Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.669
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 37: 201-224, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30576253

RESUMO

The engagement of a T cell with an antigen-presenting cell (APC) or activating surface results in the formation within the T cell of several distinct actin and actomyosin networks. These networks reside largely within a narrow zone immediately under the T cell's plasma membrane at its site of contact with the APC or activating surface, i.e., at the immunological synapse. Here we review the origin, organization, dynamics, and function of these synapse-associated actin and actomyosin networks. Importantly, recent insights into the nature of these actin-based cytoskeletal structures were made possible in several cases by advances in light microscopy.


Assuntos
Actinas/metabolismo , Actomiosina/metabolismo , Células Apresentadoras de Antígenos/metabolismo , Citoesqueleto/metabolismo , Sinapses Imunológicas/metabolismo , Linfócitos T/metabolismo , Animais , Apresentação de Antígeno , Humanos , Ativação Linfocitária
2.
Annu Rev Immunol ; 34: 243-64, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26907217

RESUMO

Galectins are a family of mammalian carbohydrate-binding proteins expressed by many cell types. Galectins can function intracellularly and can also be secreted to bind to cell surface glycoconjugate counterreceptors. Some galectins are made by immune cells, whereas other galectins are secreted by different cell types, such as endothelial or epithelial cells, and bind to immune cells to regulate immune responses. Galectin binding to a single glycan ligand is a low-affinity interaction, but the multivalency of galectins and the glycan ligands presented on cell surface glycoproteins results in high-avidity binding that can reversibly scaffold or cluster these glycoproteins. Galectin binding to a specific glycoprotein counterreceptor is regulated in part by the repertoire of glycosyltransferase enzymes (which make the glycan ligands) expressed by that cell, and the effect of galectin binding results from clustering or retention of specific glycoprotein counterreceptors bearing these specific ligands.


Assuntos
Galectinas/metabolismo , Glicosiltransferases/metabolismo , Imunidade , Animais , Carboidratos/imunologia , Citoesqueleto , Galectinas/imunologia , Glicoproteínas/metabolismo , Humanos , Ligação Proteica , Agregação de Receptores
3.
Cell ; 186(14): 2956-2958, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37419084

RESUMO

Membrane tension has been proposed to mechanically couple processes along the cell's boundary. In this issue of Cell, De Belly et al. show that local protrusion or contraction elicit a global membrane tension increase within seconds, whereas tension perturbations that engage only the membrane remain localized.


Assuntos
Citoesqueleto , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Células Cultivadas
4.
Cell ; 186(9): 1912-1929.e18, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37044097

RESUMO

The spectrin-based membrane skeleton is a ubiquitous membrane-associated two-dimensional cytoskeleton underneath the lipid membrane of metazoan cells. Mutations of skeleton proteins impair the mechanical strength and functions of the membrane, leading to several different types of human diseases. Here, we report the cryo-EM structures of the native spectrin-actin junctional complex (from porcine erythrocytes), which is a specialized short F-actin acting as the central organizational unit of the membrane skeleton. While an α-/ß-adducin hetero-tetramer binds to the barbed end of F-actin as a flexible cap, tropomodulin and SH3BGRL2 together create an absolute cap at the pointed end. The junctional complex is strengthened by ring-like structures of dematin in the middle actin layers and by patterned periodic interactions with tropomyosin over its entire length. This work serves as a structural framework for understanding the assembly and dynamics of membrane skeleton and offers insights into mechanisms of various ubiquitous F-actin-binding factors in other F-actin systems.


Assuntos
Citoesqueleto , Eritrócitos , Animais , Humanos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Espectrina/análise , Espectrina/metabolismo , Suínos
5.
Cell ; 186(4): 693-714, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36803602

RESUMO

Decades of research have identified genetic factors and biochemical pathways involved in neurodegenerative diseases (NDDs). We present evidence for the following eight hallmarks of NDD: pathological protein aggregation, synaptic and neuronal network dysfunction, aberrant proteostasis, cytoskeletal abnormalities, altered energy homeostasis, DNA and RNA defects, inflammation, and neuronal cell death. We describe the hallmarks, their biomarkers, and their interactions as a framework to study NDDs using a holistic approach. The framework can serve as a basis for defining pathogenic mechanisms, categorizing different NDDs based on their primary hallmarks, stratifying patients within a specific NDD, and designing multi-targeted, personalized therapies to effectively halt NDDs.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/patologia , Proteostase , Agregação Patológica de Proteínas/metabolismo , Morte Celular , Citoesqueleto/metabolismo
6.
Cell ; 186(21): 4710-4727.e35, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37774705

RESUMO

Polarized cells rely on a polarized cytoskeleton to function. Yet, how cortical polarity cues induce cytoskeleton polarization remains elusive. Here, we capitalized on recently established designed 2D protein arrays to ectopically engineer cortical polarity of virtually any protein of interest during mitosis in various cell types. This enables direct manipulation of polarity signaling and the identification of the cortical cues sufficient for cytoskeleton polarization. Using this assay, we dissected the logic of the Par complex pathway, a key regulator of cytoskeleton polarity during asymmetric cell division. We show that cortical clustering of any Par complex subunit is sufficient to trigger complex assembly and that the primary kinetic barrier to complex assembly is the relief of Par6 autoinhibition. Further, we found that inducing cortical Par complex polarity induces two hallmarks of asymmetric cell division in unpolarized mammalian cells: spindle orientation, occurring via Par3, and central spindle asymmetry, depending on aPKC activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Polaridade Celular , Técnicas Citológicas , Mitose , Animais , Citoesqueleto/metabolismo , Mamíferos/metabolismo , Microtúbulos/metabolismo , Proteína Quinase C/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
7.
Cell ; 186(24): 5308-5327.e25, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37922900

RESUMO

Mammalian oocytes are filled with poorly understood structures called cytoplasmic lattices. First discovered in the 1960s and speculated to correspond to mammalian yolk, ribosomal arrays, or intermediate filaments, their function has remained enigmatic to date. Here, we show that cytoplasmic lattices are sites where oocytes store essential proteins for early embryonic development. Using super-resolution light microscopy and cryoelectron tomography, we show that cytoplasmic lattices are composed of filaments with a high surface area, which contain PADI6 and subcortical maternal complex proteins. The lattices associate with many proteins critical for embryonic development, including proteins that control epigenetic reprogramming of the preimplantation embryo. Loss of cytoplasmic lattices by knocking out PADI6 or the subcortical maternal complex prevents the accumulation of these proteins and results in early embryonic arrest. Our work suggests that cytoplasmic lattices enrich maternally provided proteins to prevent their premature degradation and cellular activity, thereby enabling early mammalian development.


Assuntos
Oócitos , Proteínas , Gravidez , Animais , Feminino , Oócitos/metabolismo , Proteínas/metabolismo , Embrião de Mamíferos/metabolismo , Citoesqueleto , Ribossomos , Desenvolvimento Embrionário , Mamíferos
8.
Cell ; 185(19): 3461-3463, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36113424

RESUMO

In this issue of Cell, Kreutzberger and colleagues report the near-atomic-resolution, cryo-EM structures of the supercoiled filaments of both bacterial and archaeal motility machines. Despite the lack of homology, the supercoiled filament structures reveal shared fundamental features of prokaryotic locomotion and represent a prime example of convergent evolution.


Assuntos
Archaea , Citoesqueleto , Bactérias , Microscopia Crioeletrônica
9.
Cell ; 185(19): 3638-3638.e1, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36113430

RESUMO

Cells are continuously exposed to tissue-specific extrinsic forces that are counteracted by cell-intrinsic force generation through the actomyosin cytoskeleton and alterations in the material properties of various cellular components, including the nucleus. Forces impact nuclei both directly through inducing deformation, which is sensed by various mechanosensitive components of the nucleus, as well as indirectly through the actomyosin cytoskeleton and mechanosensitive pathways activated in the cytoplasm. To view this SnapShot, open or download the PDF.


Assuntos
Actomiosina , Mecanotransdução Celular , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Mecanotransdução Celular/fisiologia
10.
Nat Rev Mol Cell Biol ; 25(4): 290-308, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38172611

RESUMO

The Rho GTPases - RHOA, RAC1 and CDC42 - are small GTP binding proteins that regulate basic biological processes such as cell locomotion, cell division and morphogenesis by promoting cytoskeleton-based changes in the cell cortex. This regulation results from active (GTP-bound) Rho GTPases stimulating target proteins that, in turn, promote actin assembly and myosin 2-based contraction to organize the cortex. This basic regulatory scheme, well supported by in vitro studies, led to the natural assumption that Rho GTPases function in vivo in an essentially linear matter, with a given process being initiated by GTPase activation and terminated by GTPase inactivation. However, a growing body of evidence based on live cell imaging, modelling and experimental manipulation indicates that Rho GTPase activation and inactivation are often tightly coupled in space and time via signalling circuits and networks based on positive and negative feedback. In this Review, we present and discuss this evidence, and we address one of the fundamental consequences of coupled activation and inactivation: the ability of the Rho GTPases to self-organize, that is, direct their own transition from states of low order to states of high order. We discuss how Rho GTPase self-organization results in the formation of diverse spatiotemporal cortical patterns such as static clusters, oscillatory pulses, travelling wave trains and ring-like waves. Finally, we discuss the advantages of Rho GTPase self-organization and pattern formation for cell function.


Assuntos
Citoesqueleto , Proteínas rho de Ligação ao GTP , Proteínas rho de Ligação ao GTP/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Transdução de Sinais , Movimento Celular , Proteínas rac1 de Ligação ao GTP/metabolismo
11.
Cell ; 184(20): 5089-5106.e21, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34555357

RESUMO

Microglia are the CNS resident immune cells that react to misfolded proteins through pattern recognition receptor ligation and activation of inflammatory pathways. Here, we studied how microglia handle and cope with α-synuclein (α-syn) fibrils and their clearance. We found that microglia exposed to α-syn establish a cellular network through the formation of F-actin-dependent intercellular connections, which transfer α-syn from overloaded microglia to neighboring naive microglia where the α-syn cargo got rapidly and effectively degraded. Lowering the α-syn burden attenuated the inflammatory profile of microglia and improved their survival. This degradation strategy was compromised in cells carrying the LRRK2 G2019S mutation. We confirmed the intercellular transfer of α-syn assemblies in microglia using organotypic slice cultures, 2-photon microscopy, and neuropathology of patients. Together, these data identify a mechanism by which microglia create an "on-demand" functional network in order to improve pathogenic α-syn clearance.


Assuntos
Estruturas da Membrana Celular/metabolismo , Microglia/metabolismo , Proteólise , alfa-Sinucleína/metabolismo , Actinas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Citoesqueleto/metabolismo , Regulação para Baixo , Feminino , Humanos , Inflamação/genética , Inflamação/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microglia/patologia , Microglia/ultraestrutura , Mitocôndrias/metabolismo , Nanotubos , Agregados Proteicos , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma/genética
12.
Cell ; 184(15): 4016-4031.e22, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34081922

RESUMO

Cross-presentation of antigens from dead tumor cells by type 1 conventional dendritic cells (cDC1s) is thought to underlie priming of anti-cancer CD8+ T cells. cDC1 express high levels of DNGR-1 (a.k.a. CLEC9A), a receptor that binds to F-actin exposed by dead cell debris and promotes cross-presentation of associated antigens. Here, we show that secreted gelsolin (sGSN), an extracellular protein, decreases DNGR-1 binding to F-actin and cross-presentation of dead cell-associated antigens by cDC1s. Mice deficient in sGsn display increased DNGR-1-dependent resistance to transplantable tumors, especially ones expressing neoantigens associated with the actin cytoskeleton, and exhibit greater responsiveness to cancer immunotherapy. In human cancers, lower levels of intratumoral sGSN transcripts, as well as presence of mutations in proteins associated with the actin cytoskeleton, are associated with signatures of anti-cancer immunity and increased patient survival. Our results reveal a natural barrier to cross-presentation of cancer antigens that dampens anti-tumor CD8+ T cell responses.


Assuntos
Apresentação Cruzada/imunologia , Gelsolina/metabolismo , Imunidade , Lectinas Tipo C/metabolismo , Neoplasias/imunologia , Receptores Imunológicos/metabolismo , Receptores Mitogênicos/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apresentação Cruzada/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Gelsolina/química , Gelsolina/deficiência , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mutação/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Ligação Proteica/efeitos dos fármacos , Análise de Sobrevida
13.
Nat Rev Mol Cell Biol ; 24(2): 142-161, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36168065

RESUMO

The ability of animal cells to sense, adhere to and remodel their local extracellular matrix (ECM) is central to control of cell shape, mechanical responsiveness, motility and signalling, and hence to development, tissue formation, wound healing and the immune response. Cell-ECM interactions occur at various specialized, multi-protein adhesion complexes that serve to physically link the ECM to the cytoskeleton and the intracellular signalling apparatus. This occurs predominantly via clustered transmembrane receptors of the integrin family. Here we review how the interplay of mechanical forces, biochemical signalling and molecular self-organization determines the composition, organization, mechanosensitivity and dynamics of these adhesions. Progress in the identification of core multi-protein modules within the adhesions and characterization of rearrangements of their components in response to force, together with advanced imaging approaches, has improved understanding of adhesion maturation and turnover and the relationships between adhesion structures and functions. Perturbations of adhesion contribute to a broad range of diseases and to age-related dysfunction, thus an improved understanding of their molecular nature may facilitate therapeutic intervention in these conditions.


Assuntos
Adesão Celular , Citoesqueleto , Matriz Extracelular , Integrinas , Animais , Adesão Celular/fisiologia , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Adesões Focais/metabolismo , Integrinas/metabolismo , Transdução de Sinais , Aderências Teciduais/patologia
14.
Annu Rev Cell Dev Biol ; 37: 23-41, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34186005

RESUMO

The purpose of this review is to explore self-organizing mechanisms that pattern microtubules (MTs) and spatially organize animal cell cytoplasm, inspired by recent experiments in frog egg extract. We start by reviewing conceptual distinctions between self-organizing and templating mechanisms for subcellular organization. We then discuss self-organizing mechanisms that generate radial MT arrays and cell centers in the absence of centrosomes. These include autocatalytic MT nucleation, transport of minus ends, and nucleation from organelles such as melanosomes and Golgi vesicles that are also dynein cargoes. We then discuss mechanisms that partition the cytoplasm in syncytia, in which multiple nuclei share a common cytoplasm, starting with cytokinesis, when all metazoan cells are transiently syncytial. The cytoplasm of frog eggs is partitioned prior to cytokinesis by two self-organizing modules, protein regulator of cytokinesis 1 (PRC1)-kinesin family member 4A (KIF4A) and chromosome passenger complex (CPC)-KIF20A. Similar modules may partition longer-lasting syncytia, such as early Drosophila embryos. We end by discussing shared mechanisms and principles for the MT-based self-organization of cellular units.


Assuntos
Centrossomo , Microtúbulos , Animais , Centrossomo/metabolismo , Citocinese , Citoesqueleto , Complexo de Golgi , Microtúbulos/metabolismo
15.
Annu Rev Cell Dev Biol ; 37: 285-310, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34314591

RESUMO

Nonmuscle myosin II (NMII) is a multimeric protein complex that generates most mechanical force in eukaryotic cells. NMII function is controlled at three main levels. The first level includes events that trigger conformational changes that extend the complex to enable its assembly into filaments. The second level controls the ATPase activity of the complex and its binding to microfilaments in extended NMII filaments. The third level includes events that modulate the stability and contractility of the filaments. They all work in concert to finely control force generation inside cells. NMII is a common endpoint of mechanochemical signaling pathways that control cellular responses to physical and chemical extracellular cues. Specific phosphorylations modulate NMII activation in a context-dependent manner. A few kinases control these phosphorylations in a spatially, temporally, and lineage-restricted fashion, enabling functional adaptability to the cellular microenvironment. Here, we review mechanisms that control NMII activity in the context of cell migration and division.


Assuntos
Citoesqueleto , Miosina Tipo II , Citoesqueleto de Actina/metabolismo , Movimento Celular/genética , Citoesqueleto/metabolismo , Miosina Tipo II/química , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Transdução de Sinais
16.
Nat Rev Mol Cell Biol ; 23(8): 541-558, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35383336

RESUMO

Microtubules are polarized cytoskeletal filaments that serve as tracks for intracellular transport and form a scaffold that positions organelles and other cellular components and modulates cell shape and mechanics. In animal cells, the geometry, density and directionality of microtubule networks are major determinants of cellular architecture, polarity and proliferation. In dividing cells, microtubules form bipolar spindles that pull chromosomes apart, whereas in interphase cells, microtubules are organized in a cell type-specific fashion, which strongly correlates with cell physiology. In motile cells, such as fibroblasts and immune cells, microtubules are organized as radial asters, whereas in immotile epithelial and neuronal cells and in muscles, microtubules form parallel or antiparallel arrays and cortical meshworks. Here, we review recent work addressing how the formation of such microtubule networks is driven by the plethora of microtubule regulatory proteins. These include proteins that nucleate or anchor microtubule ends at different cellular structures and those that sever or move microtubules, as well as regulators of microtubule elongation, stability, bundling or modifications. The emerging picture, although still very incomplete, shows a remarkable diversity of cell-specific mechanisms that employ conserved building blocks to adjust microtubule organization in order to facilitate different cellular functions.


Assuntos
Citoesqueleto , Microtúbulos , Animais , Transporte Biológico , Diferenciação Celular , Citoesqueleto/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Organelas/metabolismo
17.
Nat Rev Mol Cell Biol ; 23(9): 583-602, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35513718

RESUMO

As the home of cellular genetic information, the nucleus has a critical role in determining cell fate and function in response to various signals and stimuli. In addition to biochemical inputs, the nucleus is constantly exposed to intrinsic and extrinsic mechanical forces that trigger dynamic changes in nuclear structure and morphology. Emerging data suggest that the physical deformation of the nucleus modulates many cellular and nuclear functions. These functions have long been considered to be downstream of cytoplasmic signalling pathways and dictated by gene expression. In this Review, we discuss an emerging perspective on the mechanoregulation of the nucleus that considers the physical connections from chromatin to nuclear lamina and cytoskeletal filaments as a single mechanical unit. We describe key mechanisms of nuclear deformations in time and space and provide a critical review of the structural and functional adaptive responses of the nucleus to deformations. We then consider the contribution of nuclear deformations to the regulation of important cellular functions, including muscle contraction, cell migration and human disease pathogenesis. Collectively, these emerging insights shed new light on the dynamics of nuclear deformations and their roles in cellular mechanobiology.


Assuntos
Núcleo Celular , Cromatina , Diferenciação Celular , Núcleo Celular/genética , Cromatina/metabolismo , Citoesqueleto/metabolismo , Humanos , Transdução de Sinais
18.
Cell ; 178(1): 12-25, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31251912

RESUMO

There is increasing evidence that both mechanical and biochemical signals play important roles in development and disease. The development of complex organisms, in particular, has been proposed to rely on the feedback between mechanical and biochemical patterning events. This feedback occurs at the molecular level via mechanosensation but can also arise as an emergent property of the system at the cellular and tissue level. In recent years, dynamic changes in tissue geometry, flow, rheology, and cell fate specification have emerged as key platforms of mechanochemical feedback loops in multiple processes. Here, we review recent experimental and theoretical advances in understanding how these feedbacks function in development and disease.


Assuntos
Fenômenos Biomecânicos/fisiologia , Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Retroalimentação Fisiológica , Animais , Tamanho Celular , Citoesqueleto/fisiologia , Matriz Extracelular/fisiologia , Humanos , Conformação Proteica , Reologia
19.
Cell ; 177(7): 1771-1780.e12, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31199917

RESUMO

Cargo trafficking along microtubules is exploited by eukaryotic viruses, but no such examples have been reported in bacteria. Several large Pseudomonas phages assemble a dynamic, tubulin-based (PhuZ) spindle that centers replicating phage DNA sequestered within a nucleus-like structure. Here, we show that capsids assemble on the membrane and then move rapidly along PhuZ filaments toward the phage nucleus for DNA packaging. The spindle rotates the phage nucleus, distributing capsids around its surface. PhuZ filaments treadmill toward the nucleus at a constant rate similar to the rate of capsid movement and the linear velocity of nucleus rotation. Capsids become trapped along mutant static PhuZ filaments that are defective in GTP hydrolysis. Our results suggest a transport and distribution mechanism in which capsids attached to the sides of filaments are trafficked to the nucleus by PhuZ polymerization at the poles, demonstrating that the phage cytoskeleton evolved cargo-trafficking capabilities in bacteria.


Assuntos
Proteínas de Bactérias , Citoesqueleto , DNA Viral , Fagos de Pseudomonas , Pseudomonas , Tubulina (Proteína) , Vírion , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , DNA Viral/biossíntese , DNA Viral/genética , Pseudomonas/genética , Pseudomonas/metabolismo , Pseudomonas/virologia , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Vírion/genética , Vírion/metabolismo
20.
Cell ; 176(1-2): 73-84.e15, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30612742

RESUMO

Local translation meets protein turnover and plasticity demands at synapses, however, the location of its energy supply is unknown. We found that local translation in neurons is powered by mitochondria and not by glycolysis. Super-resolution microscopy revealed that dendritic mitochondria exist as stable compartments of single or multiple filaments. To test if these mitochondrial compartments can serve as local energy supply for synaptic translation, we stimulated individual synapses to induce morphological plasticity and visualized newly synthesized proteins. Depletion of local mitochondrial compartments abolished both the plasticity and the stimulus-induced synaptic translation. These mitochondrial compartments serve as spatially confined energy reserves, as local depletion of a mitochondrial compartment did not affect synaptic translation at remote spines. The length and stability of dendritic mitochondrial compartments and the spatial functional domain were altered by cytoskeletal disruption. These results indicate that cytoskeletally tethered local energy compartments exist in dendrites to fuel local translation during synaptic plasticity.


Assuntos
Mitocôndrias/metabolismo , Neurônios/metabolismo , Biossíntese de Proteínas/fisiologia , Animais , Citoesqueleto/metabolismo , Dendritos/metabolismo , Espinhas Dendríticas/metabolismo , Feminino , Masculino , Mitocôndrias/fisiologia , Plasticidade Neuronal/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA