Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
BMC Plant Biol ; 24(1): 22, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166716

RESUMO

BACKGROUND: Floral patterns are crucial for insect pollination and plant reproduction. Generally, once these patterns are established, they exhibit minimal changes under natural circumstances. However, the Clematis cultivar' Vyvyan Pennell', the apetalous lineage in the Ranunculaceae family, produces two distinct types of flowers during different seasons. The regulatory mechanism responsible for this phenomenon remains largely unknown. In this study, we aim to shed light on this floral development with shifting seasonal patterns by conducting extensive morphological, transcriptomic, and hormone metabolic analyses. Our findings are anticipated to contribute valuable insights into the diversity of flowers in the Ranunculaceae family. RESULTS: The morphological analysis revealed that the presence of extra petaloid structures in the spring double perianth was a result of the transformation of stamens covered with trichomes during the 5th developmental stage. A de novo reference transcriptome was constructed by comparing buds and organs within double and single perianth from both seasons. A total of 209,056 unigenes were assembled, and 5826 genes were successfully annotated in all six databases. Among the 69,888 differentially expressed genes from the comparative analysis, 48 genes of utmost significance were identified. These critical genes are associated with various aspects of floral development. Interestingly, the A-, B-, and C-class genes exhibited a wider range of expression and were distinct within two seasons. The determination of floral organ identity was attributed to the collaborative functioning of all the three classes genes, aligning with a modified "fading border model". The phytohormones GA3, salicylic acid, and trans-zeatin riboside may affect the formation of the spring double perianth, whereas GA7 and abscisic acid may affect single flowers in autumn. CONCLUSIONS: We presumed that the varying temperatures between the two seasons served as the primary factor in the alteration of floral patterns, potentially affecting the levels of plant hormones and expressions of organ identity genes. However, a more thorough investigation is necessary to fully comprehend the entire regulatory network. Nonetheless, our study provides some valuable informations for understanding the underlying mechanism of floral pattern alterations in Clematis.


Assuntos
Clematis , Estações do Ano , Clematis/genética , Clematis/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Flores , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Mol Biol ; 106(6): 569-587, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34260001

RESUMO

KEY MESSAGE: Our results provide insights into heat response mechanisms among Clematis species. Overexpressing CvHSFA2 enhanced the heat resistance of yeast and silencing NbHSFA2 reduced the heat resistance of tobacco. Clematis species are commonly grown in western and Japanese gardens. Heat stress can inhibit many physiological processes mediating plant growth and development. The mechanism regulating responses to heat has been well characterized in Arabidopsis thaliana and some crops, but not in horticultural plants, including Clematis species. In this study, we found that Clematis alpina 'Stolwijk Gold' was heat-sensitive whereas Clematis vitalba and Clematis viticella 'Polish Spirit' were heat-tolerant based on the physiological analyses in heat stress. Transcriptomic profiling identified a set of heat tolerance-related genes (HTGs). Consistent with the observed phenotype in heat stress, 41.43% of the differentially expressed HTGs between heat treatment and control were down-regulated in heat-sensitive cultivar Stolwijk Gold, but only 9.80% and 20.79% of the differentially expressed HTGs in heat resistant C. vitalba and Polish Spirit, respectively. Co-expression network, protein-protein interaction network and phylogenetic analysis revealed that the genes encoding heat shock transcription factors (HSFs) and heat shock proteins (HSPs) may played an essential role in Clematis resistance to heat stress. Two clades of heat-induced CvHSFs were further identified by phylogenetic tree, motif analysis and qRT-PCR. Ultimately, we proposed that overexpressing CvHSFA2-2 could endow yeast with high temperature resistance and silencing its homologous gene NbHSFA2 reduced the heat resistance of tobacco. This study provides first insights into the diversity of the heat response mechanisms among Clematis species.


Assuntos
Clematis/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Temperatura Alta , Termotolerância/genética , Clematis/classificação , Clematis/metabolismo , Análise por Conglomerados , Ontologia Genética , Redes Reguladoras de Genes/genética , Fatores de Transcrição de Choque Térmico/classificação , Fatores de Transcrição de Choque Térmico/genética , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Mapas de Interação de Proteínas/genética , RNA-Seq/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
3.
Physiol Plant ; 167(2): 232-249, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30467852

RESUMO

Clematis terniflora DC. is a valuable resource with potential high pharmaceutical value. Proteomic, transcriptomic and metabolomic analyses of C. terniflora that has been exposed to high levels of UVB irradiation and dark conditions (HUVB + D) have revealed the mechanisms underlying its medicinal potential. However, the signal transduction pathways and the mechanisms of regulation for the accumulation of secondary metabolites remain unclear. In this study, we show that the jasmonic acid (JA) and salicylic acid (SA) signals were activated in C. terniflora in response to HUVB + D. Metabolomic analysis demonstrated that the perturbation in JA and SA balance led to additional reallocation of carbon and nitrogen resources. Evaluating the fold change ratios of differentially changed metabolites proved that JA signal enhanced the transformation of nitrogen to carbon through the 4-aminobutyric acid (GABA) shunt pathway, which increased the carbon reserve to be utilized in the production of secondary metabolites. However, SA signal induced the synthesis of proline, while avoiding the accumulation of secondary metabolites. Over all, the results indicate that the co-increase of JA and SA reconstructed the dynamic stability of transformation from nitrogen to carbon, which effectively enhanced the oxidative defense to HUVB + D in C. terniflora by increasing the secondary metabolites.


Assuntos
Clematis/metabolismo , Ciclopentanos/metabolismo , Metabolômica , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais/efeitos da radiação , Clematis/efeitos da radiação , Raios Ultravioleta
4.
Int J Mol Sci ; 19(12)2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30563128

RESUMO

Polyphenol oxidase (PPO) catalyzes the o-hydroxylation of monophenols and oxidation of o-diphenols to quinones. Although the effects of PPO on plant physiology were recently proposed, little has been done to explore the inherent molecular mechanisms. To explore the in vivo physiological functions of PPO, a model with decreased PPO expression and enzymatic activity was constructed on Clematis terniflora DC. using virus-induced gene silencing (VIGS) technology. Proteomics was performed to identify the differentially expressed proteins (DEPs) in the model (VC) and empty vector-carrying plants (VV) untreated or exposed to high levels of UV-B and dark (HUV-B+D). Following integration, it was concluded that the DEPs mainly functioned in photosynthesis, glycolysis, and redox in the PPO silence plants. Mapman analysis showed that the DEPs were mainly involved in light reaction and Calvin cycle in photosynthesis. Further analysis illustrated that the expression level of adenosine triphosphate (ATP) synthase, the content of chlorophyll, and the photosynthesis rate were increased in VC plants compared to VV plants pre- and post HUV-B+D. These results indicate that the silence of PPO elevated the plant photosynthesis by activating the glycolysis process, regulating Calvin cycle and providing ATP for energy metabolism. This study provides a prospective approach for increasing crop yield in agricultural production.


Assuntos
Catecol Oxidase , Clematis , Inativação Gênica , Fotossíntese , Folhas de Planta , Proteínas de Plantas , Proteômica , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Clematis/genética , Clematis/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
J Proteome Res ; 15(8): 2643-57, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27323210

RESUMO

Clematis terniflora DC. has potential pharmaceutical value; on the contrary, high-level UV-B irradiation with dark treatment led to the accumulation of secondary metabolites. Metabolomic and proteomic analyses of leaf of C. terniflora were performed to investigate the systematic response mechanisms to high-level UV-B irradiation with dark treatment. Metabolites related to carbohydrates, fatty acids, and amino acids and/or proteins related to stress, cell wall, and amino acid metabolism were gradually increased in response to high-level UV-B irradiation with dark treatment. On the basis of cluster analysis and mapping of proteins related to amino acid metabolism, the abundances of S-adenosylmethionine synthetase and cysteine synthase as well as 1,1-diphenyl-2-picrylhydrazyl scavenging activity were gradually increased in response to high-level UV-B irradiation with dark treatment. Furthermore, the abundance of dihydrolipoyl dehydrogenase/glutamate dehydrogenase and the content of γ-aminobutyric acid were also increased following high-level UV-B irradiation with dark treatment. Taken together, these results suggest that high-level UV-B irradiation with dark treatment induces the activation of reactive oxygen species scavenging system and γ-aminobutyric acid shunt pathway in leaf of C. terniflora.


Assuntos
Clematis/efeitos da radiação , Metabolômica/métodos , Folhas de Planta/efeitos da radiação , Proteômica/métodos , Raios Ultravioleta , Clematis/química , Clematis/metabolismo , Análise por Conglomerados , Sequestradores de Radicais Livres/metabolismo , Metaboloma/efeitos da radiação , Fotoperíodo , Folhas de Planta/química , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
BMC Plant Biol ; 16(1): 231, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27776479

RESUMO

BACKGROUND: Indole alkaloids, which characteristically contain an indole nucleus, have pharmaceutical potential in a diverse range of applications. UV-B can elicit the accumulation of indole alkaloids. The indole alkaloid (6-hydroxyl-1H-indol-3-yl) carboxylic acid methyl ester with cytotoxic activity was found to accumulate in Clematis terniflora DC. leaves after exposure to high level of UV-B irradiation and the dark. However, a more in-depth analysis of the process behind this response has not yet been performed. Therefore, an integrated approach involving metabolomic, proteomic, and transcriptomic analyses is essential to detail the biosynthetic mechanisms of the regulation of indole alkaloid under binary stress. RESULTS: Indole alkaloid (6-hydroxyl-1H-indol-3-yl) carboxylic acid methyl ester was found to increase 7-fold in C. terniflora leaves post-treatment with high level of UV-B irradiation followed by an incubation in the dark compared with pre-treatment. Analysis by proteomics and metabolomics indicates a decrease in photosynthesis and carbohydrate metabolism, respectively. By contrast, amino acid metabolism was activated by this binary stress, and, specifically, the genes involved in the metabolic pathway converting shikimate to L-tryptophan were concurrently upregulated. Metabolites involved in indole biosynthesis (shikimate metabolic) pathway were anthranilate, indole, and L-tryptophan, which increased 2-, 441-, and 1-fold, respectively. In addition, there was an increase of 2- and 9-fold in L-serine deaminase (L-SD) and L-tryptophan synthase activity in C. terniflora leaves after exposure to high level of UV-B irradiation and the dark. CONCLUSIONS: (6-hydroxyl-1H-indol-3-yl) carboxylic acid methyl ester was found to increase in response to high level of UV-B irradiation followed by an incubation in the dark, implying that indole alkaloid biosynthesis was activated in C. terniflora leaves. Analysis of perturbations in metabolism in these leaves demonstrated that amino acid metabolism was specifically activated by this binary stress. In addition, an enhancement in serine level and L-SD activity was noted, which likely leads to an accumulation of pyruvate that, in turn, supplies shikimate metabolic pathway. The genes, metabolites, and L-tryptophan synthase activity that are involved in the metabolic pathway leading from shikimate to L-tryptophan all increased under the experimental binary stress, resulting in an enhancement of indole biosynthesis (shikimate metabolic) pathway. Therefore, the metabolic process to indole alkaloids in C. terniflora was enhanced after exposure to high level of UV-B irradiation followed by the dark.


Assuntos
Clematis/metabolismo , Clematis/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Alcaloides Indólicos/metabolismo , Raios Ultravioleta , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/metabolismo , Proteômica
7.
Plant Physiol Biochem ; 196: 162-170, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36709578

RESUMO

Coumarin is an important secondary metabolite that affects plant physiology. It is a lactone of cis-o-hydroxycinnamic acid and widely exists in medicinal plants. Clematis terniflora DC. is a plant belonging to Ranunculaceae and is rich in variety of coumarins. Feruloyl-CoA 6'-hydroxylase has been reported as a key enzyme in the formation of coumarin basic skeleton only in some common plants, however, its evidence in other species is still lacking especially for the biosynthesis of coumarins in C. terniflora. In the present study, we identified a feruloyl-CoA 6'-hydroxylase CtF6'H in C. terniflora, and functional characterization indicated that CtF6'H could hydroxylate feruloyl-CoA to 6-hydroxyferuloyl-CoA. Furthermore, the expression level of CtF6'H was differed among different tissues in C. terniflora, while under UV-B radiation, the level of CtF6'H was increased in the leaves. Biochemical characteristics and subcellular location showed that CtF6'H was mainly present in the cytosol. The crystal structure of CtF6'H was simulated by homology modeling to predict the potential residues affecting enzyme activity. This study provides the additional evidence of feruloyl-CoA 6'-hydroxylase in different plant species and enriches our understanding of biosynthetic mechanism of coumarin in C. terniflora.


Assuntos
Clematis , Oxigenases de Função Mista , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Clematis/química , Clematis/metabolismo , Raios Ultravioleta , Cumarínicos
8.
Phytochemistry ; 215: 113832, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37598991

RESUMO

Six undescribed compounds, including three phenolic glycosides (1-3) and three indole alkaloids (4-6), together with ten known alkaloids (7-16) and three known phenolic glycosides (17-19), were isolated from 70% EtOH aqueous extracts of the roots and rhizomes of Clematis chinensis Osbeck. The structures were elucidated by NMR, HRESIMS and X-ray diffraction spectroscopies. The anti-inflammatory activity of these compounds was evaluated, and twelve compounds showed significant inhibitory activity against TNF-α with an inhibition ratio from 47.87% to 94.70% at a dose of 10 µM. Compound 7 exhibited significant inhibitory activity against TNF-α and IL-6 with IC50 values of 3.99 µM and 2.24 µM, respectively. Compound 8 displayed potent anti-inflammatory activity against mouse ear edema induced by croton oil. A mechanistic study suggested that compounds 7 and 8 decreased the activation of the NF-κB signaling pathway to reduce the secretion of inflammatory factors in LPS-induced RAW 264.7 cells.


Assuntos
Clematis , Glicosídeos , Camundongos , Animais , Glicosídeos/farmacologia , Rizoma , Clematis/química , Clematis/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Alcaloides Indólicos
9.
Phytochemistry ; 211: 113690, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150432

RESUMO

Nigrograna sp. LY66, an endophytic fungus associated with the herbal medicinal plant Clematis shensiensis, produced four undescribed steroids, nigergostanes A-D (1-4), including an unusual ketal-containing nigergostane (1), and four undescribed sesquiterpenoids decorated with cyclohexanone motifs, nigbisabolanes A-D (7-10), along with three known compounds, 23R-hydroxy-(20Z,24R)-ergosta-4,6,8(14),20(22)-tetraen-3-one (5), ergosta-5,7,22-trien-3ß-ol (6), and curculonone A (11). The structures and absolute configurations of these undescribed compounds were confirmed using spectroscopic data (NMR and HRESIMS), modified Mosher's method, and ECD experiments. Additionally, compounds 5 and 8 displayed significant inhibition of nitric oxide generation in lipopolysaccharide-induced BV-2 microglial cells with IC50 values of 2.8 and 2.7 µM, respectively, and is thus more potent than that of the positive control, quercetin (IC50 = 8.77 µM). A molecular docking study revealed that 23-OH of 5 binds to the Y347 residue of inducible nitric oxide synthase (iNOS), whereas the 2-OH and 9,10-diol moieties of 8 bind to R381 and W463 and haeme residues of iNOS, respectively, which has rarely been reported in previous studies. These findings provide a set of undescribed lead compounds that can be developed into anti-neuroinflammatory agents.


Assuntos
Ascomicetos , Clematis , Fitosteróis , Sesquiterpenos , Esteróis , Clematis/metabolismo , Simulação de Acoplamento Molecular , Ascomicetos/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Óxido Nítrico
10.
ScientificWorldJournal ; 2012: 749281, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22919351

RESUMO

During the vase life of cut stems obstruction of xylem vessels occurs due to microbial growth, formation of tyloses, deposition of materials in the lumen of xylem vessels and the presence of air emboli in the vascular system. Such obstructions may restrict water uptake and its transport towards upwards thus lowering their ornamental value and longevity of cut flowers. Clematis is a very attractive plant material which may be used as cut flower in floral compositions. Nothing is known about the histochemical or cytological nature of xylem blockages occurring in cut stems of this plant. This study shows that in clematis, tyloses are the main source of occlusions, although bacteria and some amorphic substances may also appear inside the vessels. A preservative composed of 200 mg dm(-3) 8-HQC (8-hydroxyquinolin citrate) and 2% sucrose arrested bacterial development and the growth of tyloses. This information can be helpful in the development of new treatments to improve keeping qualities of cut clematis stems.


Assuntos
Clematis/metabolismo , Caules de Planta/metabolismo , Xilema/metabolismo , Microscopia Eletrônica
11.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 36(3): 343-351, 2022 Mar 15.
Artigo em Zh | MEDLINE | ID: mdl-35293177

RESUMO

Objective: To prepare the silk fibroin microcarrier loaded with clematis total saponins (CTS) (CTS-silk fibroin microcarrier), and to investigate the effect of microcarrier combined with chondrocytes on promoting rabbit knee articular cartilage defects repair. Methods: CTS-silk fibroin microcarrier was prepared by high voltage electrostatic combined with freeze drying method using the mixture of 5% silk fibroin solution, 10 mg/mL CTS solution, and glycerin. The samples were characterized by scanning electron microscope and the cumulative release amount of CTS was detected. Meanwhile, unloaded silk fibroin microcarrier was also prepared. Chondrocytes were isolated from knee cartilage of 4-week-old New Zealand rabbits and cultured. The 3rd generation of chondrocytes were co-cultured with the two microcarriers respectively for 7 days in microgravity environment. During this period, the adhesion of chondrocytes to microcarriers was observed by inverted phase contrast microscope and scanning electron microscope, and the proliferation activity of cells was detected by cell counting kit 8 (CCK-8), and compared with normal cells. Thirty 3-month-old New Zealand rabbits were selected to make bilateral knee cartilage defects models and randomly divided into 3 groups ( n=20). Knee cartilage defects in group A were not treated, and in groups B and C were filled with the unloaded silk fibroin microcarrier-chondrocyte complexes and CTS-silk fibroin microcarrier-chondrocyte complexes, respectively. At 12 weeks after operation, the levels of matrix metalloproteinase 9 (MMP-9), MMP-13, and tissue inhibitor of MMP 1 (TIMP-1) in articular fluid were detected by ELISA. The cartilage defects were collected for gross observation and histological observation (HE staining and toluidine blue staining). Western blot was used to detect the expressions of collagen type Ⅱ and proteoglycan. The inflammatory of joint synovium was observed by histological staining and inducible nitric oxide synthase (iNOS) immunohistochemical staining. Results: The CTS-silk fibroin microcarrier was spherical, with a diameter between 300 and 500 µm, a porous surface, and a porosity of 35.63%±3.51%. CTS could be released slowly in microcarrier for a long time. Under microgravity, the chondrocytes attached to the surface of the two microcarriers increased gradually with the extension of culture time, and the proliferation activity of chondrocytes at 24 hours after co-culture was significantly higher than that of normal chondrocytes ( P<0.05). There was no significant difference in proliferation activity of chondrocytes between the two microcarriers ( P>0.05). In vivo experiment in animals showed that the levels of MMP-9 and MMP-13 in group C were significantly lower than those in groups A and B ( P<0.05), and the level of TIMP-1 in group C was significantly higher ( P<0.05). Compared with group A, the cartilage defects in groups B and C were filled with repaired tissue, and the repaired surface of group C was more complete and better combined with the surrounding cartilage. Histological observation and Western blot analysis showed that the International Cartilage Repair Scoring (ICRS) and the relative expression levels of collagen type Ⅱ and proteoglycan in groups B and C were significantly better than those in group A, and group C was significantly better than group B ( P<0.05). The histological observation showed that the infiltration of synovial inflammatory cells and hyperplasia of small vessels significantly reduced in group C compared with groups A and B. iNOS immunohistochemical staining showed that the expression of iNOS in group C was significantly lower than that in groups A and B ( P<0.05). Conclusion: CTS-silk fibroin microcarrier has good CTS sustained release effect and biocompatibility, and can promote the repair of rabbit cartilage defect by carrying chondrocyte proliferation in microgravity environment.


Assuntos
Cartilagem Articular , Clematis , Fibroínas , Saponinas , Animais , Coelhos , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Clematis/metabolismo , Fibroínas/farmacologia , Saponinas/farmacologia
12.
Sci Rep ; 10(1): 8883, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483281

RESUMO

Clematis florida Thun (CfT) is an ornamental and medicinal plant. It is a cold resistant but heat sensitive species and deserves to be further investigated to improve its adaptability to heat stress. Exploring the molecular mechanism potential via an omic-analysis constitutes a promising approach towards improving heat tolerance of CfT. Two CfT lines, heat resistance (HR) and heat sensitive (HS), with differential thermotolerance capacities were used for the integrative analyses of proteomics and transcriptomes. Transcriptomes analysis showed that various pathways were significantly enriched including plant hormone signal transduction and carbon fixation pathways in prokaryotes. Proteomics study revealed the enrichment of some other pathways comprising antioxidant activity and carbohydrates metabolism. Based on combined transcriptomes and proteomics analyses and following heat stress treatment, a total of 1724 annotated genes were overlapped between both CfT lines. Particularly, 84 differential expressed genes (DEGs) were overlapped in both CfT lines. Fifteen out of these 84 genes were up-regulated solely for HR line (PS) but not for HS one (SG). This strongly suggests a potential prominent role for these genes in the thermotolerance process in PS line. We corroborate that two Hsps (Hsp18 and Hsp70) out of 20 detected proteins with higher expression levels in PS than in SG based on either global transcripts or proteins levels. According to the transcriptomes and proteomics analyses, 6 proteins and their corresponding genes were found to be significantly abundant in HR line (PS). Data are available via ProteomeXchange with identifier PXD018192. The expressions levels of these 6 genes were checked also for both CfT lines to evaluate their potential contributions in the heat tolerance process. Thus, their expression levels were approximately 2~4 times higher in HR than in HS line. We provided as well a representative schematic model to highlight the key genes involved in ROS scavenging and photorespiratory pathway in CfT. This model could be helpful also in understanding the mechanism of heat tolerance in CfT.


Assuntos
Clematis/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Proteômica/métodos , Antioxidantes/metabolismo , Cromatografia Líquida , Clematis/genética , Clematis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA , Espectrometria de Massas em Tandem
13.
Plant Biol (Stuttg) ; 21(4): 732-737, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30636362

RESUMO

It has been hypothesised that intense metabolism of nectar-inhabiting yeasts (NIY) may change nectar chemistry, including volatile profile, which may affect pollinator foraging behaviours and consequently plant fitness. However, empirical evidence for the plant-microbe-pollinator interactions remains little known. To test this hypothesis, we use a bumblebee-pollinated vine Clematis akebioides endemic to southwest China as an experimental model plant. To quantify the incidence and density of Metschnikowia reukaufii, a cosmopolitan NIY in floral nectar, a combination of yeast cultivation and microscopic cell-counting method was used. To examine the effects of NIY on plant-pollinator interactions, we used real flowers filled with artificial nectar with or without yeast cells. Then the volatile metabolites produced in the yeast-inoculated nectar were analysed with coupled gas chromatography and mass spectrometry (GC-MS). On average 79.3% of the C. akebioides flowers harboured M. reukaufii, and cell density of NIY was high to 7.4 × 104 cells mm-3 . In the field population, the presence of NIY in flowers of C. akebioides increased bumblebee (Bombus friseanus) pollinator visitation rate and consequently seed set per flower. A variety of fatty acid derivatives produced by M. reukaufii may be responsible for the above beneficial interactions. The volatiles produced by the metabolism of M. reukaufii may serve as an honest signal to attract bumblebee pollinators and indirectly promote the female reproductive fitness of C. akebioides, forming a potentially tripartite plant-microbe-pollinator mutualism.


Assuntos
Abelhas , Clematis/fisiologia , Metschnikowia/metabolismo , Néctar de Plantas/fisiologia , Polinização , Animais , Abelhas/fisiologia , Clematis/metabolismo , Clematis/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Metschnikowia/fisiologia , Polinização/fisiologia , Compostos Orgânicos Voláteis/metabolismo
14.
J Proteomics ; 150: 323-340, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27765634

RESUMO

High level of UV-B irradiation followed by dark treatment (HUV-B+D) causes accumulation of secondary metabolites in Clematis terniflora DC. To investigate the response mechanism under HUV-B+D, transcriptomic and proteomic analyses were performed in leaves of C. terniflora. The number of genes related to tetrapyrrole synthesis, amino acid metabolism, tricarboxylic acid cycle, and mitochondrial electron transport chains was hierarchically changed in leaves of C. terniflora under HUV-B+D. Data from RNA-sequencing transcriptomics and gel-free/label-free proteomics were integrated. The genes related to biosynthesis of lignins and flavonoids/isoflavonoids were significantly upregulated. Luteolin 7-O-ß-D-glucosiduronic acid, rutin, and kaempferol 3-O-rutinose were accumulated. The number of differentially expressed genes (DEGs) and differentially abundant proteins (DAPs) related to protein metabolism were largely changed in posttranslational modification, ubiquitin proteasome, and ribosomal protein. The expression of NADP-dependent malic enzyme and the abundance of NADP-malate dehydrogenase were upregulated and increased, respectively. The activities of these two enzymes were also enhanced. These results suggest that the secondary metabolism pathway and tricarboxylic acid cycle might be activated in leaves of C. terniflora in response to HUV-B+D. BIOLOGICAL SIGNIFICANCE: This study reported response mechanism in leaves of Clematis terniflora DC. under high level of UV-B irradiation followed by dark treatment using transcriptomic and proteomic techniques. Transcriptomic analysis revealed that the number of genes related to secondary metabolism was increased by >2 times. Phenylalanine ammonia-lyase, 4-Coumarate: CoA ligase, chalcone synthase, isoflavone reductase homolog, and cinnamoyl-CoA reductase were significantly upregulated, which suggests that the secondary metabolism pathway related to lignins and flavonoids/isoflavonoids might be activated. Genes and proteins related to protein metabolism were largely changed in postranslational modification, ubiquitin proteasome, and ribosomal protein. NADP-dependent malic enzyme and NADP-malate dehydrogenase were activated in tricarboxylic acid cycle, which suggests that tricarboxylic acid cycle might be enhanced in leaf of C. terniflora in response to HUV-B+D.


Assuntos
Clematis , Escuridão , Folhas de Planta , Proteoma/análise , Transcriptoma , Raios Ultravioleta , Clematis/genética , Clematis/metabolismo , Clematis/efeitos da radiação , Perfilação da Expressão Gênica , Luz , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Proteínas de Plantas/efeitos da radiação , Proteoma/efeitos da radiação , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA