Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nanotechnology ; 35(35)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38806018

RESUMO

Nanotechnology has gained immense popularity and observed rapid development due to the remarkable physio-chemical properties of nanoparticles (NPs) and related nanomaterials. The green production of NPs has many benefits over traditional techniques because the current procedures are expensive, time-consuming, and involve harmful substances that limit their applicability. This study aimed to use a novel green source, theSalsola imbricata(SI) plant, which is commonly found in Central Asia and known for its medicinal properties as a reducing and stabilizing agent for the synthesis of AgNPs. The current study also utilized efficient statistical design, the Plackett-Burman Design (PBD) of Experiment method to synthesize the NPs. The characterization of NPs was carried out using UV-Vis spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy (SEM). The PBD results showed that only two out of four factorsi.e.AgNO3concentration and incubation time, were significant for the synthesis of SI-AgNPs. While remaining factors, incubation temperature and plant extract: AgNO3ratio were non-significant. The SEM analysis result showed that SI-AgNPs had a size of 20-50 nm. The SI-AgNPs demonstrated strong antibacterial activity against oral pathogens such asS. mutans and Lactobacillus acidophilus, with the highest efficacy observed at a concentration of 2 mg ml-1. The addition of SI-AgNPs in glass ionomer cement significantly increased the antibacterial activity of GIC againstS. mutans. Based on the results of the current study, the plant based AgNPs can be further evaluated in detail as alternate antimicrobial agent either alone or in combination with other antimicrobial agents for different dental applications.


Assuntos
Antibacterianos , Cimentos de Ionômeros de Vidro , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Extratos Vegetais , Prata , Streptococcus mutans , Prata/química , Prata/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Nanopartículas Metálicas/química , Cimentos de Ionômeros de Vidro/química , Cimentos de Ionômeros de Vidro/farmacologia , Streptococcus mutans/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Lactobacillus acidophilus/efeitos dos fármacos , Química Verde/métodos , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Clin Oral Investig ; 28(1): 97, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225525

RESUMO

OBJECTIVE: The study aims to evaluate the effect of a glass ionomer cement (GIC; Fuji 9 Gold Label, GC) with added calcium orthophosphate particles and a calcium silicate cement (CSC; Biodentine, Septodont) regarding ion release, degradation in water, mineral content, and mechanical properties of demineralized dentin samples. METHODS: GIC, GIC + 5% DCPD (dicalcium phosphate dihydrate), GIC + 15% DCPD, GIC + 5% ß-TCP (tricalcium phosphate), GIC + 15% ß-TCP (by mass), and CSC were evaluated for Ca2+/Sr2+/F- release in water for 56 days. Cement mass loss was evaluated after 7-day immersion in water. Partially demineralized dentin disks were kept in contact with materials while immersed in simulated body fluid (SBF) at 37 °C for 56 days. The "mineral-to-matrix ratio" (MMR) was determined by ATR-FTIR spectroscopy. Dentin hardness and elastic modulus were obtained by nanoindentation. Samples were observed under scanning and transmission electron microscopy. Data were analyzed by ANOVA/Tukey test (α = 0.05). RESULTS: Ca2+ release from CSC and GIC (µg/cm2) were 4737.0 ± 735.9 and 13.6 ± 1.6, respectively. In relation to the unmodified GIC, the addition of DCPD or ß-TCP increased ion release (p < 0.001). Only the dentin disks in contact with CSC presented higher MMR (p < 0.05) and mechanical properties than those restored with a resin composite used as control (p < 0.05). Mass loss was similar for GIC and CSC; however, the addition of DCPD or ß-TCP increased GIC degradation (p < 0.05). CONCLUSION: Despite the increase in ion release, the additional Ca2+ sources did not impart remineralizing capability to GIC. Both unmodified GIC and CSC showed similar degradation in water. CLINICAL RELEVANCE: CSC was able to promote dentin remineralization.


Assuntos
Compostos de Cálcio , Fosfatos de Cálcio , Cálcio , Cimentos de Ionômeros de Vidro , Silicatos , Cimentos de Ionômeros de Vidro/farmacologia , Cimentos de Ionômeros de Vidro/química , Cálcio/análise , Fosfatos/análise , Cimento de Silicato/análise , Cimento de Silicato/farmacologia , Dentina , Água/química , Teste de Materiais
3.
BMC Oral Health ; 24(1): 732, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926776

RESUMO

OBJECTIVE: This study aimed to compare the remineralization effects of a calcium silicate-based cement (Biodentine) and of a glass ionomer cement (GIC: Fuji IX) on artificially demineralized dentin. METHODS: Four standard cavities were prepared in dentin discs prepared from 34 extracted sound human third molars. In each disc, one cavity was covered with an acid-resistant varnish before demineralization (Group 1). The specimens were soaked in a chemical demineralization solution for 96 h to induce artificial carious lesions. Thereafter, one cavity each was filled with Biodentine (Group 2) and GIC (Group 3), respectively, and one carious lesion was left unrestored as a negative control (Group 4). Next, specimens were immersed in simulated body fluid (SBF) for 21 days. After cross-sectioning the specimens, the Ca/P ratio was calculated in each specimen by using scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX). Finally, data were analyzed using repeated-measures ANOVA with post-hoc Bonferroni correction. RESULTS: Both cement types induced dentin remineralization as compared to Group 4. The Ca/P ratio was significantly higher in Group 2 than in Group 3 (p < 0.05). CONCLUSION: The dentin lesion remineralization capability of Biodentine is higher than that of GIC, suggesting the usefulness of the former as a bioactive dentin replacement material. CLINICAL RELEVANCE: Biodentine has a higher remineralization ability than that of GIC for carious dentin, and its interfacial properties make it a promising bioactive dentin restorative material.


Assuntos
Compostos de Cálcio , Dentina , Cimentos de Ionômeros de Vidro , Microscopia Eletrônica de Varredura , Silicatos , Remineralização Dentária , Compostos de Cálcio/uso terapêutico , Compostos de Cálcio/farmacologia , Cimentos de Ionômeros de Vidro/uso terapêutico , Cimentos de Ionômeros de Vidro/farmacologia , Humanos , Silicatos/uso terapêutico , Silicatos/farmacologia , Dentina/efeitos dos fármacos , Remineralização Dentária/métodos , Técnicas In Vitro , Espectrometria por Raios X , Cálcio , Teste de Materiais , Cárie Dentária , Fósforo
4.
Eur J Oral Sci ; 131(5-6): e12948, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583060

RESUMO

The study investigated the ability of bioactive materials used to restore enamel and dentine specimens to prevent caries. Enamel (n = 50) and dentine (n = 50) specimens were obtained from bovine incisors, prepared, and randomly allocated to one of five groups according to the restorative treatment: alkasite without adhesive system; alkasite with adhesive system; high viscosity glass ionomer cement; resin composite; no restoration; negative control group. Specimens were restored, exposed to a thermal cycling aging protocol, sterilized, and exposed to a cariogenic challenge induced by Streptococcus mutans and then submitted to surface and subsurface microhardness tests and polarized light microscopy to verify the caries lesion development in enamel or dentine surrounding the restorative materials. Data were analyzed using one-way ANOVA. In enamel and dentine, glass ionomer cement, alkasite without and with adhesive system presented a lower percentage surface microhardness loss than resin composite and negative control. Enamel subsurface microhardness presented no statistically significant differences between glass ionomer cement, alkasite without and with adhesive system. Glass ionomer cement also did not present statistically significant differences from resin composite and the negative control. In dentine, glass ionomer cement showed the highest subsurface microhardness values. In conclusion, bioactive restorative materials provide greater protection to enamel and dentine against surface caries development than resin composite.


Assuntos
Cárie Dentária , Streptococcus mutans , Animais , Bovinos , Suscetibilidade à Cárie Dentária , Restauração Dentária Permanente/métodos , Cárie Dentária/prevenção & controle , Cárie Dentária/patologia , Esmalte Dentário , Materiais Dentários , Resinas Compostas/farmacologia , Cimentos de Ionômeros de Vidro/farmacologia , Dentina , Cimentos de Resina
5.
Med Sci Monit ; 29: e939065, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36683310

RESUMO

BACKGROUND This study aimed to compare the antibacterial activity, cytotoxicity, and fluoride release of 4 different glass ionomer cements (GIC). MATERIAL AND METHODS A total of 200 samples were prepared: Riva Silver, a silver-reinforced GIC; Equia Forte HT, a glass hybrid GIC; ChemFil Rock, a zinc-added GIC; and Ketac™ Molar Easymix. Using the agar diffusion test for antibacterial activity, 30 samples from each group were analyzed for Streptococcus mutans, Lactobacillus acidophilus, and Actinomyces naeslundii. The areas around the samples where no bacterial growth occurred were digitally measured and recorded. For cytotoxicity analysis, the WST-1 test was performed on 10 samples from each group using the L929 mouse fibroblast cell line. The fluoride release property was evaluated using an ion-selective electrode method on 10 samples from each group. RESULTS The group that used Ketac™ Molar Easymix showed the lowest antibacterial activity against S. mutans, L. acidophilus, and A. naeslundii. In all 3 days of cytotoxicity testing, the group that used Riva Silver was found to be the least toxic material, while the group that used ChemFil Rock did not have viable cells after the 1st day. In all 4 materials, fluoride release values gradually increased since the first day, with Ketac™ Molar Easymix having the highest fluoride release. CONCLUSIONS Of all the GICs tested, Ketac™ Molar Easymix demonstrated the least antibacterial activity despite having the highest fluoride release, while Riva Silver was found to be the least cytotoxic material.


Assuntos
Fluoretos , Prata , Animais , Camundongos , Fluoretos/farmacologia , Prata/farmacologia , Antibacterianos/farmacologia , Cimentos de Ionômeros de Vidro/farmacologia , Cimentos Dentários , Odontologia , Teste de Materiais
6.
Caries Res ; 57(2): 177-188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36878216

RESUMO

The aim of this study was to conduct a three-dimensional (3D) evaluation of radiographic changes after indirect pulp capping (IPC) with silver diamine fluoride (SDF) with or without potassium iodide (KI) and resin-modified glass ionomer cement (RMGIC) in deep carious young permanent molars using cone-beam computed tomography (CBCT). 108 first permanent molars with deep occlusal cavitated caries lesions, in forty-nine 6- to 9-year-old children, were randomly allocated to one of 3 groups (n = 36) and treated with SDF+KI, SDF, and RMGIC as IPC materials. CBCT scans were taken at 0 and 12 months to assess tertiary dentin formation (volume and grey level intensity), increase in root length, and pathological changes such as secondary caries, periapical radiolucency, internal resorption, and obliteration of the pulp. The 3D image analysis procedures were performed using ITK-SNAP and 3D Slicer CMF. Comparisons were made using analysis of variance with a fixed effect for treatment and random effects for patient and patient-by-treatment to account for within-patient correlations. A two-sided 5% significance level was used. There were no significant differences among the three groups regarding tertiary dentin volume (p = 0.712) and grey level intensity (p = 0.660), increase in root length (p = 0.365), prevention of secondary caries (p = 0.63), and periapical radiolucency (p = 0.80) in the analysed 69 CBCT scans. The study did not find differences among the groups regarding quality and quantity of tertiary dentin formed, increase in root length, absence of secondary caries, and other signs of failure as shown by CBCT. Clinical Significance: The results show no significant differences in radiographic outcomes (quality and quantity of tertiary dentin formed, increase in root length, absence of secondary caries, and other signs of failure) when using SDF+KI, SDF, and RMGIC in IPC. The results of this study can help guide treatment decision-making regarding use of SDF and SDF+KI as IPC materials in deep cavitated lesions.


Assuntos
Cárie Dentária , Iodeto de Potássio , Criança , Humanos , Iodeto de Potássio/farmacologia , Iodeto de Potássio/uso terapêutico , Capeamento da Polpa Dentária/métodos , Dentina/diagnóstico por imagem , Dentina/patologia , Fluoretos Tópicos/farmacologia , Fluoretos Tópicos/uso terapêutico , Cárie Dentária/diagnóstico por imagem , Cárie Dentária/prevenção & controle , Cárie Dentária/patologia , Compostos de Amônio Quaternário/farmacologia , Compostos de Amônio Quaternário/uso terapêutico , Cimentos de Ionômeros de Vidro/farmacologia , Cimentos de Ionômeros de Vidro/uso terapêutico
7.
Am J Dent ; 36(2): 91-94, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37076299

RESUMO

PURPOSE: To analyze the effects of surface pre-reacted glass-ionomer (S-PRG) filler eluate on polymicrobial biofilm metabolism and live bacterial count. METHODS: Biofilm was formed using glass disks 12 mm in diameter and 150 µm in thickness. Stimulated saliva was diluted 50-fold with buffered McBain 2005 and cultured in anaerobic conditions at 37°C for 24 hours in anaerobic conditions (10% CO2, 10% H2, 80% N2) to form the biofilm on the glass disks. Following this, biofilms were treated with (1) sterilized deionized water (control), (2) 0.2% chlorhexidine digluconate (0.2CX), (3) S-PRG eluate diluted to 10% (10% S-PRG),(4) 20% S-PRG,(5) 40% S-PRG,(6) 80% S-PRG,and (7) S-PRG for 15 minutes (n= 10 per group), and samples were subdivided into two groups for measuring live bacterial count immediately after treatment and after 48 hours of culturing after treatment. The pH of the spent medium collected at the time of culture medium exchange was tested. RESULTS: Immediately after treatment, the live bacterial count of samples treated with drug solutions was significantly lower than the control (8.2 × 108), and the counts of samples treated with 0.2CX (1.3 × 107) and S-PRG (1.4 × 107) were significantly lower than those treated with diluted S-PRG (4.4 × 107-1.4 x 108). When the medium was measured again after culturing for 48 hours, growth was continually inhibited in all treatment groups and the bacterial count of samples treated with S-PRG (9.2 x 107) was significantly lower than that of samples treated with 0.2CX (1.8 × 108). The pH of spent medium immediately after treatment was significantly higher in groups treated with drug solutions (5.5-6.8) than the controls (4.2), and it was highest in the S-PRG-treated group (6.8). Thereafter, when culturing was continued for 48 hours, the pH of all treated groups decreased; however, the pH of the S-PRG-treated group was significantly higher than groups treated with other drug solutions. CLINICAL SIGNIFICANCE: Surface pre-reacted glass-ionomer (S-PRG) filler eluate not only reduced the live bacterial count of polymicrobial biofilm, but also continuously inhibited the lowering of pH.


Assuntos
Biofilmes , Dióxido de Silício , Resinas Acrílicas , Antibacterianos/farmacologia , Cimentos de Ionômeros de Vidro/farmacologia
8.
Am J Dent ; 36(6): 297-302, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092747

RESUMO

PURPOSE: To assess the effects of adhesive resin cement, obturation material and dentin location on the retention of glass fiber-reinforced resin composite (FRRC) posts. METHODS: 60 root canals in single rooted teeth were obturated with three different protocols (n= 20), including no obturation material (Control), GuttaFlow and Gutta-percha. Spaces were prepared for glass (FRCR) posts. Subgroups of the roots (n=10) were allocated for receiving posts luted with RelyX Unicem or Calibra resin cements. The specimens were mounted in plastic molds using epoxy resin. They were sectioned transversely to obtain three 1 mm-thick coronal, middle and apical slabs. Post retention was measured using a universal testing machine. The push-out test was performed at a crosshead speed of 0.5 mm/minute until post dislodgement occurred. Dislodged posts were examined microscopically to evaluate the mode of failure. Data were analyzed using univariate tests to reveal the effects of dependent variables and their interactions on post retention. Tukey test was used to determine significant differences for post retention in obturation material and dentin location groups. P-values ≤ 0.05 were considered significant. RESULTS: The adhesive resin cement, obturation material, dentin location and cement obturation materials interaction affected post retention. The mean bond strength was higher for posts cemented with RelyX Unicem than for those cemented with Calibra resin cements. Post retention in coronal locations was significantly superior to middle or apical locations. The failure mode was primarily mixed. CLINICAL SIGNIFICANCE: When using RelyX Unicem cement for luting glass fiber-reinforced root canal posts, complete removal of all obturation materials from the post space significantly improves the retention. Although Calibra cement is less technique sensitive than RelyX Unicem resin cement, it produces notably lower retention of fiber-reinforced glass root canal posts.


Assuntos
Colagem Dentária , Técnica para Retentor Intrarradicular , Cimentos de Resina/química , Resinas Compostas/química , Cimentos Dentários , Vidro , Cimentos de Ionômeros de Vidro/farmacologia , Dentina , Teste de Materiais , Colagem Dentária/métodos , Análise do Estresse Dentário , Cavidade Pulpar
9.
Am J Dent ; 36(3): 136-142, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37364191

RESUMO

PURPOSE: To determine caries inhibition potential of conventional and bulk-fill bioactive composites around restorations. METHODS: Enamel and dentin blocks were prepared using a diamond saw under water irrigation, finished (SiC, 600- and 800-grit) and polished (SiC 1,200, final polish= 0.2 µm). Blocks were then selected through enamel surface microhardness, and enamel and dentin standard cavities were restored (n=10/group) with conventional bioactive composite (Beautifil II, BTF), bulk-fill bioactive composite (Activa BioACTIVE, ACT), glass-ionomer cement (Ionofil Plus, ION), conventional composite (GrandioSO, GSO), and bulk-fill composite (Admira Fusion X-TRA, ADM). Afterwards, the blocks were subjected to pH cycling: 4 hours in demineralization and 20 hours in remineralization solutions for 7 days, before being cut in the middle. One half was used to calculate the carious lesion area (ΔS) using values obtained by cross-sectional microhardness (CSMH) testing. The other half was submitted to polarized light microscopy (PLM) and scanning electron microscopy (SEM). The % of internal gap formation (GAP) of restorations' replicas were analyzed under SEM. Data were analyzed by ANOVA and Tukey test (α= 5%). RESULTS: In terms of CSMH, ION group exhibited the lowest ΔS values, with no significant difference to ADM. The composites BTF and ACT were similar to each other (P< 0.05) and to their negative controls (GSO and ADM), respectively. ION showed lower caries formation under PLM, whereas the GSO group presented a greater demineralized area. ION presented the highest % of internal GAP formation. Bioactive composites (BTF and ACT) were similar to their corresponding conventional ones (GSO and ADM) in terms of GAP formation. CLINICAL SIGNIFICANCE: The glass-ionomer cement was more effective in inhibiting the formation of caries lesions around restorations. Because of the glass-ionomer cement's limited application in high load-bearing areas, the conventional bioactive composite would be a promising clinical choice.


Assuntos
Resinas Compostas , Cárie Dentária , Humanos , Suscetibilidade à Cárie Dentária , Cárie Dentária/prevenção & controle , Cimentos de Ionômeros de Vidro/farmacologia , Esmalte Dentário , Restauração Dentária Permanente/efeitos adversos , Teste de Materiais
10.
Odontology ; 111(2): 328-341, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36070157

RESUMO

Glass ionomers (GICs), because of their qualities, are in a good position to be modified to resist masticatory stresses as permanent posterior restoration and prevent recurrent caries. The purpose of the present study was to evaluate the effect of adding quaternized chitosan-coated mesoporous silica nanoparticles (HTCC@MSNs) to conventional GIC on its mechanical properties, antimicrobial activity and fluoride release and the effect of 1- and 3-month water aging on the studied properties. HTCC@MSNs was synthesized, added to commercially available conventional GIC at 1%, 3%, and 5% by weight forming three experimental groups and compared with plain GIC as a control group. Flexural strength, modulus, Vickers microhardness and wear volumes were evaluated. Antibacterial activity was tested against Streptococcus mutans and fluoride release in de-ionized water was measured. All properties were evaluated before and after one- and three-month aging (n = 10 specimens per test/per time). Two-way ANOVA was used for statistical analysis. Characterization confirmed successful preparation of HTCC@MSNs. The flexural strength, modulus, hardness and wear resistance of the GICs improved significantly by adding 1-3% HTCC@MSNs, while 5% HTCC@MSNs group showed no significant difference compared to control group. Bacterial inhibition zones and fluoride release increased proportionally to the amount of filler added. Mechanical properties were improved by artificial aging. Fluoride release values, and bacterial inhibition zones decreased with aging for all groups. HTCC@MSNs as a filler with the optimized proportion provides strengthening and antibacterial effect. In addition, aging is an important factor to be considered in evaluating experimental fillers.


Assuntos
Quitosana , Nanopartículas , Fluoretos/farmacologia , Quitosana/farmacologia , Cimentos de Ionômeros de Vidro/farmacologia , Antibacterianos/farmacologia , Água , Teste de Materiais
11.
BMC Oral Health ; 23(1): 777, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872523

RESUMO

BACKGROUND: Conventional glass ionomer cements (GICs) are currently the most widely used dental cements due to their chemical bonding into tooth structure, release of fluoride, and ease of manipulation and usage. One of their drawbacks is their low mechanical properties and high solubility. Carbon nanotubes (CNTs) could be utilized in dentistry due to their several potential applications. CNTs can be used as fillers to reinforce polymers or other materials. Additionally, silver (Ag) nanoparticles are highly effective at preventing dental biofilm and enhancing mechanical properties. OBJECTIVES: The aim of the present in vitro study is to evaluate the compressive strength, surface microhardness, solubility, and antimicrobial effect of the conventional GIC reinforced with manual blending of 0.01 wt.% Ag doped CNT fillers. METHODS: The control group was prepared by mixing dental GIC powder with their liquid. The innovatively reinforced dental GIC group was prepared by incorporating 0.01 wt.% Ag doped CNT fillers into the GIC powder prior to liquid mixing. Chemical characterization was performed by XRF. While, physical characterization was done by measuring film thickness and initial setting time. The compressive strength, surface microhardness, solubility, and antimicrobial effect against Streptococcus mutans bacteria using an agar diffusion test were measured. The data was statistically analyzed using independent sample t-tests to compare mean values of compressive strength, surface microhardness, solubility, and antimicrobial activity (p ≤ 0.05). RESULTS: The results revealed that innovative reinforced GIC with 0.01 wt.% Ag doped CNT fillers showed higher mean compressive strength, surface microhardness, and antimicrobial effect values than the conventional GIC control group; there was no significant difference between different groups in relation to the solubility test (P ≤ 0.05). CONCLUSION: The innovatively reinforced GIC with 0.01 wt.% Ag doped CNT fillers had the opportunity to be used as an alternative to conventional GIC dental cements.


Assuntos
Anti-Infecciosos , Nanotubos de Carbono , Humanos , Força Compressiva , Prata/farmacologia , Solubilidade , Pós , Cimentos de Ionômeros de Vidro/farmacologia , Cimentos de Ionômeros de Vidro/química , Cimentos Dentários , Anti-Infecciosos/farmacologia , Teste de Materiais
12.
Niger J Clin Pract ; 26(4): 404-411, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37203103

RESUMO

Background: Streptococcus mutans is a Gram-positive opportunistic bacterial pathogen and that causes dental caries and then restorative treatment remains the best clinical practice approach to repair and prevent dental caries. Aims: This study compared the antimicrobial performance of resin modified glass ionomer cement (RM-GIC) and ACTIVA restoratives by evaluating the S. mutans count, pH levels, and plaque index (PI) scores before and on the 7th day of restoration, and then determined the antimicrobial activities against S. mutans ATCC 25175 in both restoratives in vitro. Materials and Methods: Seventy-eight eligible Saudi female participants, with class II carious lesions, were randomly distributed into RM-GIC and ACTIVA restorative groups. We evaluated the S. mutans count by the serial dilution technique and salivary pH by using a portable pH meter. The PI scores were determined by Silness-Löe method and the antibacterial activity by the agar well diffusion method. Statistical analysis of normality distribution was performed with the Kolmogorov-Smirnov and the difference between groups was an analysis by paired t-test. In addition, the independent sample was compared with the independent samples t-test. Results: Both groups reduced the S. mutans count, pH acidity, and PI scores, and this reduction was statistically significant on the 7th day of restoration (P < 0.05), preference for ACTIVA. The in vitro antibacterial activity against S. mutans ATCC 25175 showed a non-significant difference between both bioactive restorative materials (P < 0.05). Conclusion: The novel application of ACTIVA restorative material is a promising option for patients at risk of caries.


Assuntos
Cárie Dentária , Feminino , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cárie Dentária/prevenção & controle , Cárie Dentária/tratamento farmacológico , Cimentos de Ionômeros de Vidro/farmacologia , Cimentos de Ionômeros de Vidro/uso terapêutico , Streptococcus mutans
13.
Int Endod J ; 55(10): 1053-1065, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35862467

RESUMO

AIM: To assess in vitro the effect of two novel phase separated borosilicate glasses (PSBS) in the system SiO2 -B2 O3 -K2 O-CaO-Al2 O3 on dental pulp cells; and to compare their bioactivity and mechanical properties to a conventional fluoroaluminosilicate glass ionomer cement namely FUJI IX. METHODOLOGY: The cytocompatibility assessment of the two novel borosilicate glasses, one without alumina (PSBS8) and one containing alumina (PSBS16), was performed on cultured primary human pulp cells. Alamar blue assay was used to assess cell metabolic activity and cell morphology was evaluated by confocal imaging. The bioactivity in Stimulated Body Fluid was also evaluated after 1 and 3 weeks of immersion using SEM-EDX analysis. Vickers microhardness and flexural strength were assessed after incorporating the glass particles into a commercial glass ionomer cement (GIC) liquid containing both polyacrylic and polybasic carboxylic acid. RESULTS: The data revealed that the two borosilicate glasses enhanced cell viability ratios at all-time points in both direct and indirect contact assays. After 3 days of contact, PSBS8 without alumina showed higher viability rate (152%) compared to the PSBS16 containing alumina (145%) and the conventional glass ionomer particles (117%). EDX analysis confirmed an initial Ca/P ratio of 2.1 for 45S5K and 2.08 for PSBS8 without alumina after 3 weeks of immersion. The cement prepared using PSBS8 showed significantly higher Vickers hardness values (p = .001) than that prepared using PSBS16 (46.6 vs. 36.7 MPa). After 24 h of maturation, PSBS8 (without alumina) exhibited a flexural strength of 12.9 MPa compared to a value of 16.4 MPa for the commercial control. PSBS8 without alumina had a higher strength than PSBS16 with alumina, after 1 and 7 days of maturation (p = .001). CONCLUSIONS: The present in vitro results demonstrated that the borosilicate bioactive glass without alumina enhanced pulp cell viability, spreading and acellular bioactivity better than the conventional GIC and the experimental borosilicate glass containing alumina.


Assuntos
Polpa Dentária , Dióxido de Silício , Óxido de Alumínio , Cimentos de Ionômeros de Vidro/farmacologia , Humanos , Teste de Materiais
14.
Molecules ; 27(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35056835

RESUMO

In the present study, Zingiber officinale is used for the synthesis of Zingiber officinale capped silver nanoparticles (ZOE-AgNPs) and compares the antimicrobial efficacy and compressive strength of conventional glass ionomer cement (GIC) combined with ZOE-AgNPs, lyophilized miswak, and chlorhexidine diacetate (CHX) against oral microbes. Five groups of the disc-shaped GIC specimens were prepared. Group A: lyophilized miswak and GIC combination, Group B: ZOE-AgNPs and GIC combinations, Group C: CHX and GIC combination, Group D: ZOE-AgNPs + CHX + GIC; Group E: Conventional GIC. Results confirmed the successful formation of ZOE-AgNPs that was monitored by UV-Vis sharp absorption spectra at 415 nm. The X-ray diffractometer (XRD) and transmission electron microscope (TEM) results revealed the formation of ZOE-AgNPs with a mean size 10.5-14.12 nm. The peaks of the Fourier transform infrared spectroscopy (FTIR) were appearing the involvement of ZOE components onto the surface of ZOE-AgNPs which played as bioreducing, and stabilizing agents. At a 24-h, one-week and three-week intervals, Group D showed the significantly highest mean inhibitory zones compared to Group A, Group B, and Group C. At microbe-level comparison, Streptococcus mutans and Staphylococcus aureus were inhibited significantly by all the specimens tested except group E when compared to Candida albicans. Group D specimens showed slightly higher (45.8 ± 5.4) mean compressive strength in comparison with other groups. The combination of GIC with ZOE-AgNPs and chlorhexidine together enhanced its antimicrobial efficacy and compressive strength compared to GIC with ZOE-AgNPs or lyophilized miswak or chlorhexidine combination alone. The present study revealed that The combination of GIC with active components of ZOE-AgNPs and chlorhexidine paves the way to lead its effective nano-dental materials applications.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Clorexidina/farmacologia , Cimentos de Ionômeros de Vidro/farmacologia , Nanopartículas Metálicas/administração & dosagem , Salvadoraceae/química , Prata/química , Antibacterianos/química , Zingiber officinale/química , Teste de Materiais , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia
15.
J Evid Based Dent Pract ; 22(3): 101755, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36162880

RESUMO

ARTICLE TITLE AND BIBLIOGRAPHIC INFORMATION: Bonding of Glass-Ionomer Cement and Adhesives to Silver Diamine Fluoride-treated Dentin: An Updated Systematic Review and Meta-Analysis. Fröhlich TT, Botton G, Rocha RO. J Adhes Dent. 2022;24(1):29-38. SOURCE OF FUNDING: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. TYPE OF STUDY/DESIGN: Systematic review with meta-analysis of data.


Assuntos
Colagem Dentária , Cimentos de Ionômeros de Vidro , Dentina , Fluoretos Tópicos , Cimentos de Ionômeros de Vidro/química , Cimentos de Ionômeros de Vidro/farmacologia , Humanos , Teste de Materiais , Compostos de Amônio Quaternário , Compostos de Prata
16.
Clin Oral Investig ; 25(2): 683-690, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32968946

RESUMO

OBJECTIVES: This study investigated the ability of a surface prereacted glass-ionomer (S-PRG) coating material to inhibit the biofilm formation and demineralization of dentin. METHODS AND MATERIALS: Dentin specimens were randomly divided into three groups: (1) no coating (control), (2) S-PRG filler-containing coat, and (3) a nonS-PRG filler-containing coat. Streptococcus mutans biofilms were grown on the dentin surfaces in a microcosm for 20 h. Then, the quantity of bacteria and water-insoluble glucan in the retained biofilm on the dentin surface were measured. Regarding demineralization inhibition test, specimens were demineralized for 5 days then sectioned into halves and observed under confocal laser scanning microscope (CLSM). One-way ANOVA and Tukey's HSD were used for statistical analysis. RESULTS: The estimated mean surface roughness for specimens in the S-PRG group was statistically significantly higher than the estimates for both the nonS-PRG and the control group specimens. The quantity of bacteria and water-insoluble glucan/mm2 revealed that the S-PRG group prevented biofilm formation and bacterial adhesion to the dentin surface compared with the control and nonS-PRG groups. The S-PRG group recorded the highest acid-resistance ability with no surface loss. CONCLUSION: Application of S-PRG barrier coat on dentin surfaces can inhibit biofilm formation as well as protecting the dentin surface against demineralization. CLINICAL SIGNIFICANCE: Coating material containing S-PRG fillers might be used for caries prevention, through inhibiting biofilm formation, enhancing mineralization, and reducing acidic attack by cariogenic bacteria.


Assuntos
Cárie Dentária , Desmineralização do Dente , Biofilmes , Dentina , Cimentos de Ionômeros de Vidro/farmacologia , Humanos , Streptococcus mutans , Desmineralização do Dente/prevenção & controle
17.
Clin Oral Investig ; 25(4): 1879-1888, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32803440

RESUMO

OBJECTIVES: This study was designed to investigate the antimicrobial properties, compressive strength and fluoride release capacities of high-viscous glass ionomer cements (GICs) after incorporation of cinnamon and thyme essential oils. MATERIALS AND METHODS: Experimental-modified GICs were prepared by incorporation of thyme and cinnamon essential oils into the liquid phase of the cement at 5 and 10% v/v. Antimicrobial activity against selected microorganisms (Streptococcus mutans and Candida albicans) was done using direct contact test. Compressive strength of the four new formulations and control group was tested using a universal testing machine while fluoride ion release was measured by ion-selective electrode at 1, 7, 14 and 28 days. Data analysis and comparisons between groups were performed using factorial and one-way ANOVA and Tukey's tests. RESULTS: All newly formulated GICs exhibited significantly higher inhibitory effects against both Streptococcus mutans and Candida albicans growth when compared to conventional GIC (p < 0.05). Compressive strength of 5% cinnamon-modified GIC (MPa = 160.32 ± 6.66) showed no significant difference when compared with conventional GIC (MPa = 165.7 ± 5.769) (p value > 0.05). Cumulative fluoride-releasing pattern at days 7, 14, and 28 were 10% cinnamon-GIC > 5% thyme-GIC > 5% cinnamon-GIC > 10% thyme GIC > conventional GIC. CONCLUSIONS: Incorporation of 5% cinnamon oil into glass ionomer resulted in better antimicrobial effects against S. mutans and C. albicans and increased fluoride-release capacity without jeopardizing its compressive strength. CLINICAL RELEVANCE: The 5% cinnamon-modified GIC appears to be a promising alternative restorative material in ART technique.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Força Compressiva , Fluoretos , Cimentos de Ionômeros de Vidro/farmacologia , Teste de Materiais , Óleos Voláteis/farmacologia
18.
Molecules ; 26(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652887

RESUMO

Although several natural plants and mixtures have been known and used over the centuries for their antibacterial activity, few have been thoroughly explored in the field of dentistry. Thus, the aim of this study was to enhance the antimicrobial activity of a conventional glass ionomer cement (GIC) with natural plant extracts. The effect of this alteration on the bond strength and film thickness of glass ionomer cement was evaluated and related to an 0.5% chlorohexidine modified GIC. Olive leaves (Olea europaea), Fig tree (Ficus carica), and the leaves and roots of Miswak (Salvadora persica) were used to prepare an alcoholic extract mixture. The prepared extract mixture after the evaporation of the solvent was used to modify a freeze-dried glass ionomer cement at three different extracts: water mass ratios 1:2, 1:1, and 2:1. An 0.5% chlorhexidine diacetate powder was added to a conventional GIC for the preparation of a positive control group (CHX-GIC) for comparison. The bond strength to dentine was assessed using a material-testing machine at a cross head speed of 0.5 mm/min. Failure mode was analyzed using a stereomicroscope at 12× magnification. The cement film thickness was evaluated in accordance with ISO standard 9917-1. The minimum number of samples in each group was n = 10. Statistical analysis was performed using a Kruskal-Wallis test followed by Dunn's post hoc test for pairwise comparison. There was a statistically insignificant difference between the median shear bond strength (p = 0.046) of the control group (M = 3.4 MPa), and each of the CHX-GIC (M = 1.7 MPa), and the three plant modified groups of 1:2, 1:1, 2:1 (M = 5.1, 3.2, and 4.3 MPa, respectively). The CHX-GIC group showed statistically significant lower median values compared to the three plant-modified groups. Mixed and cohesive failure modes were predominant among all the tested groups. All the tested groups (p < 0.001) met the ISO standard of having less than 25 µm film thickness, with the 2:1 group (M = 24 µm) being statistically the highest among all the other groups. The plant extracts did not alter either the shear bond strength or the film thickness of the GIC and thus might represent a promising additive to GICs.


Assuntos
Anti-Infecciosos/química , Cimentos Dentários/química , Cimentos de Ionômeros de Vidro/química , Extratos Vegetais/farmacologia , Anti-Infecciosos/farmacologia , Clorexidina/química , Clorexidina/farmacologia , Cimentos Dentários/farmacologia , Dentina/química , Dentina/microbiologia , Ficus/química , Cimentos de Ionômeros de Vidro/farmacologia , Humanos , Teste de Materiais , Olea/química , Extratos Vegetais/química , Folhas de Planta/química , Raízes de Plantas/química , Salvadoraceae/química , Resistência ao Cisalhamento , Propriedades de Superfície
19.
BMC Oral Health ; 21(1): 412, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34416896

RESUMO

BACKGROUND: White spot lesions (WSLs) often occur in orthodontic treatments. The objectives of this study were to develop a novel orthodontic cement using particles of nano silver (NAg), N-acetylcysteine (NAC) and 2-methacryloyloxyethyl phosphorylcholine (MPC), and to investigate the effects on bonding strength, biofilms and biocompatibility. METHODS: A commercial resin-modified glass ionomer cement (RMGIC) was modified by adding NAg, NAC and MPC. The unmodified RMGIC served as the control. Enamel bond strength and cytotoxicity of the cements were investigated. The protein repellent behavior of cements was also evaluated. The metabolic assay, lactic acid production assay and colony-forming unit assay of biofilms were used to determine the antibacterial capability of cements. RESULTS: The new bioactive cement with NAg, NAC and MPC had clinically acceptable bond strength and biocompatibility. Compared to commercial control, the new cement suppressed metabolic activity and lactic acid production of biofilms by 59.03% and 70.02% respectively (p < 0.05), reduced biofilm CFU by 2 logs (p < 0.05) and reduced protein adsorption by 76.87% (p < 0.05). CONCLUSIONS: The new cement with NAg, NAC and MPC had strong antibacterial capability, protein-repellent ability and acceptable biocompatibility. The new cement is promising to protect enamel from demineralization during orthodontic treatments.


Assuntos
Colagem Dentária , Braquetes Ortodônticos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Cimentos Dentários , Esmalte Dentário , Cimentos de Ionômeros de Vidro/farmacologia , Humanos , Teste de Materiais , Cimentos de Resina
20.
Biofouling ; 36(9): 1090-1099, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33349036

RESUMO

A previous study has reported that a novel fluoro-zinc-silicate glass ionomer cement (Caredyne Restore) showed superior anti-biofilm effects by interfering with bacterial adhesion. However, the active ions may degrade with time. This study aimed to assess the valid anti-biofilm effects of Caredyne Restore after being aged by water immersion for 3 weeks. Streptococcus mutans biofilm was allowed to grow on the surface before and after water aging for 24 h using a modified Robbins device flow-cell system. The results showed water aging promoted biofilm formation. Insufficient amount of fluoride and zinc ions were released from Caredyne Restore after water aging under neutral pH condition. An acidic pH is needed to exert effective anti-biofilm properties. As the release of active ions from Caredyne Restore will gradually decrease after the restoration,  the restoration may not prevent biofilm formation after 3 weeks while neutral pH is maintained by the buffering capacity of saliva.


Assuntos
Biofilmes , Fluoretos/farmacologia , Cimentos de Ionômeros de Vidro/farmacologia , Silicatos , Streptococcus mutans , Água , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA