RESUMO
AbstractFisher's fundamental theorem of natural selection (FTNS) can be used in a quantitative genetics framework to predict the rate of adaptation in populations. Here, we estimated the capacity for a wild population of the annual legume Chamaecrista fasciculata to adapt to future environments and compared predicted and realized rates of adaptation. We planted pedigreed seeds from one population into three prairie reconstructions along an east-to-west decreasing precipitation gradient. The FTNS predicted adaptation at all sites, but we found a response to selection that was smaller at the home and westernmost sites and maladaptive at the middle site because of changes in the selective environment between generations. However, mean fitness of the progeny generation at the home and westernmost sites exceeded population replacement, which suggests that the environment was sufficiently favorable to promote population persistence. More studies employing the FTNS are needed to clarify the degree to which predictions of the rate of adaptation are realized and its utility in the conservation of populations at risk of extinction from climate change.
Assuntos
Chamaecrista , Chamaecrista/fisiologia , Mudança Climática , Seleção Genética , Dinâmica Populacional , Sementes , Adaptação FisiológicaRESUMO
Mutualism is thought to be more prevalent in the tropics than temperate zones and may therefore play an important role in generating and maintaining high species richness found at lower latitudes. However, results on the impact of mutualism on latitudinal diversity gradients are mixed, and few empirical studies sample both temperate and tropical regions. We investigated whether a latitudinal diversity gradient exists in the symbiotic microbial community associated with the legume Chamaecrista nictitans. We sampled bacteria DNA from nodules and the surrounding soil of plant roots across a latitudinal gradient (38.64-8.68 °N). Using 16S rRNA sequence data, we identified many non-rhizobial species within C. nictitans nodules that cannot form nodules or fix nitrogen. Species richness increased towards lower latitudes in the non-rhizobial portion of the nodule community but not in the rhizobial community. The microbe community in the soil did not effectively predict the non-rhizobia community inside nodules, indicating that host selection is important for structuring non-rhizobia communities in nodules. We next factorially manipulated the presence of three non-rhizobia strains in greenhouse experiments and found that co-inoculations of non-rhizobia strains with rhizobia had a marginal effect on nodule number and no effect on plant growth. Our results suggest that these non-rhizobia bacteria are likely commensals-species that benefit from associating with a host but are neutral for host fitness. Overall, our study suggests that temperate C. nictitans plants are more selective in their associations with the non-rhizobia community, potentially due to differences in soil nitrogen across latitude.
Assuntos
Chamaecrista , Fabaceae , Chamaecrista/genética , Chamaecrista/microbiologia , Simbiose/genética , RNA Ribossômico 16S/genética , Fabaceae/genética , Solo , Nitrogênio , Nódulos Radiculares de Plantas/microbiologiaRESUMO
All non-Mimosoid nodulated genera in the legume subfamily Caesalpinioideae confine their rhizobial symbionts within cell wall-bound 'fixation threads' (FTs). The exception is the large genus Chamaecrista in which shrubs and subshrubs house their rhizobial bacteroids more intimately within symbiosomes, whereas large trees have FTs. This study aimed to unravel the evolutionary relationships between Chamaecrista growth habit, habitat, nodule bacteroid type, and rhizobial genotype. The growth habit, bacteroid anatomy, and rhizobial symbionts of 30 nodulated Chamaecrista species native to different biomes in the Brazilian state of Bahia, a major centre of diversity for the genus, was plotted onto an ITS-trnL-F-derived phylogeny of Chamaecrista. The bacteroids from most of the Chamaecrista species examined were enclosed in symbiosomes (SYM-type nodules), but those in arborescent species in the section Apoucouita, at the base of the genus, were enclosed in cell wall material containing homogalacturonan (HG) and cellulose (FT-type nodules). Most symbionts were Bradyrhizobium genotypes grouped according to the growth habits of their hosts, but the tree, C. eitenorum, was nodulated by Paraburkholderia. Chamaecrista has a range of growth habits that allow it to occupy several different biomes and to co-evolve with a wide range of (mainly) bradyrhizobial symbionts. FTs represent a less intimate symbiosis linked with nodulation losses, so the evolution of SYM-type nodules by most Chamaecrista species may have (i) aided the genus-wide retention of nodulation, and (ii) assisted in its rapid speciation and radiation out of the rainforest into more diverse and challenging habitats.
Assuntos
Chamaecrista , Filogenia , Floresta Úmida , Simbiose , Chamaecrista/fisiologia , Chamaecrista/genética , Chamaecrista/crescimento & desenvolvimento , Brasil , Ecossistema , Rhizobium/fisiologia , Nodulação/fisiologia , Evolução Biológica , Fixação de NitrogênioRESUMO
Chamaecrista is a Pantropical legume genus of the tribe Cassieae, which includes six other genera. In contrast to most of the other Cassieae genera, Chamaecrista shows significant variability in chromosome number (from 2n = 14 to 2n = 56), with small and morphologically similar chromosomes. Here, we performed a new cytomolecular analysis on chromosome number, genome size, and rDNA site distribution in a molecular phylogenetic perspective to interpret the karyotype trends of Chamaecrista and other two genera of Cassieae, seeking to understand their systematics and evolution. Our phylogenetic analysis revealed that Chamaecrista is monophyletic and can be divided into four major clades corresponding to the four sections of the genus. Chromosome numbers ranged from 2n = 14, 16 (section Chamaecrista) to 2n = 28 (sections Absus, Apoucouita, and Baseophyllum). The number of 5S and 35S rDNA sites varied between one and three pairs per karyotype, distributed on different chromosomes or in synteny, with no obvious phylogenetic significance. Our data allowed us to propose x = 7 as the basic chromosome number of Cassieae, which was changed by polyploidy generating x = 14 (sections Absus, Apoucouita, and Baseophyllum) and by ascending dysploidy to x = 8 (section Chamaecrista). The DNA content values supported this hypothesis, with the genomes of the putative tetraploids being larger than those of the putative diploids. We hypothesized that ascending dysploidy, polyploidy, and rDNA amplification/deamplification are the major events in the karyotypic diversification of Chamaecrista. The chromosomal marks characterized here may have cytotaxonomic potential in future studies.
Assuntos
Chamaecrista , Fabaceae , Filogenia , Chamaecrista/genética , Fabaceae/genética , Cromossomos de Plantas/genética , Genoma de Planta , Cariótipo , Poliploidia , DNA Ribossômico/genéticaRESUMO
AbstractAn individual's lifetime fitness and patterns of mating between individuals are interdependent features of sexual organisms. Mating systems (outcrossing vs. selfing or mating between close relatives) can affect the distribution of offspring fitness, which generally declines with inbreeding, which in turn is related to a population's genetically effective size (Ne). Fitness and mating patterns are also expected to vary with proximity of mates (i.e., population density). Consequently, density and Ne may influence demographic and genetic changes over generations and interact in their effects. Here, we report an experiment designed to assess the influence of these two population-level properties on mating system and lifetime fitness. In experimental arrays under quasi-natural conditions, we varied the density and Ne of the hermaphroditic annual legume Chamaecrista fasciculata. We recorded components of fitness for each individual and employed microsatellite markers to estimate outcrossing and assign paternity. We used aster analyses to estimate lifetime fitness for genetic families using female (seeds set) and male (seeds sired) reproduction as fitness measures. With estimates from these analyses, we assessed the evidence for a trade-off between fitness attained through female versus male function, but we found none. Lifetime fitness increased with density, especially under high Ne. Outcrossing rates increased with density under high Ne but declined modestly with density under low Ne. Our results show that density and Ne have strong direct effects on fitness and mating systems, with negative fitness effects of low Ne limiting the positive effects of increasing density. These findings highlight the importance of the interactive effects of density and Ne on lifetime fitness.
Assuntos
Chamaecrista/fisiologia , Aptidão Genética , Biomassa , ReproduçãoRESUMO
PREMISE: Flowering plants with poricidal anthers are commonly visited by buzzing bees, which vibrate flowers to extract pollen. However, not all flower visitors are in fact pollinators, and features such as body size and duration of flower visits are important factors in determining pollination effectiveness. We tested whether bee-to-flower size relationships predict the pollination effectiveness of flower visitors of a buzz-pollinated species (Chamaecrista ramosa, Fabaceae). METHODS: We sorted 13 bee taxa into three groups: smaller than, equivalent to ("fit-size"), and larger than flower herkogamy (spatial separation between anthers and stigma). We expected the latter two groups to touch the stigmas, which would be an indicator of pollination effectiveness, more frequently than the first group. To test this hypothesis, we assessed contact with stigmas, foraging behavior, and duration of visits for the three size groups of bees. RESULTS: Our data reveal that small bees scarcely touched the stigmas, while large and fit-size bees were the most efficient pollinators, achieving high stigma-touching rates, conducting much shorter flower visits, and visiting flowers and conspecific plants at high rates during foraging bouts. CONCLUSIONS: The results did not show size-matching among bees and flowers, as expected, but rather a minimum size threshold of efficient pollinators. The finding of such a threshold is a nonarbitrary approach to predicting pollination effectiveness of visitors to herkogamous flowers with poricidal anthers.
Assuntos
Chamaecrista , Magnoliopsida , Animais , Abelhas , Flores , Pólen , PolinizaçãoRESUMO
INTRODUCTION: Comparative analysis of metabolic features of plants has a high potential for determination of quality control of active ingredients, ecological or chemotaxonomic purposes. Specifically, the development of efficient and rapid analytical tools that allow the differentiation among species, subspecies and varieties of plants is a relevant issue. Here we describe a multivariate model based on LC-MS/MS fingerprinting capable of discriminating between subspecies and varieties of the medicinal plant Chamaecrista nictitans, a rare distributed species in Costa Rica. METHODS: Determination of the chemical fingerprint was carried out on a LC-MS (ESI-QTOF) in negative ionization mode, main detected and putatively identified compounds included proanthocyanidin oligomers, several flavonoid C- and O-glycosides, and flavonoid acetates. Principal component analysis (PCA), partial least square-discriminant analysis (PLS-DA) and cluster analysis of chemical profiles were performed. RESULTS: Our method showed a clear discrimination between the subspecies and varieties of Chamaecrista nictitans, separating the samples into four fair differentiated groups: M1 = C. nictitans ssp. patellaria; M2 = C. nictitans ssp. disadena; M3 = C. nictitans ssp. nictitans var. jaliscensis and M4 = C. nictitans ssp. disadena var. pilosa. LC-MS/MS fingerprint data was validated using both morphological characters and DNA barcoding with ITS2 region. The comparison of the morphological characters against the chemical profiles and DNA barcoding shows a 63% coincidence, evidencing the morphological similarity in C. nictitans. On the other hand, genetic data and chemical profiles grouped all samples in a similar pattern, validating the functionality of our metabolomic approach. CONCLUSION: The metabolomic method described in this study allows a reliably differentiation between subspecies and varieties of C. nictitans using a straightforward protocol that lacks extensive purification steps.
Assuntos
Chamaecrista/química , Chamaecrista/metabolismo , Metabolômica/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Análise por Conglomerados , Análise Discriminante , Análise Multivariada , Fenóis/química , Análise de Componente Principal/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodosRESUMO
Information about the symbionts of legumes of the Caesalpinioideae subfamily is still limited, and we performed a polyphasic approach with three Bradyrhizobium strains-CNPSo 3448T, CNPSo 3394 and CNPSo 3442-isolated from Chamaecrista fasciculata, a native legume broadly distributed in the USA. In the phylogenetic analysis of both the 16S rRNA gene and the intergenic transcribed spacer, the CNPSo strains were clustered within the Bradyrhizobium japonicumsuperclade. Multilocus sequence analysis with six housekeeping genes-glnII, gyrB, recA, rpoB, atpD and dnaK-indicated that Bradyrhizobium diazoefficiens is the closest species, with 83â% of nucleotide identity. In the genome analyses of CNPSo 3448T, average nucleotide identity and digital DNA-DNA hybridization results confirmed higher similarity with B. diazoefficiens, with values estimated of 93.35 and 51.50â%, respectively, both below the threshold of the same species, confirming that the CNPSo strains represent a new lineage. BOX-PCR profiles indicated high intraspecific genetic diversity between the CNPSo strains. In the analyses of the symbiotic genes nodC and nifH the CNPSo strains were clustered with Bradyrhizobium arachidis, Bradyrhizobium forestalis, Bradyrhizobium cajani, Bradyrhizobium kavangense and Bradyrhizobium vignae, indicating a different phylogenetic history compared to the conserved core genes. Other physiological (C utilization, tolerance to antibiotics and abiotic stresses), chemical (fatty acid profile) and symbiotic (nodulation host range) properties were evaluated and are described. The data from our study support the description of the CNPSo strains as the novel species Bradyrhizobiumniftali sp. nov., with CNPSo 3448T (=USDA 10051T=U687T=CL 40T) designated as the type strain.
Assuntos
Bradyrhizobium/classificação , Chamaecrista/microbiologia , Fixação de Nitrogênio , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Bradyrhizobium/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Missouri , Tipagem de Sequências Multilocus , Nitrogênio , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , SimbioseRESUMO
The symbioses between legumes and nitrogen-fixing rhizobia make the greatest contribution to the global nitrogen input via the process of biological nitrogen fixation (BNF). Bradyrhizobium stands out as the main genus nodulating basal Caesalpinioideae. We performed a polyphasic study with 11 strains isolated from root nodules of Chamaecristafasciculata, an annual multi-functional native legume of the USA. In the 16S rRNA gene phylogeny the strains were clustered in the Bradyrhizobium japonicumsuperclade. The results of analysis of the intergenic transcribed spacer (ITS) indicated less than 89.9â% similarity to other Bradyrhizobium species. Multilocus sequence analysis (MLSA) with four housekeeping genes (glnII, gyrB, recA and rpoB) confirmed the new group, sharing less than 95.2â% nucleotide identity with other species. The MLSA with 10 housekeeping genes (atpD, dnaK, gap, glnII, gltA, gyrB, pnp, recA, rpoB and thrC) indicated Bradyrhizobium daqingense as the closest species. Noteworthy, high genetic diversity among the strains was confirmed in the analyses of ITS, MLSA and BOX-PCR. Average nucleotide identity and digital DNA-DNA hybridization values were below the threshold of described Bradyrhizobium species, of 89.7 and 40â%, respectively. In the nifH and nodC phylogenies, the strains were grouped together, but with an indication of horizontal gene transfer, showing higher similarity to Bradyrhizobium arachidis and Bradyrhizobium forestalis. Other phenotypic, genotypic and symbiotic properties were evaluated, and the results altogether support the description of the CNPSo strains as representatives of the new species Bradyrhizobiumfrederickii sp. nov., with CNPSo 3426T (=USDA 10052T=U686T=CL 20T) as the type strain.
Assuntos
Bradyrhizobium/classificação , Chamaecrista/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Bradyrhizobium/isolamento & purificação , DNA Bacteriano/genética , Transferência Genética Horizontal , Genes Bacterianos , Missouri , Tipagem de Sequências Multilocus , Nebraska , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose , TemperaturaRESUMO
PREMISE OF THE STUDY: Mutualistic relationships with microbes may aid plants in overcoming environmental stressors and increase the range of abiotic environments where plants can persist. Rhizobia, nitrogen-fixing bacteria associated with legumes, often confer fitness benefits to their host plants by increasing access to nitrogen in nitrogen-limited soils, but effects of rhizobia on host fitness under other stresses, such as drought, remain unclear. METHODS: In this greenhouse study, we varied the application of rhizobia (Bradyrhizobium sp.) inoculum and drought to examine whether the fitness benefits of rhizobia to their host, partridge pea (Chamaecrista fasciculata), would differ between drought and well-watered conditions. Plants were harvested 9 weeks after seeds were sown. KEY RESULTS: Young C. fasciculata plants that had been inoculated had lower biomass, leaf relative growth rate, and stem relative growth rate compared to young uninoculated plants in both drought and well-watered environments. CONCLUSIONS: Under the conditions of this study, the rhizobial interaction imposed a net cost to their hosts early in development. Potential reasons for this cost include allocating more carbon to nodule and root development than to aboveground growth and a geographic mismatch between the source populations of host plants and rhizobia. If developing plants incur such costs from rhizobia in nature, they may suffer an early disadvantage relative to other plants, whether conspecifics lacking rhizobia or heterospecifics.
Assuntos
Bradyrhizobium , Chamaecrista/microbiologia , Biomassa , Bradyrhizobium/fisiologia , Chamaecrista/crescimento & desenvolvimento , Chamaecrista/fisiologia , Desidratação , Folhas de Planta/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimentoRESUMO
Although most studies of mutualisms focus on a single partner at a time, host species often associate with multiple mutualist partners simultaneously. Because of potential interactions between mutualists, only studying a single type of mutualism could lead to a biased perspective of mutualism benefit and how mutualisms may scale-up to affect communities. The legume Chamaecrista fasciculata engages in a resource mutualism with nitrogen-fixing rhizobia and also forms symbiotic interactions with ants by providing nectar in exchange for defense against herbivores. Although they provide very different benefits to the plant, both mutualists receive carbon resources from the plant. As a result, these two mutualists are likely to interact, potentially competing for carbon resources or mutually benefitting each other via their positive effects on plant hosts. In a full-factorial field experiment, we explored how rhizobia and ants influence one another, C. fasciculata fitness, and the associated arthropod community. Ants reduced plant allocation to rhizobia, but ants also increased rhizobia contamination of uninoculated plants, suggesting that ants may disperse rhizobia. In turn, rhizobia increased ant abundances, with ants preferentially tending plants with rhizobia. Chamaecrista fasciculata received substantial fitness benefits from rhizobia; in contrast, associating with ants reduced fitness. Additionally, the mutualists interacted to influence the abundance of other arthropods found on the plants. Rhizobia increased arthropod abundances, likely because more nitrogen-rich leaf tissue was more attractive to arthropod herbivores, but ants negated these increases. As these results illustrate, multiple mutualists may interact, influencing each other's abundance and the abundance of other community members.
Assuntos
Formigas , Artrópodes , Chamaecrista , Rhizobium , Animais , SimbioseRESUMO
Global warming will jeopardize the persistence and genetic diversity of many species. Assisted colonization, or the movement of species beyond their current range boundary, is a conservation strategy proposed for species with limited dispersal abilities or adaptive potential. However, species that rely on photoperiodic and thermal cues for development may experience conflicting signals if transported across latitudes. Relocating multiple, distinct populations may remedy this quandary by expanding genetic variation and promoting evolutionary responses in the receiving habitat--a strategy known as assisted gene flow. To better inform these policies, we planted seeds from latitudinally distinct populations of the annual legume, Chamaecrista fasciculata, in a potential future colonization site north of its current range boundary. Plants were exposed to ambient or elevated temperatures via infrared heating. We monitored several life history traits and estimated patterns of natural selection to determine the adaptive value of plastic responses. To assess the feasibility of assisted gene flow between phenologically distinct populations, we counted flowers each day and estimated the degree of temporal isolation between populations. Increased temperatures advanced each successive phenological trait more than the last, resulting in a compressed life cycle for all but the southern-most population. Warming altered patterns of selection on flowering onset and vegetative biomass. Population performance was dependent on latitude of origin, with the northern-most population performing best under ambient conditions and the southern-most performing most poorly, even under elevated temperatures. Among-population differences in flowering phenology limited the potential for genetic exchange among the northern- and southern-most populations. All plastic responses to warming were neutral or adaptive; however, photoperiodic constraints will likely necessitate evolutionary responses for long-term persistence, especially when involving populations from disparate latitudes. With strategic planning, our results suggest that assisted colonization and assisted gene flow may be feasible options for preservation.
Assuntos
Chamaecrista/fisiologia , Fluxo Gênico , Aquecimento Global , Seleção Genética , Chamaecrista/genética , Chamaecrista/crescimento & desenvolvimento , Ontário , Fenótipo , Dispersão Vegetal , Estados UnidosRESUMO
Medicinal plants such as Cassia, Senna, and Chamaecrista (belonging to the family Fabaceae) are well known for their laxative properties. They are extensively used within indigenous health care systems in India and several other countries. India exports over 5000 metric tonnes per year of these specific herbal products, and the demand for natural health product market is growing at approximately 10-15% annually. The raw plant material used as active ingredients is almost exclusively sourced from wild populations. Consequently, it is widely suspected that the commercial herbal products claiming to contain these species may be adulterated or contaminated. In this study, we have attempted to assess product authentication and the extent of adulteration in the herbal trade of these species using DNA barcoding. Our method includes four common DNA barcode regions: ITS, matK, rbcL, and psbA-trnH. Analysis of market samples revealed considerable adulteration of herbal products: 50% in the case of Senna auriculata, 37% in Senna tora, and 8% in Senna alexandrina. All herbal products containing Cassia fistula were authentic, while the species under the genus Chamaecrista were not in trade. Our results confirm the suspicion that there is rampant herbal product adulteration in Indian markets. DNA barcodes such as that demonstrated in this study could be effectively used as a regulatory tool to control the adulteration of herbal products and contribute to restoring quality assurance and consumer confidence in natural health products.
Assuntos
Cassia/genética , Chamaecrista/genética , Código de Barras de DNA Taxonômico , Contaminação de Medicamentos , Fitoterapia , Senna/genética , DNA de Plantas , Humanos , Índia , Laxantes , Plantas Medicinais/genética , Controle de Qualidade , Análise de Sequência de DNARESUMO
Chamaecrista nictitans (L) extract possesses antiviral properties; it acts against the herpes simplex virus, and this may be attributed to its constituent phenolics. Here, high-resolution LC-ESI-MS/MS is used to identify the phenolic components of the most potent fraction of the extract. The fraction is a complex mixture rich in oligomeric proanthocyanidins with a high content of monohydroxyphenol moieties ((epi)fisetinidol, (epi)afzelechin and (epi)guibourtinidol) and A-type linkages, uncommon in other proanthocyanidin-rich phenolic extracts, such as those from grape seeds or pine bark. As monohydroxyphenolic structures and A-type linkages have been related to antiviral effects, particularly through the inhibition of late transcription, we suggest that the fraction of C. nictitans extract exerts its action through a particularly effective combination of proanthocyanidins that include these two structural features.
Assuntos
Antivirais/química , Chamaecrista/química , Extratos Vegetais/química , Polifenóis/química , Proantocianidinas/química , Química Farmacêutica , Cromatografia Líquida , DNA Viral/química , Flavonas/química , Flavonoides/química , Sequestradores de Radicais Livres , Herpes Simples/tratamento farmacológico , Herpes Simples/prevenção & controle , Humanos , Fenóis/química , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Espectrometria de Massas em TandemRESUMO
Mutualistic interactions can be just as important to community dynamics as antagonistic species interactions like competition and predation. Because of their large effects on both abiotic and biotic environmental variables, resource mutualisms, in particular, have the potential to influence plant communities. Moreover, the effects of resource mutualists such as nitrogen-fixing rhizobia on diversity and community composition may be more pronounced in nutrient-limited environments. I experimentally manipulated the presence of rhizobia across a nitrogen gradient in early assembling mesocosm communities with identical starting species composition to test how the classic mutualism between nitrogen-fixing rhizobia and their legume host influence diversity and community composition. After harvest, I assessed changes in α-diversity, community composition, ß-diversity, and ecosystem properties such as inorganic nitrogen availability and productivity as a result of rhizobia and nitrogen availability. The presence of rhizobia decreased plant community diversity, increased community convergence (reduced ß-diversity), altered plant community composition, and increased total community productivity. These community-level effects resulted from rhizobia increasing the competitive dominance of their legume host Chamaecrista fasciculata. Moreover, different non-leguminous species responded both negatively and positively to the presence of rhizobia, indicating that rhizobia are driving both inhibitory and potentially facilitative effects in communities. These findings expand our understanding of plant communities by incorporating the effects of positive symbiotic interactions on plant diversity and composition. In particular, rhizobia that specialize on dominant plants may serve as keystone mutualists in terrestrial plant communities, reducing diversity by more than 40%.
Assuntos
Biodiversidade , Chamaecrista/microbiologia , Ecossistema , Nitrogênio/metabolismo , Simbiose , Chamaecrista/crescimento & desenvolvimento , Chamaecrista/metabolismo , Meio Ambiente , Plantas/metabolismo , Plantas/microbiologia , Rhizobium/crescimento & desenvolvimento , Rhizobium/metabolismoRESUMO
BACKGROUND AND AIMS: Reciprocal herkogamy, including enantiostyly and heterostyly, involves reciprocity in the relative positions of the sexual elements within the flower. Such systems result in morphologically and, since pollen is deposited on and captured from different parts of the pollinator, functionally distinct floral forms. Deviations from the basic pattern may modify the functionality of these mechanisms. For heterostylous species, such deviations are generally related to environmental disturbances, pollination services and/or reduced numbers of one floral morph. Deviations for enantiostylous species have not yet been reported. This study aims to investigate enantiostyly in Chamaecrista flexuosa, in particular the presence of deviations from the standard form, in an area of coastal vegetation in north-east Brazil. METHODS: Observations and investigations of floral biology, the reproductive system, pollinator behaviour, floral morphology and morphometry were performed. KEY RESULTS: In C. flexuosa flowers, anthers of different size but similar function are grouped. The flowers were self-compatible and set fruits after every treatment, except in the spontaneous self-pollination experiment, thereby indicating their dependence on pollen vectors. The flowers were pollinated by bees, especially Xylocopa cearensis and X. grisencens. Pollen is deposited and captured from the ventral portion of the pollinator's body. Variations in the spatial arrangement of floral elements allowed for the identification of floral morphs based on both morphological and functional criteria. Using morphological criteria, morphologically right (MR) and morphologically left (ML) floral morphs were identified. Three floral morphs were identified using functional criteria: functionally right (FR), functionally central (FC) and functionally left (FL). Combinations of morphologically and functionally defined morphs did not occur in equal proportions. There was a reduced frequency of the MR-FR combination. CONCLUSIONS: The results indicate the occurrence of an atypical enantiostyly in C. flexuosa. This seems to improve reproductive success by increasing the efficiency of pollen deposition and capture.
Assuntos
Abelhas/fisiologia , Chamaecrista/anatomia & histologia , Flores/anatomia & histologia , Animais , Comportamento Animal , Brasil , Cruzamento , Chamaecrista/fisiologia , Flores/fisiologia , Pólen/anatomia & histologia , Pólen/fisiologia , Polinização/fisiologia , ReproduçãoRESUMO
One new compound, 4,7-dihydroxy-2-hydroxymethyl-5,6-dimethoxyanthraquinone (1), along with eight known compounds (2-9) were isolated from the methanol extracts of the aerial parts of Chamaecrista pumila (Lam.) K. Larsen. Their chemical structure was determined based on spectroscopic data interpretation and comparison with the reported data. The inhibitory effects of them on α-amylase and α-glucosidase were performed. The results showed that compounds 4, 6, 8, and 9 against potent α-glucosidase with the inhibition values of 98.14 ± 0.05, 98.19 ± 0.04, 97.01 ± 0.49, 84.43 ± 0.6% at 50 µM, respectively. Compounds 4 and 6 displayed significance against α-amylase at 200 µM with inhibition values of 22.35 ± 1.10 and 60.47 ± 0.91%.
Assuntos
Chamaecrista , Inibidores de Glicosídeo Hidrolases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Hipoglicemiantes/farmacologia , alfa-Glucosidases/química , alfa-Amilases/química , Extratos Vegetais/química , Componentes Aéreos da Planta/químicaRESUMO
It is often assumed that the geographic distributions of species match their climatic tolerances, but this assumption is not frequently tested. Moreover, few studies examine the relative importance of abiotic and biotic factors for limiting species ranges. We combined multiple approaches to assess the extent to which fitness of a widespread native annual legume, Chamaecrista fasciculata, decreases at and beyond its northern and western range edges, and how this is influenced by the presence of neighbors. First, we examined plant fitness and the effect of neighbors in natural populations at different geographic range locations for three years. Fitness decreased toward the northern range edge, but not the western edge. Neighbor removal had a consistently positive effect on seedpod production across all years and sites. Second, we established experimental populations at sites within the range, and at and beyond the northern and western range edges. We tracked individual fitness and recorded seedling recruitment in the following year (a complete generation) to estimate population growth rate. Individual fitness and population growth declined to near zero beyond both range edges, indicating that C. fasciculata with its present genetic composition will not establish in these regions, given conditions currently. We also carried out a neighbor removal treatment. Consistent with the natural populations, neighbors reduced seedpod production of reproductive adults. However, neighbors also increased early-season survival, and this positive effect early in life history resulted in a net positive effect of neighbors on lifetime fitness at most range locations. Our data show that the population growth rate of C. fasciculata includes values above replacement, and populations are well adapted to conditions up to the edge of the range, whereas the severely compromised fitness at sites beyond the edge precludes immediate establishment of populations and thereby impedes adaptation to these conditions.
Assuntos
Chamaecrista/crescimento & desenvolvimento , Chamaecrista/fisiologia , Clima , Aptidão Genética , Demografia , Ecossistema , Germinação , Sementes/crescimento & desenvolvimento , Estados UnidosRESUMO
Chamaecrista mimosoides is an annual herb legume widely distributed in tropical and subtropical Asia and Africa. It may have primitive and independently-evolved root nodule types but its rhizobia have not been systematically studied. Therefore, in order to learn the diversity and species affinity of its rhizobia, root nodules were sampled from C. mimosoides plants growing in seven geographical sites along the coast line of Shandong Peninsula, China. A total of 422 rhizobial isolates were obtained from nodules, and they were classified into 28 recA haplotypes. By using multilocus sequence analysis of the concatenated housekeeping genes dnaK, glnII, gyrB, recA and rpoB, the representative strains for these haplotypes were designated as eight defined and five candidate novel genospecies in the genus Bradyrhizobium. Bradyrhizobium elkanii and Bradyrhizobium ferriligni were predominant and universally distributed. The symbiotic genes nodC and nifH of the representative strains showed very similar topology in their phylogenetic trees indicating their co-evolution history. All the representative strains formed effective root nodules in nodulation tests. The correlation between genospecies and soil characteristics analyzed by CANOCO software indicated that available potassium (AK), organic carbon (OC) and available nitrogen (AN) in the soil samples were the main factors affecting the distribution of the symbionts involved in this current study. The study is the first systematic survey of Chamaecrista mimosoides-nodulating rhizobia, and it showed that Chamaecrista spp. were nodulated by bradyrhizobia in natural environments. In addition, the host spectrum of the corresponding rhizobial species was extended, and the study provided novel information on the biodiversity and biogeography of rhizobia.
Assuntos
Bradyrhizobium , Chamaecrista , Rhizobium , Biodiversidade , Bradyrhizobium/genética , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/genética , Nódulos Radiculares de Plantas , Análise de Sequência de DNA , SimbioseRESUMO
Adaptation through natural selection may be the only means by which small and fragmented plant populations will persist through present day environmental change. A population's additive genetic variance for fitness (VA (W)) represents its immediate capacity to adapt to the environment in which it exists. We evaluated this property for a population of the annual legume Chamaecrista fasciculata through a quantitative genetic experiment in the tallgrass prairie region of the Midwestern United States, where changing climate is predicted to include more variability in rainfall. To reduce incident rainfall, relative to controls receiving ambient rain, we deployed rain exclusion shelters. We found significant VA (W) in both treatments. We also detected a significant genotype-by-treatment interaction for fitness, which suggests that the genetic basis of the response to natural selection will differ depending on precipitation. For the trait-specific leaf area, we detected maladaptive phenotypic plasticity and an interaction between genotype and environment. Selection for thicker leaves was detected with increased precipitation. These results indicate capacity of this population of C. fasciculata to adapt in situ to environmental change.