabolismo , Madeira/metabolismo , Escuridão , Fraxinus/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Casca de Planta/metabolismo , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo
8.
Plant Cell Environ ; 47(5): 1439-1451, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38234202

RESUMO

The properties of bark and xylem contribute to tree growth and survival under drought and other types of stress conditions. However, little is known about the functional coordination of the xylem and bark despite the influence of selection on both structures in response to drought. To this end, we examined relationships between proportions of bark components (i.e. thicknesses of tissues outside the vascular cambium) and xylem transport properties in juvenile branches of five Cupressaceae species, focusing on transport efficiency and safety from hydraulic failure via drought-induced embolism. Both xylem efficiency and safety were correlated with multiple bark traits, suggesting that xylem transport and bark properties are coordinated. Specifically, xylem transport efficiency was greater in species with thicker secondary phloem, greater phloem-to-xylem thickness ratio and phloem-to-xylem cell number ratio. In contrast, species with thicker bark, living cortex and dead bark tissues were more resistant to embolism. Thicker phellem layers were associated with lower embolism resistance. Results of this study point to an important connection between xylem transport efficiency and phloem characteristics, which are shaped by the activity of vascular cambium. The link between bark and embolism resistance affirms the importance of both tissues to drought tolerance.


Assuntos
Cupressaceae , Embolia , Casca de Planta , Água/fisiologia , Xilema/fisiologia , Árvores/fisiologia , Secas
9.
Physiol Plant ; 176(2): e14250, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467566

RESUMO

The necrotrophic fungus Seiridium cardinale is the main responsible for Cypress Canker Disease (CCD), a pandemic affecting many Cupressaceae worldwide. The present study aims to elucidate the signalling of the early responses in the bark and foliage of CCD-susceptible and -resistant C. sempervirens clones to S. cardinale inoculation (SI and RI, respectively). In the bark of SI, a peaking production of ethylene (Et) and jasmonic acid (JA) occurred at 3 and 4 days post inoculation (dpi), respectively, suggesting an attempted plant response to the pathogen. A response that, however, was ineffective, as confirmed by the severe accumulation of malondialdehyde by-products at 13 dpi (i.e., lipid peroxidation). Differently, Et emission peaked in RI bark at 3 and 13 dpi, whereas abscisic acid (ABA) accumulated at 1, 4 and 13 dpi, resulting in a lower MDA accumulation (and unchanged levels of antioxidant capacity). In the foliage of SI, Et was produced at 1 and 9 dpi, whereas JA and salicylic acid (SA) accumulated at 1 and 3 dpi. Conversely, an increase of ABA and SA occurred at 1 dpi in the RI foliage. This outcome indicates that some of the observed metabolic alterations, mainly occurring as local defence mechanisms, might be able to gradually shift to a systemic resistance, although an accumulation of MDA was observed in both SI and RI foliage (but with an increased antioxidant capacity reported only in the resistant clone). We believe that the results reported here will be useful for the selection of clones able to limit the spread and damage of CCD.


Assuntos
Ascomicetos , Cupressus , Etilenos , Cupressus/metabolismo , Cupressus/microbiologia , Antioxidantes , Casca de Planta/metabolismo , Ácido Abscísico/metabolismo , Ácido Salicílico/metabolismo , Doenças das Plantas/microbiologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo
10.
J Nat Prod ; 87(4): 1023-1035, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38536967

RESUMO

The plant Goniothalamus leiocarpus of the Annonaceae family is used as an alternative medicine in tropical regions. Applying high-speed counter current chromatography (HSCCC), eight new bioactive styrylpyrone isomers, including 6R,7S,8R,2'S-goniolactone B (1), 6S,7S,8S,2'S-goniolactone B (2), 6R,7R,8R,2'S-goniolactone B (3), 6R,7S,8S,2'S-goniolactone C (4), 6R,7S,8R,2'S-goniolactone C (5), 6S,7R,8S,2'S-goniolactone C (6), and two positional isomers, 6R,7R,8R,2'S-goniolactone G (7) and 6S,7R,8R,2'S-goniolactone G (8), were isolated from a chloroform fraction (2.1 g) of G. leiocarpus, which had a prominent spot by TLC analysis. The structures of the new compounds were elucidated by MS, NMR, IR, and UV spectra, and their absolute configurations were determined by Mosher's method, ECD, and X-ray diffraction analysis. The isolates are characteristic components found in plants of the genus Goniothalamus and consist of two structural moieties: a styrylpyrone and a dihydroflavone unit. The isolation of the eight new compounds demonstrates the effectiveness of HSCCC in separating the isomers of natural styrylpyrone. In a bioactivity assessment, compounds 1 and 6 exhibited cytotoxic effects against the human colon carcinoma cell lines LS513 and SW620 with IC50 values ranging from 1.6 to 3.9 µM. Compounds 1, 2, 7, and 8 showed significant synergistic activity against antibiotic-resistant Staphylococcus aureus strains.


Assuntos
Goniothalamus , Casca de Planta , Pironas , Goniothalamus/química , Pironas/química , Pironas/farmacologia , Pironas/isolamento & purificação , Estrutura Molecular , Estereoisomerismo , Casca de Planta/química , Humanos , Distribuição Contracorrente/métodos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação
11.
J Nat Prod ; 87(8): 1941-1951, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39028935

RESUMO

In the search of new inhibitors for human coronavirus (HCoV), we screened extracts of endemic Annonaceae plants on an assay using a cellular model of Huh-7 cells infected with the human alphacoronavirus HCoV-229E. The EtOAc bark extract of the rare Southeast Asian plant Neo-uvaria foetida exhibited inhibition of HCoV-229E and SARS-CoV-2 viruses with IC50 values of 3.8 and 7.8 µg/mL, respectively. Using LC-MS/MS and molecular networking analysis guided isolation, we discovered two new labdane-type diterpenoids, 8-epi-acuminolide (1) and foetidalabdane A (4), and three known labdane diterpenoids, acuminolide (2), 17-O-acetylacuminolide (3), and spiroacuminolide (5). A new norlabdane diterpene, 16-foetinorlabdoic acid (6), was also isolated and identified. Excluding compounds 5 and 6, all other metabolites were active against the virus HCoV-229E. Terpenoids 1 and 4 presented antiviral activity against SARS-CoV-2 with IC50 values of 63.3 and 93.5 µM, respectively, indicating lower potency. Additionally, virological assays demonstrated that compounds 1, 2, and 3 exert antiviral effects against Zika virus by specifically interfering with the late stage of its infectious cycle with IC50 values of 76.0, 31.9, and 14.9 µM, respectively.


Assuntos
Annonaceae , Antivirais , Diterpenos , Casca de Planta , SARS-CoV-2 , Espectrometria de Massas em Tandem , Diterpenos/farmacologia , Diterpenos/química , Diterpenos/isolamento & purificação , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Casca de Planta/química , Humanos , Espectrometria de Massas em Tandem/métodos , SARS-CoV-2/efeitos dos fármacos , Annonaceae/química , Estrutura Molecular , Cromatografia Líquida/métodos , Espectrometria de Massa com Cromatografia Líquida
12.
J Nat Prod ; 87(6): 1628-1634, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38869194

RESUMO

The unfolded protein response (UPR) is a key component of fungal virulence. The prenylated xanthone γ-mangostin isolated from Garcinia mangostana (Clusiaceae) fruit pericarp, has recently been described to inhibit this fungal adaptative pathway. Considering that Calophyllum caledonicum (Calophyllaceae) is known for its high prenylated xanthone content, its stem bark extract was fractionated using a bioassay-guided procedure based on the cell-based anti-UPR assay. Four previously undescribed xanthone derivatives were isolated, caledonixanthones N-Q (3, 4, 8, and 12), among which compounds 3 and 8 showed promising anti-UPR activities with IC50 values of 11.7 ± 0.9 and 7.9 ± 0.3 µM, respectively.


Assuntos
Calophyllum , Resposta a Proteínas não Dobradas , Xantonas , Xantonas/farmacologia , Xantonas/química , Xantonas/isolamento & purificação , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Calophyllum/química , Estrutura Molecular , Humanos , Casca de Planta/química
13.
J Nat Prod ; 87(8): 2055-2067, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39101318

RESUMO

Unlike most common pentacyclic plant triterpenes, glutinol has a methyl group at position C-9 and a Δ5 double bond. At the same time, it lacks a methyl at C-10. These features significantly modify its chemical behavior compared to other triterpenes, particularly under oxidative conditions. Although the isolation of glutinol from various plant species has been documented, its chemistry remains largely unexplored. In this study, glutinol was isolated from the bark of Balfourodendron riedelianum as a starting material for top-down strategies of structural diversification, which included ring fusion, oxidation, aromatization, and ring cleavage reactions. Glutinol, together with a library of 22 derivatives, was evaluated for antifungal activity against three phytopathogenic Fusarium strains, F. solani, F. graminearum, and F. tucumaniae. Some of the derivatives displayed antifungal activity; in particular, compound 12, featuring a triazine ring, displayed the best fungicidal properties against F. solani and F. graminearum, while the ring B cleavage product 23 showed the best activity against F. tucumaniae. This study highlights the potential of glutinol as a scaffold for structural diversification, and these results may contribute to the design of novel fungicidal agents against phytopathogenic strains.


Assuntos
Antifúngicos , Fusarium , Fusarium/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Estrutura Molecular , Testes de Sensibilidade Microbiana , Triterpenos/farmacologia , Triterpenos/química , Triterpenos/isolamento & purificação , Casca de Planta/química
14.
Environ Res ; 250: 118455, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367838

RESUMO

Cork oak and pine bark, two of the most prolific byproducts of the European forestry sector, were assessed as biosorbents for eliminating potentially toxic elements (PTEs) from water-based solutions. Our research suggests that bioadsorption stands out as a viable and environmental eco-friendly technology, presenting a sustainable method for the extraction of PTEs from polluted water sources. This study aimed to evaluate and compare the efficiency of cork powder and pine bark powder as biosorbents. Specifically, the adsorption of Fe, Cu, Zn, Cd, Ni, Pb and Sn at equilibrium were studied through batch experiments by varying PTEs concentrations, pH, and ionic strength. Results from adsorption-desorption experiments demonstrate the remarkable capacity of both materials to retain the studied PTE. Cork powder and pine bark powder exhibited the maximum retention capacity for Fe and Cd, while they performed poorly for Pb and Sn, respectively. Nevertheless, pine bark showed a slightly lower retention capacity than cork. Increasing the pH resulted in cork showing the highest adsorption for Zn and the lowest for Sn, while for pine bark, Cd was the most adsorbed, and Sn was the least adsorbed, respectively. The highest adsorption of both materials occurred at pH 3.5-5, depending on the PTE tested. The ionic strength also influenced the adsorption of the various PTEs for both materials, with decreased adsorption as ionic strength increased. The findings suggest that both materials could be effective for capturing and eliminating the examined PTEs, albeit with different efficiencies. Remarkably, pine bark demonstrated superior adsorption capabilities, which were observed to vary based on the specific element and the experimental conditions. These findings contribute to elucidating the bio-adsorption potential of these natural materials, specifically their suitability in mitigating PTEs pollution, and favoring the recycling and revalorization of byproducts that might otherwise be considered residue.


Assuntos
Pinus , Casca de Planta , Quercus , Poluentes Químicos da Água , Pinus/química , Quercus/química , Casca de Planta/química , Adsorção , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Pós/química , Concentração de Íons de Hidrogênio , Metais Pesados/análise , Metais Pesados/química
15.
Environ Res ; 252(Pt 3): 119048, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697595

RESUMO

Adsorption is considered an interesting option for removing antibiotics from the environment because of its simple design, low cost, and potential efficiency. In this work we evaluated three by-products (pine bark, oak ash, and mussel shell) as bio-adsorbents for the antibiotic azithromycin (AZM). Furthermore, they were added at doses of 48 t ha-1 to four different soils, then comparing AZM removal for soils with and without bio-adsorbents. Batch-type experiments were used, adding AZM concentrations between 2.5 and 600 µmol L-1 to the different bio-adsorbents and soil + bio-adsorbent mixtures. Regarding the bio-adsorbents, oak ash showed the best adsorption scores (9600 µmol kg-1, meaning >80% retention), followed by pine bark (8280 µmol kg-1, 69%) and mussel shell (between 3000 and 6000 µmol kg-1, 25-50% retention). Adsorption data were adjusted to different models (Linear, Freundlich and Langmuir), showing that just mussel shell presented an acceptable fitting to the Freundlich equation, while pine bark and oak ash did not present a good adjustment to any of the three models. Regarding desorption, the values were always below the detection limit, indicating a rather irreversible adsorption of AZM onto these three by-products. Furthermore, the results showed that when the lowest concentrations of AZM were added to the not amended soils they adsorbed 100% of the antibiotic, whereas when the highest concentrations of AZM were spread, the adsorption decreased to 55%. However, when any of the three bio-adsorbents was added to the soils, AZM adsorption reached 100% for all the antibiotic concentrations used. Desorption was null in all cases for both soils with and without bio-adsorbents. These results, corresponding to an investigation carried out for the first time for the antibiotic AZM, can be seen as relevant in the search of low-cost alternative treatments to face environmental pollution caused by this emerging contaminant.


Assuntos
Antibacterianos , Azitromicina , Bivalves , Pinus , Casca de Planta , Quercus , Animais , Adsorção , Quercus/química , Casca de Planta/química , Antibacterianos/química , Antibacterianos/análise , Azitromicina/química , Azitromicina/análise , Pinus/química , Bivalves/química , Poluentes do Solo/análise , Poluentes do Solo/química , Exoesqueleto/química
16.
BMC Vet Res ; 20(1): 102, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481214

RESUMO

BACKGROUND: Effective therapy for many infections is becoming difficult due to the evolutionary development of drug resistance, and hence, the development of alternative treatment options mainly from herbs is crucial. The objective of this study was to investigate the antibacterial effects of ethanol extracts of stem bark, leaves and roots of Combretum molle against Streptococcus equi isolated from clinical cases of strangles using in vitro tests. METHODS: Plant extraction was performed using a maceration technique with 80% ethanol. The mean zone of inhibition was determined using the agar well diffusion method. Six serial dilutions with different concentrations (10%, 5%, 2.5%, 1.25%, 0.625% and 0.3125%) of each plant extract were prepared using dimethyl sulfoxide (DMSO). A modified agar microdilution method was used to determine the minimum inhibitory concentration (MICs) of the extracts. RESULTS: The results revealed that all plant extracts showed significant antibacterial activity. The root extract showed the best antibacterial effect compared to the others at all concentrations, with MZI values of 27.5, 23.225, 20.5, 17.9, 15.65 and 12.25 for the respective concentrations mentioned above and an MIC of 250 µg/ml. It was followed by the stem bark extract, which had MZI values of 24.67, 22.35, 18.225, 16.175, 11.125 and 8.2 millimeters and an MIC of 375 µg/ml. The leaf extract also had significant activity, with MZI values of 20.175, 18.25, 15.7, 13.125, 9.4 and 6.75 in millimeters and an MIC of 500 µg/ml. There was a direct relationship between the concentrations of the plant extracts and the level of inhibition. CONCLUSION: The test plant extracts were compared with the conventional antibiotic penicillin G, and the results indicated that the parts of the test plant have significant antibacterial activity, which may support traditional claims and could be candidates for alternative drug discoveries.


Assuntos
Combretum , Streptococcus equi , Cavalos , Animais , Equidae , Casca de Planta , Ágar , Extratos Vegetais/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana/veterinária , Etanol
17.
Phytopathology ; 114(5): 961-970, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38478730

RESUMO

Citrus Huanglongbing (HLB) caused by 'Candidatus Liberibacter asiaticus' (CLas) is the most devastating citrus disease worldwide. CLas induces systemic and chronic reactive oxygen species (ROS) production, which has been suggested to be a primary cause of cell death in phloem tissues and subsequent HLB symptoms. Mitigating oxidative stress caused by CLas using horticultural approaches has been suggested as a useful strategy to reduce HLB damages. To provide information regarding the application timing to mitigate ROS, we investigated monthly dynamics of CLas concentration, CLas-triggered ROS, and phloem cell death in the bark tissues of asymptomatic and symptomatic branches of HLB-positive Hamlin and Valencia sweet orange trees in the field. Healthy branches in the screenhouse were used as controls. CLas concentration exhibited significant variations over the course of the year, with two distinct peaks observed in Florida citrus groves-late spring/early summer and late fall. Within both Hamlin and Valencia asymptomatic tissues, CLas concentration demonstrated a negative correlation with the deviation between the monthly average mean temperature and the optimal temperature for CLas colonization in plants (25.7°C). However, such a correlation was not evident in symptomatic tissues of Hamlin or Valencia sweet oranges. ROS levels were consistently higher in symptomatic or asymptomatic branches than in healthy branches in most months. ROS concentrations were higher in symptomatic branches than in asymptomatic branches in most months. CLas triggered significant increases in ion leakage in most months for asymptomatic and symptomatic branches compared with healthy controls. In asymptomatic branches of Hamlin, a positive correlation was observed between CLas concentration and ROS concentrations, CLas concentration and ion leakage levels, as well as ROS and ion leakage. Intriguingly, such a relationship was not observed in Valencia asymptomatic branches or in the symptomatic branches of Hamlin and Valencia. This study sheds light on the pathogenicity of CLas by providing useful information on the temporal dynamics of ROS production, phloem cell death, and CLas growth, as well as provides useful information in determining the timing for application of antioxidants and antimicrobial agents to control HLB.


Assuntos
Citrus sinensis , Doenças das Plantas , Espécies Reativas de Oxigênio , Rhizobiaceae , Espécies Reativas de Oxigênio/metabolismo , Citrus sinensis/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/fisiologia , Floema/microbiologia , Casca de Planta/microbiologia , Liberibacter , Íons/metabolismo
18.
J Toxicol Environ Health A ; 87(12): 516-531, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38619152

RESUMO

The bark extract from Endopleura uchi has been widely used in traditional medicine to treat gynecological-related disorders, diabetes, and dyslipidemias albeit without scientific proof. In addition, E. uchi bark extract safety, especially regarding mutagenic activities, is not known. The aim of this study was to determine the chemical composition, antitumor, and toxicological parameters attributed to an E. uchi bark aqueous extract. The phytochemical constitution was assessed by colorimetric and chromatographic analyzes. The antiproliferative effect was determined using sulforhodamine B (SRB) assay using 4 cancer cell lines. Cytotoxic and genotoxic activities were assessed utilizing MTT and comet assays, respectively, while mutagenicity was determined through micronucleus and Salmonella/microsome assays. The chromatographic analysis detected predominantly the presence of gallic acid and isoquercitrin. The antiproliferative effect was more pronounced in human colon adenocarcinoma (HT-29) and human breast cancer (MCF-7) cell lines. In the MTT assay, the extract presented an IC50 = 39.1 µg/ml and exhibited genotoxic (comet assay) and mutagenic (micronucleus test) activities at 20 and 40 µg/ml in mouse fibroblast cell line (L929) and mutagenicity in the TA102 and TA97a strains in the absence of S9 mix. Data demonstrated that E. uchi bark possesses bioactive compounds which exert cytotoxic and genotoxic effects that might be associated with its antitumor potential. Therefore, E. uchi bark aqueous extract consumption needs to be approached with caution in therapeutic applications.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Humanos , Camundongos , Animais , Extratos Vegetais/química , Casca de Planta/química , Dano ao DNA , Água , Mutagênicos , Células MCF-7
19.
J Toxicol Environ Health A ; 87(16): 662-673, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-38808737

RESUMO

Pseudobombax marginatum, popularly known as "embiratanha," is widely used by traditional communities as anti-inflammatory and analgesic agent. This study aimed to determine the phytochemical profile as well as cytotoxicity, acute oral toxicity, genotoxicity, and mutagenicity attributed to exposure to aqueous (AqEx) and ethanolic (EtEx) extracts of embiratanha bark. Phytochemical screening was conducted using thin-layer chromatography (TLC). Cell viability was analyzed using MTT assay with human mammary gland adenocarcinoma (MDA-MB-231) and macrophage (J774A.1) cell lines, exposed to concentrations of 12.5, 25, 50, or 100 µg/ml of either extract. For acute oral toxicity, comet assay and micronucleus (MN) tests, a single dose of 2,000 mg/kg of either extract was administered orally to Wistar rats. TLC analysis identified classes of metabolites in the extracts, including cinnamic acid derivatives, flavonoids, hydrolyzable tannins, condensed tannins, coumarins, and terpenes/steroids. In the cytotoxicity assay, the varying concentrations of extracts derived from embiratanha induced no significant alterations in the viability of MDA-MB-231 cells. The lowest concentration of EtEx significantly increased macrophage J774A.1 viability. However, the higher concentrations of AqEx markedly lowered macrophage J774A.1 viability. Animals exhibited no toxicity in the parameters analyzed in acute oral toxicity, comet assay, and MN tests. Further, EtEx promoted a significant reduction in DNA damage index and DNA damage frequency utilizing the comet assay, while the group treated with AqEx exhibited no marked differences. Thus, data demonstrated that AqEx or EtEx of embiratanha may be considered safe at a dose of 2,000 mg/kg orgally under our experimental conditions tested.


Assuntos
Extratos Vegetais , Ratos Wistar , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Animais , Humanos , Ratos , Linhagem Celular Tumoral , Masculino , Ensaio Cometa , Testes para Micronúcleos , Feminino , Sobrevivência Celular/efeitos dos fármacos , Compostos Fitoquímicos/toxicidade , Compostos Fitoquímicos/análise , Camundongos , Casca de Planta/química , Mutagênicos/toxicidade , Testes de Mutagenicidade , Etanol/química
20.
Biotechnol Lett ; 46(4): 641-669, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38687405

RESUMO

OBJECTIVES: This study aimed to isolate red yeast from sap, bark and slime exudates collected from Polish birch forests and then assessment of their biotechnological potential. RESULTS: 24 strains of red yeast were isolated from the bark, sap and spring slime fluxes of birch (Betula pendula). Strains belonging to Rhodotorula mucilaginosa (6), Rhodosporidiobolus colostri (4), Cystrofilobasidium capitaum (3), Phaffia rhodozyma (3) and Cystobasidium psychroaquaticum (3) were dominant. The highest efficiency of carotenoid biosynthesis (5.04 mg L-1) was obtained by R. mucilaginosa CMIFS 004, while lipids were most efficiently produced by two strains of P. rhodozyma (5.40 and 5.33 g L-1). The highest amount of exopolysaccharides (3.75 g L-1) was produced by the R. glutinis CMIFS 103. Eleven strains showed lipolytic activity, nine amylolytic activity, and only two proteolytic activity. The presence of biosurfactants was not found. The growth of most species of pathogenic moulds was best inhibited by Rhodotorula yeasts. CONCLUSION: Silver birch is a good natural source for the isolation of new strains of red yeast with wide biotechnological potential.


Assuntos
Betula , Florestas , Rhodotorula , Betula/microbiologia , Betula/química , Polônia , Rhodotorula/metabolismo , Rhodotorula/isolamento & purificação , Biotecnologia/métodos , Basidiomycota/metabolismo , Basidiomycota/isolamento & purificação , Carotenoides/metabolismo , Carotenoides/química , Casca de Planta/microbiologia , Casca de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA