Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glycobiology ; 34(1)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-37935390

RESUMO

GM1 is a major brain ganglioside that exerts neurotrophic, neuroprotective and antineuroinflammatory effects. The aim of this study was to obtain insights into the antineuroinflammatory mechanisms of exogenous GM1 in lipopolysaccharide (LPS)-stimulated MG6 mouse transformed microglial cell line. First, we found that GM1 prevented the LPS-induced transformation of microglia into an amoeboid-like shape. GM1 treatment inhibited LPS-induced expression of inducible nitric oxide synthase, cyclooxygenase-2 (COX-2), and proinflammatory cytokines such as TNF-α, IL-1ß and IL-6 in MG6 cells. In LPS-treated mice, GM1 also reduced striatal microglia activation and attenuated COX-2 expression. Subsequent mechanistic studies showed that GM1 suppressed LPS-induced nuclear translocation of nuclear factor κB (NF-κB) and activator protein-1 (AP-1), two critical transcription factors responsible for the production of proinflammatory mediators. GM1 exhibited antineuroinflammatory properties by suppressing Akt/NF-κB signaling and the activation of mitogen-activated protein kinases (MAPKs), including p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Furthermore, GM1 suppressed LPS-induced activation of transforming growth factor-ß-activated kinase 1 (TAK1) and NADPH oxidase 2 (NOX2), upstream regulators of the IκBα/NF-κB and MAPK/AP-1 signaling pathways. GM1 also inhibited NOX-mediated reactive oxygen species (ROS) production and protected against LPS-induced MG6 cell death, suggesting an antioxidant role of GM1. In conclusion, GM1 exerts both antineuroinflammatory and antioxidative effects by inhibiting Akt, TAK1 and NOX2 activation.


Assuntos
Microglia , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Microglia/metabolismo , Gangliosídeo G(M1)/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/farmacologia , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/farmacologia , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Fosforilação , Estresse Oxidativo
2.
Cancer Immunol Immunother ; 72(4): 1047-1058, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36074159

RESUMO

Anti-PD-1 antibody-mediated activation of type 17 T-cells undermines checkpoint inhibitor therapy in the LSL-KrasG12D murine lung cancer model. Herein, we establish that the Th17 subset is the primary driver of resistance to therapy demonstrate that the ontogeny of dysplasia-associated Th17 cells is driven by microbiota-conditioned macrophages; and identify the IL-17-COX-2-PGE2 axis as the mediator of CD8+ cytotoxic T-lymphocyte de-sensitization to checkpoint inhibitor therapy. Specifically, anti-PD-1 treatment of LSL-KrasG12D mice, in which CD4+ T-cells were deficient for RORc, resulted in a 60% increase in CTL cytotoxicity and a 2.5-fold reduction in tumor burden confirming the critical role of Th17 cells in resistance to therapy. Lung-specific depletion of microbiota reduced Th17 cell prevalence and tumor burden by 5- and 2.5-fold, respectively; establishing a link between microbiota and Th17 cell-driven tumorigenesis. Importantly, lung macrophages from microbiota sufficient, but not from microbiota-deficient, mice polarized naïve CD4+ T-cells to a Th17 phenotype, highlighting their role in bridging microbiota and Th17 immunity. Further, treatment with anti-PD-1 enhanced COX-2 and PGE2 levels, whereas neutralization of IL-17 diminished this effect. In contrast, inhibition of COX-2 rescued CTL activity and restored tumor suppression in anti-PD-1-treated mice, revealing the molecular basis of IL-17-mediated resistance to checkpoint blockade. Clinical implications of these findings are discussed.


Assuntos
Linfócitos T Citotóxicos , Células Th17 , Camundongos , Animais , Ciclo-Oxigenase 2/farmacologia , Proteínas Proto-Oncogênicas p21(ras) , Interleucina-17 , Dinoprostona/farmacologia , Células Mieloides
3.
Biol Chem ; 404(1): 59-69, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36268909

RESUMO

Interleukin-11 (IL-11) is a pleiotropic cytokine that regulates proliferation and motility of cancer cells. Fibroblasts reside in the cancer microenvironment and are the primary source of IL-11. Activated fibroblasts, including cancer-associated fibroblasts that produce IL-11, contribute to the development and progression of cancer, and induce fibrosis associated with cancer. Changes in fatty acid composition or its metabolites, and an increase in free fatty acids have been observed in cancer. The effect of deregulated fatty acids on the development and progression of cancer is not fully understood yet. In the present study, we investigated the effects of fatty acids on mRNA expression and secretion of IL-11 in lung fibroblasts. Among the eight fatty acids added exogenously, arachidonic acid (AA) increased mRNA expression and secretion of IL-11 in lung fibroblasts in a dose-dependent manner. AA-induced upregulation of IL-11 was dependent on the activation of the p38 or ERK MAPK signaling pathways. Furthermore, prostaglandin E2, associated with elevated cyclooxygenase-2 expression, participated in the upregulation of IL-11 via its specific receptor in an autocrine/paracrine manner. These results suggest that AA may mediate IL-11 upregulation in lung fibroblasts in the cancer microenvironment, accompanied by unbalanced fatty acid composition.


Assuntos
Fibroblastos , Interleucina-11 , Ácido Araquidônico/farmacologia , Ácido Araquidônico/metabolismo , Interleucina-11/metabolismo , Interleucina-11/farmacologia , Fibroblastos/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Pulmão/metabolismo , RNA Mensageiro/metabolismo , Células Cultivadas
4.
Cell Immunol ; 391-392: 104754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37506521

RESUMO

Ulcerative colitis is a type of inflammatory bowel disease which in long run can lead to colorectal cancer (CRC). Chronic inflammation can be a key factor for the occurrence of CRC thus mitigating an inflammation can be a preventive strategy for the occurrence of CRC. In this study we have explored the anti-inflammatory potential of phloretin, in in vitro gut inflammation model, developed by co-culture of Caco2 (intestinal epithelial) cells and RAW264.7 macrophages (immune cells). Phloretin is a dihydrochalcone present in apple, pear and strawberries. An anti-inflammatory effect of phloretin in reducing LPS induced inflammation and maintenance of transepithelial electric resistance (TEER) in Caco2 cells was examined. Paracellular permeability assay was performed using Lucifer yellow dye to evaluate the effect of phloretin in inhibiting gut leakiness caused by inflammatory mediators secreted by activated macrophages. Phloretin attenuated LPS induced nitric oxide levels, oxidative stress, depolarization of mitochondrial membrane potential in Caco2 cells as evidenced by reduction in reactive oxygen species (ROS), and enhancement of MMP, and decrease in inflammatory cytokines IL8, TNFα, IL1ß and IL6. It exhibited anti-inflammatory activity by inhibiting the expression of NFκB, iNOS and Cox2. Phloretin maintained the epithelial integrity by regulating the expression of tight junction proteins ZO1, occludin, Claudin1 and JAM. Phloretin reduced LPS induced levels of Cox2 along with the reduction in Src expression which further regulated an expression of tight junction protein occludin. Phloretin in combination to sodium pyruvate exhibited potential anti-inflammatory activity via targeting NFkB signaling. Our findings paved a way to position phloretin as nutraceutical in preventing the occurrence of colitis and culmination of disease into colitis associated colorectal cancer.


Assuntos
Floretina , Junções Íntimas , Humanos , Ocludina/metabolismo , Ocludina/farmacologia , Células CACO-2 , Floretina/farmacologia , Floretina/metabolismo , Lipopolissacarídeos/farmacologia , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , NF-kappa B/metabolismo , Mucosa Intestinal/metabolismo
5.
J Med Virol ; 95(3): e28675, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36929720

RESUMO

Japanese encephalitis virus (JEV) is the foremost cause of viral encephalitis in Southeast Asia and Australia leading to approximately 68 000 clinical cases and about 13 600-20 400 deaths annually. Vaccination is not completely sure and safe. Despite this, no specific antiviral has been available or approved for JEV infection yet and treatment is generally symptomatic. Therefore, this study aims to examine the antiviral activity of natural compounds against JEV proteins. The antiviral activity of natural compounds was investigated via molecular docking, cytopathic effect (CPE) inhibition assay, western blotting, and indirect immunofluorescence assay. Physiochemical, pharmacokinetics, and toxicity analysis were evaluated for the safety and efficacy of natural compounds. Network pharmacology-based approaches have been used to study the molecular mechanisms of drug-target interactions. Molecular docking results suggested that the NS5 protein of JEV is the major target for natural compounds. Network pharmacology-based analysis revealed that these drugs majorly target IL6, AKT1, tumor necrosis factor (TNF), and PTGS2 to regulate key immune and inflammatory pathways such as nuclear factor kappa B, PI3K-Akt, and TNF signaling, during JEV infection. Our in vitro results show that among the natural compounds, curcumin provides the highest protection against JEV infection via reducing the JEV-induced CPE (IC50 = 5.90 ± 0.44 µM/mL), and reduces the expression of NS5 protein, IL6, AKT1, TNF-α, and PTGS2. However, other natural compounds also provide protection to some extent but their efficacy is lower compared to curcumin. Therefore, this study shows that natural compounds, mainly curcumin, may offer novel therapeutic avenues for the treatment of JEV via inhibiting key viral proteins and regulating crucial host pathways involved in JEV replication.


Assuntos
Curcumina , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/uso terapêutico , Simulação de Acoplamento Molecular , Curcumina/farmacologia , Curcumina/uso terapêutico , Interleucina-6 , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Replicação Viral
6.
Bioconjug Chem ; 34(7): 1316-1326, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37330989

RESUMO

Inflammation-related diseases affect large populations of people in the world and cause substantial healthcare burdens, which results in significant costs in time, material, and labor. Preventing or relieving uncontrolled inflammation is critical for the treatment of these diseases. Herein, we report a new strategy for alleviating inflammation by macrophage reprogramming via targeted reactive oxygen species (ROS) scavenging and cyclooxygenase-2 (COX-2) downregulation. As a proof of concept, we synthesize a multifunctional compound named MCI containing a mannose-based macrophage targeting moiety, an indomethacin (IMC)-based segment for inhibiting COX-2, and a caffeic acid (CAF)-based section for ROS clearance. As revealed by a series of in vitro experiments, MCI could significantly attenuate the expression of COX-2 and the level of ROS, leading to M1 to M2 macrophage reprogramming, as evidenced by the reduction and the elevation in the levels of pro-inflammatory M1 markers and anti-inflammatory M2 markers, respectively. Furthermore, in vivo experiments show MCI's promising therapeutic effects on rheumatoid arthritis (RA). Our work illustrates the success of targeted macrophage reprogramming for inflammation alleviation, which sheds light on the development of new anti-inflammatory drugs.


Assuntos
Inflamação , Macrófagos , Humanos , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Regulação para Baixo , Inflamação/tratamento farmacológico , Inflamação/metabolismo
7.
J Bone Miner Metab ; 41(6): 772-784, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37898986

RESUMO

INTRODUCTION: CCN1 is an immediate-early gene product pivotal for arthritis progression. We have previously shown that sirtuin 6 (SIRT6) inhibited hypoxia-induced CCN1 expression in osteoblasts. Herein we examined the contribution of cyclic AMP-responsive element binding protein (CREB)/CRE to this suppressive action and the influence of CCN1 on cyclooxygenase (COX) 2 synthesis. MATERIALS AND METHODS: MC3T3-E1 murine osteoblasts were cultured under normoxia (21% oxygen) or hypoxia (2% oxygen). Expressions of CCN1, phospho-CREB (Ser133), COX2 and relevant kinases were assessed by Western blot. SIRT6 was overexpressed in cultured osteoblasts and arthritic joints by a lentiviral-based technique. Activities of CCN1 gene promoter constructs were examined by luciferase reporter assay. Interaction between CREB and CCN1 promoter was assessed by chromatin immunoprecipitation (ChIP). Collagen-induced arthritis (CIA) was established in 20 rats to evaluate the effects of SIRT6 therapy on osteoblastic expressions of phospho-CREB, CCN1 and COX2. RESULTS: SIRT6 suppressed hypoxia-enhanced CCN1 expression and CREB phosphorylation. Attenuation of calcium/calmodulin-dependent protein kinase II (CaMKII) may be responsible for SIRT6-induced CREB inhibition. CRE at - 286 bp upstream of the ATG start codon was essential for CCN1 expression under hypoxia and SIRT6 reduced hypoxia-stimulated CREB/CRE interaction. Forced expression of CREB rescued SIRT6-suppressed CCN1 synthesis. CCN1 induced COX2 expression in osteoblasts. In rat CIA, the therapeutic effect of SIRT6 was accompanied by decreases in osteoblastic expressions of phospho-CREB, CCN1 and COX2. CONCLUSION: Our study indicated that the benefits of SIRT6 to inflammatory arthritis and bone resorption are at least partially derived from its modulation of CREB/CCN1/COX2 pathway in osteoblasts.


Assuntos
Artrite Experimental , Sirtuínas , Ratos , Camundongos , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Osteoblastos/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/farmacologia , Hipóxia , Artrite Experimental/genética , Artrite Experimental/metabolismo , Fosforilação , Oxigênio/metabolismo , Oxigênio/farmacologia , Sirtuínas/metabolismo , Sirtuínas/farmacologia , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia
8.
Arterioscler Thromb Vasc Biol ; 42(4): 444-461, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35236104

RESUMO

BACKGROUND: TP (thromboxane A2 receptor) plays an eminent role in the pathophysiology of endothelial dysfunction and cardiovascular disease. Moreover, its expression is reported to increase in the intimal layer of blood vessels of cardiovascular high-risk individuals. Yet it is unknown, whether TP upregulation per se has the potential to affect the homeostasis of the vascular endothelium. METHODS: We combined global transcriptome analysis, lipid mediator profiling, functional cell analyses, and in vivo angiogenesis assays to study the effects of endothelial TP overexpression or knockdown/knockout on the angiogenic capacity of endothelial cells in vitro and in vivo. RESULTS: Here we report that endothelial TP expression induces COX-2 (cyclooxygenase-2) in a Gi/o- and Gq/11-dependent manner, thereby promoting its own activation via the auto/paracrine release of TP agonists, such as PGH2 (prostaglandin H2) or prostaglandin F2 but not TxA2 (thromboxane A2). TP overexpression induces endothelial cell tension and aberrant cell morphology, affects focal adhesion dynamics, and inhibits the angiogenic capacity of human endothelial cells in vitro and in vivo, whereas TP knockdown or endothelial-specific TP knockout exerts opposing effects. Consequently, this TP-dependent feedback loop is disrupted by pharmacological TP or COX-2 inhibition and by genetic reconstitution of PGH2-metabolizing prostacyclin synthase even in the absence of functional prostacyclin receptor expression. CONCLUSIONS: Our work uncovers a TP-driven COX-2-dependent feedback loop and important effector mechanisms that directly link TP upregulation to angiostatic TP signaling in endothelial cells. By these previously unrecognized mechanisms, pathological endothelial upregulation of the TP could directly foster endothelial dysfunction, microvascular rarefaction, and systemic hypertension even in the absence of exogenous sources of TP agonists.


Assuntos
Células Endoteliais , Receptores de Tromboxanos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Células Endoteliais/metabolismo , Retroalimentação , Homeostase , Humanos , Receptores de Tromboxanos/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/genética , Tromboxano A2/metabolismo , Tromboxanos/metabolismo , Tromboxanos/farmacologia
9.
Biotechnol Appl Biochem ; 70(1): 106-119, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35231150

RESUMO

Non-small-cell lung cancer (NSCLC), occupying a great proportion of lung cancer, threatens the health of patients, and the cyclooxygenase-2 (COX-2) expression is found to be upregulated in lung cancer. Pterostilbene (PTE) is perceived as a novel method for clinical therapy due to its high performance. However, the mechanism underlying and the interaction between PTE and COX-2 remain vague. We simulated radiation circumstances and transfected cells with the interference of PTE and COX-2. Our results showed that radiation or PTE treatment alone restrained cell proliferation and viability while stimulating cell apoptosis, and the above properties were strengthened when the two were in combination. The COX-2 expression was promoted by radiation but was reduced by PTE. PTE reversed the effects of radiation on the COX-2 expression. COX-2 knockdown suppressed COX-2 expression and proliferation and enhanced apoptosis of cells suffering radiation, while COX-2 overexpression reversed the inhibition of PTE. Our study suggested PTE regulated NSCLC cell proliferation and apoptosis via targeting COX-2, which might shed a light on cancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral , Apoptose , Proliferação de Células
10.
Clin Lab ; 69(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912303

RESUMO

BACKGROUND: The goal was to investigate the inhibitory effect of formononetin, an active component in Astragalus membranaceus, on the pathogenesis and development of esophageal cancer and the mechanism of action. METHODS: The expression of COX-2 in cancer tissue and paracancerous tissue of patients with esophageal cancer detected early. C57BL/6 mice were used to construct a 4-nitroquinoline 1-oxide (4-NQO)-induced esophageal cancer model to verify the inhibitory effect of formononetin on the pathogenesis of esophageal cancer. Additionally, human esophageal cancer cells were treated with formononetin, and the effects on the proliferation and cell cycle of esophageal cancer cells were assessed by the CCK-8 assay and flow cytometry. Changes in the expression levels of cyclin D1 and COX-2 mRNA in cells were detected by RT-qPCR and western blot (WB) analysis. RESULTS: The expression level of COX-2 mRNA in esophageal cancer tissue was significantly higher than that in paracancerous tissue. In the mouse cancer model, the incidence of esophageal cancer in mice in the formononetin treatment group was significantly reduced at week 18 (0/15 vs. 2/15) and at week 24 (6/15 vs. 13/15) (all p < 0.05). Formononetin significantly inhibited the proliferation ability of KYSE170 and KYSE150 cells and inhibited the protein expression of COX-2 and cyclin D1 (both p < 0.05). CONCLUSIONS: Formononetin, an active component of Astragalus membranaceus, can prevent the pathogenesis and progression of esophageal cancer by reducing the expression of the inflammatory proteins COX-2 and cyclin D1.


Assuntos
Astragalus propinquus , Neoplasias Esofágicas , Humanos , Animais , Camundongos , Ciclo-Oxigenase 2/farmacologia , Proliferação de Células , Ciclina D1/genética , Ciclina D1/farmacologia , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral
11.
Endocr Regul ; 57(1): 25-36, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753665

RESUMO

Objective. Ovarian torsion is a gynecological emergency that occurs mostly during the female reproductive years due to ovarian masses or surgical manipulation. This work aims to explore the probable protective effect of leptin on rat ovaries due to ischemia-reperfusion (IR) injury. Methods. Wistar albino rats were divided into four groups: 1) control group; 2) ovarian IR group (OVIR); 3) leptin group I [OVIR + leptin (10 µg/kg body weight, b.w.)]; and 4) leptin group II (OVIR + leptin (100 µg/kg b.w.)]. Serum levels of estradiol and anti-Mullerian hormone (AMH) were measured. Levels of oxidative stress and inflammatory markers in ovarian tissue were determined along with the expression of sirtuin 1 (Sirt1), nuclear erythroid factor-2 (Nrf2), cyclooxygenase-2 (COX-2), nuclear factor kappa (NF-κB), toll like receptor-4 (TLR4), and caspase-3. Results. Serum estradiol and AMH levels were decreased with increased expression of COX-2, TLR4, caspase-3, and NF-κB and decreased expression of Sirt1and Nrf2 in ovary of the OVIR group, which were improved by exogenous administration of both leptin doses. Conclusion. Leptin administration dose-dependently reduced the severity of OVIR injury via modulation of Sirt-1/Nrf2 and TLR4/NF-kB/caspase-3 signaling pathways. Thus, leptin may be used as an adjuvant measure to prevent ovarian damage and improve the outcomes. However, clinical studies are needed to evaluate these results in humans.


Assuntos
NF-kappa B , Traumatismo por Reperfusão , Animais , Feminino , Ratos , Caspase 3/metabolismo , Caspase 3/farmacologia , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Estradiol/farmacologia , Estradiol/metabolismo , Leptina/farmacologia , Leptina/metabolismo , Fator 2 Relacionado a NF-E2 , NF-kappa B/metabolismo , Ovário , Ratos Wistar , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like
12.
Mol Cell Neurosci ; 122: 103759, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35901929

RESUMO

Microglia activation has been suggested as the key factor in neuro-inflammation and thus participates in neurological diseases. Although taurine exhibits anti-inflammatory and neuro-protective effects, its underlying epigenetic mechanism is unknown. In this study, taurine was administered to lipopolysaccharide (LPS)-treated mice and BV-2 cells. Behavioral test, morphological analyze, detection of microglia activation, and lysine demethylase 3a (KDM3a) measurements were performed to investigate the mechanism by which taurine regulates KDM3a and subsequently antagonizes microglia activation. Taurine improved the sociability of LPS-treated mice, inhibited microglia activation in the hippocampus, and reduced generation of brain inflammatory factors, such as interleukin-6, tumor necrosis factor-α, inducible nitric oxide synthase, and cyclooxygenase-2. Meanwhile, taurine suppressed the LPS-induced increase in microglial KDM3a, and increased the level of mono-, di- or tri-methylation of lysine 9 on histone H3 (H3K9me1/2/3). Furthermore, taurine inhibited the LPS-induced increase in KDM3a, elevated the H3K9me1/2/3 level, and reduced inflammatory factors and reactive oxygen species in a concentration-dependent manner in LPS-stimulated BV-2 cells. In conclusion, taurine inhibited KDM3a and microglia activation, thereby playing an anti-inflammatory role in LPS-treated mice and BV-2 cells.


Assuntos
Lipopolissacarídeos , Microglia , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Lipopolissacarídeos/toxicidade , Lisina , Camundongos , Microglia/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Taurina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
13.
An Acad Bras Cienc ; 95(2): e20201586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37018835

RESUMO

The aim of this study is to investigate the effect of metyrosine on ischemia-reperfusion (I/R) induced ovarian injury in rats in terms of biochemistry and histopathology. Rats were divided into: ovarian I/R (OIR), ovarian I/R+50 mg/kg metyrosine (OIRM) and sham (SG) operations. OIRM group received 50 mg/kg metyrosine one hour before the application of the anesthetic agent, OIR and SG group rats received equal amount of distilled water to be used as a solvent orally through cannula. Following the application of the anesthetic agent, ovaries of OIRM and OIR group rats were subjected to ischemia and reperfusion, each of which took two hours. This biochemical experiment findings revealed high levels of malondialdehyde (MDA) and cyclo-oxygenase-2 (COX-2) and low levels of total glutathione (tGSH), superoxide dismutase (SOD) and cyclo-oxygenase-1 (COX-1) in the ovarian tissue of OIR group, with significant histopathological injury. In metyrosine group, MDA and COX-2 levels were lower than the OIR group whereas tGSH, SOD and COX-1 levels were higher, with slighter histopathological injury. Our experimental findings indicate that metyrosine inhibits oxidative and pro-inflammatory damage associated with ovarian I/R in rats. These findings suggest that metyrosine could be useful in the treatment of ovarian injury associated with I/R.


Assuntos
Ovário , Traumatismo por Reperfusão , Feminino , Ratos , Animais , Ovário/metabolismo , alfa-Metiltirosina/metabolismo , alfa-Metiltirosina/farmacologia , Ratos Wistar , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Isquemia/metabolismo , Isquemia/patologia , Glutationa , Reperfusão , Superóxido Dismutase/metabolismo , Estresse Oxidativo
14.
Br Poult Sci ; 64(5): 614-624, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37334824

RESUMO

1. Fusarium tritici widely exists in a variety of grain feeds. The T-2 toxin is the main hazardous component produced by Fusarium tritici, making a serious hazard to poultry industry. Morin, belonging to the flavonoid family, can be extracted from mulberry plants and possesses anticancer, antioxidant and anti-inflammatory compounds, but whether morin protects chicks with T-2 toxin poisoning remains unclear. This experiment firstly established a chick model of T-2 toxin poisoning and then investigated the protective effects and mechanism of morin against T-2 toxin in chicks.2. The function of liver and kidney was measured by corresponding alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), blood urea nitrogen (BUN), creatinine (Cre) and uric acid (UA) kits. Histopathological changes were observed by haematoxylin-eosin staining. The status of oxidative stress was measured by MDA, SOD, CAT, GSH and GSH-PX kits. The mRNA levels of TNF-α, COX-2, IL-1ß, IL-6, caspase-1, caspase-3 and caspase-11 were measured by quantitative real-time PCR. Heterophil extracellular trap (HET) release was analysed by immunofluorescence and fluorescence microplate.3. The model with T-2 toxin poisoning in chicks was successfully established. Morin significantly decreased T-2 toxin-induced ALT, AST, ALP, BUN, Cre and UA, and improved T-2 toxin-induced liver cell rupture, liver cord disorder and kidney interstitial oedema. Oxidative stress analysis showed that morin ameliorated T-2 toxin-induced damage by reducing malondialdehyde (MDA), increasing superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and glutathione peroxidase (GSH-PX). The qRT-PCR analysis showed that morin reduced T-2 toxin-induced mRNA expressions of TNF-α, COX-2, IL-1ß, IL-6, caspase-1, caspase-3 and caspase-11. Moreover, morin significantly reduced the release of T-2 toxin-induced HET in vitro and in vivo.4. Morin can protect chicks from T-2 toxin poisoning by decreasing HETs, oxidative stress and inflammatory responses, which make it a useful compound against T-2 toxin poisoning in poultry feed.


Assuntos
Armadilhas Extracelulares , Toxina T-2 , Animais , Toxina T-2/toxicidade , Toxina T-2/metabolismo , Caspase 3/metabolismo , Caspase 3/farmacologia , Armadilhas Extracelulares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Interleucina-6/metabolismo , Galinhas/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Fígado , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/metabolismo , Superóxido Dismutase/metabolismo , RNA Mensageiro/metabolismo
15.
Mol Med ; 28(1): 121, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192693

RESUMO

BACKGROUND: Stent implantation-induced neointima formation is a dominant culprit in coronary artery disease treatment failure after percutaneous coronary intervention. Ferroptosis, an iron-dependent regulated cell death, has been associated with various cardiovascular diseases. However, the effect of ferroptosis on neointima formation remains unclear. METHODS: The mouse common right carotid arteries were ligated for 16 or 30 days, and ligated tissues were collected for further analyses. Primary rat vascular smooth muscle cells (VSMCs) were isolated from the media of aortas of Sprague-Dawley (SD) rats and used for in vitro cell culture experiments. RESULTS: Ferroptosis was positively associated with neointima formation. In vivo, RAS-selective lethal 3 (RSL3), a ferroptosis activator, aggravated carotid artery ligation-induced neointima formation and promoted VSMC phenotypic conversion. In contrast, a ferroptosis inhibitor, ferrostatin-1 (Fer-1), showed the opposite effects in mice. In vitro, RSL3 promoted rat VSMC phenotypic switching from a contractile to a synthetic phenotype, evidenced by increased contractile markers (smooth muscle myosin heavy chain and calponin 1), and decreased synthetic marker osteopontin. The induction of ferroptosis by RSL3 was confirmed by the increased expression level of ferroptosis-associated gene prostaglandin-endoperoxide synthase 2 (Ptgs2). The effect of RSL3 on rat VSMC phenotypic switching was abolished by Fer-1. Moreover, N-acetyl-L-cysteine (NAC), the reactive oxygen species inhibitor, counteracted the effect of RSL3 on the phenotypic conversion of rat VSMCs. CONCLUSIONS: Ferroptosis induces VSMC phenotypic switching and accelerates ligation-induced neointimal hyperplasia in mice. Our findings suggest inhibition of ferroptosis as an attractive strategy for limiting vascular restenosis.


Assuntos
Ferroptose , Neointima , Acetilcisteína/farmacologia , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Modelos Animais de Doenças , Hiperplasia/metabolismo , Ferro/metabolismo , Ferro/farmacologia , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Osteopontina/metabolismo , Osteopontina/farmacologia , Fenótipo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Miosinas de Músculo Liso/metabolismo
16.
Int J Neuropsychopharmacol ; 25(6): 512-523, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35229871

RESUMO

BACKGROUND: (R,S)-ketamine, an N-methyl-D-aspartate receptor antagonist, is frequently used as an anesthetic and as a rapid-acting antidepressant. We and others have reported that (R,S)-ketamine is prophylactic against stress in adult mice but have yet to test its efficacy in adolescent or aged populations. METHODS: Here, we administered saline or (R,S)-ketamine as a prophylactic at varying doses to adolescent (5-week-old) and aged (24-month-old) 129S6/SvEv mice of both sexes 1 week before a 3-shock contextual fear-conditioning (CFC) stressor. Following CFC, we assessed behavioral despair, avoidance, perseverative behavior, locomotion, and contextual fear discrimination. To assess whether the prophylactic effect could persist into adulthood, adolescent mice were injected with saline or varying doses of (R,S)-ketamine and administered a 3-shock CFC as a stressor 1 month later. Mice were then re-exposed to the aversive context 5 days later and administered behavioral tests as aforementioned. Brains were also processed to quantify Cyclooxygenase 2 expression as a proxy for inflammation to determine whether the prophylactic effects of (R,S)-ketamine were partially due to changes in brain inflammation. RESULTS: Our data indicate that (R,S)-ketamine is prophylactic at sex-specific doses in adolescent but not aged mice. (R,S)-ketamine attenuated learned fear and perseverative behavior in females, reduced behavioral despair in males, and facilitated contextual fear discrimination in both sexes. (R,S)-ketamine reduced Cyclooxygenase 2 expression specifically in ventral Cornu Ammonis region 3 of male mice. CONCLUSIONS: These findings demonstrate that prophylactic (R,S)-ketamine efficacy is sex, dose, and age dependent and will inform future studies investigating (R,S)-ketamine efficacy across the lifespan.


Assuntos
Ketamina , Animais , Antidepressivos/farmacologia , Ciclo-Oxigenase 2/farmacologia , Medo , Feminino , Ketamina/farmacologia , Masculino , Camundongos , Estresse Psicológico
17.
Biomarkers ; 27(7): 637-647, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35735023

RESUMO

INTRODUCTION: Protective effect of royal jelly (RJ) on fluoride-induced nephrotoxicity was investigated in this study. METHODS: 42 healthy male Wistar rats (n = 42, 8 weeks of age) were divided equally into 6 groups with 7 rats in each; (1) Group-1: Controls fed with standard diet; (2) Group-2: RJ [100 mg/kg] bw (body weight), by oral gavage; (3) Group-3: Fluoride [50 mg/kg] bw, in drinking water; (4) Group-4: Fluoride [100 mg/kg] bw, in drinking water; (5) Group-5: RJ [100 mg/kg] bw, by oral gavage + Fluoride [50 mg/kg] bw, in drinking water; (6) Group-6: RJ [100 mg/kg] bw, by oral gavage + Fluoride [100 mg/kg] bw, in drinking water. After 8 weeks, all rats were decapitated and their kidney tissues were removed for further analysis. The protein expression levels of caspase-3, caspase-6, caspase-9, Bcl-2, Bax, VEGF, GSK-3, BDNF, COX-2 and TNF-α proteins in kidney tissue were analysed by western blotting technique. RESULTS: RJ increased Bcl-2, COX-2, GSK-3, TNF-α and VEGF protein levels and a decreased caspase-3, caspase -6, caspase-9, Bax and BDNF protein levels in fluoride-treated rats. CONCLUSION: RJ application may have a promising therapeutical potential in the treatment of many diseases in the future by reducing kidney damage.


Assuntos
Ácidos Graxos , Nefropatias , Animais , Masculino , Ratos , Antioxidantes/metabolismo , Proteína X Associada a bcl-2/metabolismo , Biomarcadores , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Caspase 3/metabolismo , Caspase 6/metabolismo , Caspase 6/farmacologia , Caspase 9/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Fluoretos/toxicidade , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/farmacologia , Rim , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Nefropatias/prevenção & controle , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ácidos Graxos/farmacologia
18.
Pestic Biochem Physiol ; 187: 105202, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127053

RESUMO

Overproduction of free radicals and inflammation could lead to maneb (MB)- and paraquat (PQ)-induced toxicity in the polymorphonuclear leukocytes (PMNs). Cyclooxygenase-2 (COX-2), an inducible COX, is imperative in the pesticides-induced pathological alterations. However, its role in MB- and PQ-induced toxicity in the PMNs is not yet clearly deciphered. The current study explored the contribution of COX-2 in MB- and PQ-induced toxicity in the PMNs and the mechanism involved therein. Combined MB and PQ augmented the production of free radicals, lipid peroxides and activity of superoxide dismutase (SOD) in the rat PMNs. While combined MB and PQ elevated the expression of COX-2 protein, activation of nuclear factor-kappa B (NF-κB) and phosphorylation of c-Jun N-terminal kinase (JNK), release of mitochondrial cytochrome c and levels of procaspase-3/9 were attenuated in the PMNs. Celecoxib (CXB), a COX-2 inhibitor, ameliorated the combined MB and PQ-induced modulations in the PMNs. MB and PQ augmented the free radical generation, COX-2 protein expression, NF-κB activation and JNK phosphorylation and reduced the cell viability of cultured rat PMNs and human leukemic HL60. MB and PQ elevated mitochondrial cytochrome c release and poly (ADP-ribose) polymerase cleavage whilst procaspase-3/9 levels were attenuated in the cultured PMNs. MB and PQ also increased the levels of phosphorylated c-jun and caspase-3 activity in the HL60 cells. CXB; SP600125, a JNK-inhibitor and pyrrolidine dithiocarbamate (PDTC), a NF-κB inhibitor, rescued from MB and PQ-induced changes in the PMNs and HL60 cells. However, CXB offered the maximum protection among the three. The results show that COX-2 activates apoptosis in the PMNs following MB and PQ intoxication, which could be linked to NF-κB and JNK signaling.


Assuntos
Maneb , Praguicidas , Difosfato de Adenosina/metabolismo , Animais , Apoptose , Caspase 3/metabolismo , Celecoxib/metabolismo , Celecoxib/farmacologia , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Citocromos c/metabolismo , Radicais Livres/metabolismo , Radicais Livres/farmacologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/farmacologia , Peróxidos Lipídicos/metabolismo , Peróxidos Lipídicos/farmacologia , NF-kappa B/metabolismo , Neutrófilos/metabolismo , Estresse Oxidativo , Paraquat/toxicidade , Praguicidas/farmacologia , Ratos , Ribose/metabolismo , Ribose/farmacologia , Superóxido Dismutase/metabolismo
19.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142638

RESUMO

Childhood obesity is a growing problem in industrial societies and associated with increased leptin levels in serum and salvia. Orthodontic treatment provokes pressure and tension zones within the periodontal ligament, where, in addition to fibroblasts, macrophages are exposed to these mechanical loadings. Given the increasing number of orthodontic patients with these conditions, insights into the effects of elevated leptin levels on the expression profile of macrophages during mechanical strain are of clinical interest. Therefore, the aim of this in vitro study was to assess the influence of leptin on the expression profile of macrophages during simulated orthodontic treatment. RAW264.7 macrophages were incubated with leptin and lipopolysaccharides (LPS) from Porphyromonas gingivalis (P. gingivalis) or with leptin and different types of mechanical strain (tensile, compressive strain). Expression of inflammatory mediators including tumor necrosis factor (TNF), Interleukin-1-B (IL1B), IL6, and prostaglandin endoperoxide synthase (PTGS2) was assessed by RT-qPCR, ELISAs, and immunoblot. Without additional mechanical loading, leptin increased Tnf, Il1b, Il6, and Ptgs2 mRNA in RAW264.7 macrophages by itself and after stimulation with LPS. However, in combination with tensile or compressive strain, leptin reduced the expression and secretion of these inflammatory factors. By itself and in combination with LPS from P. gingivalis, leptin has a pro-inflammatory effect. Both tensile and compressive strain lead to increased expression of inflammatory genes. In contrast to its effect under control conditions or after LPS treatment, leptin showed an anti-inflammatory phenotype after mechanical stress.


Assuntos
Lipopolissacarídeos , Obesidade Infantil , Anti-Inflamatórios/farmacologia , Criança , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/farmacologia , Humanos , Mediadores da Inflamação/farmacologia , Interleucina-6/metabolismo , Leptina/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Porphyromonas gingivalis/metabolismo , RNA Mensageiro , Fator de Necrose Tumoral alfa/metabolismo
20.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409177

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) are considered in cancer therapy for their inhibitory effect on cyclooxygenase-2 (COX-2), which is overexpressed in most cancers. However, we found that NSAIDs as ligands of peroxisome proliferator-activated receptor-γ (PPARγ)-induced apoptosis independent of the COX-2 inhibition, and the process was mediated through activation of proline dehydrogenase/proline oxidase (PRODH/POX)-dependent generation of reactive oxygen species (ROS). This mitochondrial enzyme converts proline to ∆1-pyrroline-5-carboxylate (P5C) during which ATP or ROS is generated. To confirm the role of PRODH/POX in the mechanism of NSAID-induced apoptosis we obtained an MCF7 CRISPR/Cas9 PRODH/POX knockout breast cancer cell model (MCF7POK-KO). Interestingly, the studied NSAIDs (indomethacin and diclofenac) in MCF7POK-KO cells contributed to a more pronounced pro-apoptotic phenotype of the cells than in PRODH/POX-expressing MCF7 cells. The observed effect was independent of ROS generation, but it was related to the energetic disturbances in the cells as shown by an increase in the expression of AMPKα (sensor of cell energy status), GLUD1/2 (proline producing enzyme from glutamate), prolidase (proline releasing enzyme), PPARδ (growth supporting transcription factor) and a decrease in the expression of proline cycle enzymes (PYCR1, PYCRL), mammalian target of rapamycin (mTOR), and collagen biosynthesis (the main proline utilizing process). The data provide evidence that the studied NSAIDs induce PRODH/POX-dependent and independent apoptosis in MCF7 breast cancer cells.


Assuntos
Neoplasias da Mama , Prolina Oxidase , Anti-Inflamatórios não Esteroides/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Ciclo-Oxigenase 2/farmacologia , Feminino , Humanos , Células MCF-7 , Oxirredutases , Prolina/metabolismo , Prolina Oxidase/genética , Prolina Oxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA