RESUMO
Inorganic polyphosphate (polyP) is primarily synthesized by Polyphosphate Kinase-1 (PPK-1) and regulates numerous cellular processes, including energy metabolism, stress adaptation, drug tolerance, and microbial pathogenesis. Here, we report that polyP interacts with acyl CoA carboxylases, enzymes involved in lipid biosynthesis in Mycobacterium tuberculosis. We show that deletion of ppk-1 in M. tuberculosis results in transcriptional and metabolic reprogramming. In comparison to the parental strain, the Δppk-1 mutant strain had reduced levels of virulence-associated lipids such as PDIMs and TDM. We also observed that polyP deficiency in M. tuberculosis is associated with enhanced phagosome-lysosome fusion in infected macrophages and attenuated growth in mice. Host RNA-seq analysis revealed decreased levels of transcripts encoding for proteins involved in either type I interferon signaling or formation of foamy macrophages in the lungs of Δppk-1 mutant-infected mice relative to parental strain-infected animals. Using target-based screening and molecular docking, we have identified raloxifene hydrochloride as a broad-spectrum PPK-1 inhibitor. We show that raloxifene hydrochloride significantly enhanced the activity of isoniazid, bedaquiline, and pretomanid against M. tuberculosis in macrophages. Additionally, raloxifene inhibited the growth of M. tuberculosis in mice. This is an in-depth study that provides mechanistic insights into the regulation of mycobacterial pathogenesis by polyP deficiency.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Simulação de Acoplamento Molecular , Cloridrato de Raloxifeno/metabolismo , Polifosfatos/metabolismo , Tuberculose/microbiologia , Redes e Vias Metabólicas , Proteínas de Bactérias/metabolismoRESUMO
Drug metabolism is one of the main processes governing the pharmacokinetics and toxicity of drugs via their chemical biotransformation and elimination. In humans, the liver, enriched with cytochrome P450 (CYP) enzymes, plays a major metabolic and detoxification role. The gut microbiome and its complex community of microorganisms can also contribute to some extent to drug metabolism. However, during an infection when pathogenic microorganisms invade the host, our knowledge of the impact on drug metabolism by this pathobiome remains limited. The intrinsic resistance mechanisms and rapid metabolic adaptation to new environments often allow the human bacterial pathogens to persist, despite the many antibiotic therapies available. Here, we demonstrate that a bacterial CYP enzyme, CYP107S1, from Pseudomonas aeruginosa, a predominant bacterial pathogen in cystic fibrosis patients, can metabolize multiple drugs from different classes. CYP107S1 demonstrated high substrate promiscuity and allosteric properties much like human hepatic CYP3A4. Our findings demonstrated binding and metabolism by the recombinant CYP107S1 of fluoroquinolone antibiotics (ciprofloxacin and fleroxacin), a cystic fibrosis transmembrane conductance regulator potentiator (ivacaftor), and a selective estrogen receptor modulator antimicrobial adjuvant (raloxifene). Our in vitro metabolism data were further corroborated by molecular docking of each drug to the heme active site using a CYP107S1 homology model. Our findings raise the potential for microbial pathogens modulating drug concentrations locally at the site of infection, if not systemically, via CYP-mediated biotransformation reactions. To our knowledge, this is the first report of a CYP enzyme from a known bacterial pathogen that is capable of metabolizing clinically utilized drugs.
Assuntos
Aminofenóis , Ciprofloxacina , Sistema Enzimático do Citocromo P-450 , Pseudomonas aeruginosa , Quinolonas , Cloridrato de Raloxifeno , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Ciprofloxacina/metabolismo , Ciprofloxacina/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Cloridrato de Raloxifeno/metabolismo , Humanos , Aminofenóis/metabolismo , Quinolonas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Naftalenos/metabolismo , Naftalenos/farmacologia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Fibrose Cística/metabolismoRESUMO
Covalent protein adducts formed by drugs or their reactive metabolites are risk factors for adverse reactions, and inactivation of cytochrome P450 (CYP) enzymes. Characterization of drug-protein adducts is limited due to lack of methods identifying and quantifying covalent adducts in complex matrices. This study presents a workflow that combines data-dependent and data-independent acquisition (DDA and DIA) based liquid chromatography with tandem mass spectrometry (LC-MS/MS) to detect very low abundance adducts resulting from CYP mediated drug metabolism in human liver microsomes (HLMs). HLMs were incubated with raloxifene as a model compound and adducts were detected in 78 proteins, including CYP3A and CYP2C family enzymes. Experiments with recombinant CYP3A and CYP2C enzymes confirmed adduct formation in all CYPs tested, including CYPs not subject to time-dependent inhibition by raloxifene. These data suggest adducts can be benign. DIA analysis showed variable adduct abundance in many peptides between livers, but no concomitant decrease of unadducted peptides. This study sets a new standard for adduct detection in complex samples, offering insights into the human adductome resulting from reactive metabolite exposure. The methodology presented will aid mechanistic studies to identify, quantify and differentiate between adducts that result in adverse drug reactions and those that are benign.
Assuntos
Microssomos Hepáticos , Cloridrato de Raloxifeno , Espectrometria de Massas em Tandem , Humanos , Microssomos Hepáticos/metabolismo , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Fígado/metabolismo , Fígado/química , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/químicaRESUMO
Denosumab discontinuation results in accelerated bone remodeling, decreased bone mineral density (BMD), and an increased risk of multiple vertebral fractures. Bisphosphonates are at least partially effective at inhibiting these consequences but there have been no randomized clinical trials assessing the efficacy of alternative antiresorptives. PURPOSE: The aim of this study was to evaluate the comparative efficacy of alendronate and the SERM, raloxifene, in preventing the post-denosumab high-turnover bone loss. METHODS: We conducted an open-label randomized controlled trial in which 51 postmenopausal women at increased risk of fracture were randomized with equal probability to receive 12-months of denosumab 60-mg 6-monthly followed by 12-months of either alendronate 70-mg weekly or raloxifene 60-mg daily. Serum bone remodeling markers were measured at 0,6,12,15,18, and 24 and areal BMD of the distal radius, spine, and hip were measured at 0,12,18 and 24 months. RESULTS: After denosumab discontinuation, serum markers of bone remodeling remained suppressed when followed by alendronate, but gradually increased to baseline when followed by raloxifene. In the denosumab-to-alendronate group, denosumab-induced BMD gains were maintained at all sites whereas in the denosumab-to-raloxifene group, BMD decreased at the spine by 2.0% (95% CI -3.2 to -0.8, P = 0.003) and at the total hip by 1.2% (-2.1 to -0.4%, P = 0.008), but remained stable at the femoral neck and distal radius and above the original baseline at all sites. The decreases in spine and total hip BMD in the denosumab-to-raloxifene group (but not the femoral neck or distal radius) were significant when compared to the denosumab-to-alendronate group. CONCLUSIONS: These results suggest that after one year of denosumab, one year of alendronate is better able to maintain the inhibition of bone remodeling and BMD gains than raloxifene.
Assuntos
Conservadores da Densidade Óssea , Osteoporose Pós-Menopausa , Feminino , Humanos , Alendronato/efeitos adversos , Cloridrato de Raloxifeno/efeitos adversos , Denosumab/farmacologia , Denosumab/uso terapêutico , Conservadores da Densidade Óssea/efeitos adversos , Densidade Óssea , BiomarcadoresRESUMO
Dopamine dysregulation contributes to psychosis and cognitive deficits in schizophrenia that can be modelled in rodents by inducing maternal immune activation (MIA). The selective estrogen receptor (ER) modulator, raloxifene, can improve psychosis and cognition in men and women with schizophrenia. However, few studies have examined how raloxifene may exert its therapeutic effects in mammalian brain in both sexes during young adulthood (age relevant to most prevalent age at diagnosis). Here, we tested the extent to which raloxifene alters dopamine-related behaviours and brain transcripts in young adult rats, both control and MIA-exposed females and males. We found that raloxifene increased amphetamine (AMPH)-induced locomotor activity in female controls, and in contrast, raloxifene reduced AMPH-induced locomotor activity in male MIA offspring. We did not detect overt prepulse inhibition (PPI) deficits in female or male MIA offspring, yet raloxifene enhanced PPI in male MIA offspring. Whereas, raloxifene ameliorated increased startle responsivity in female MIA offspring. In the substantia nigra (SN), we found reduced Drd2s mRNA in raloxifene-treated female offspring with or without MIA, and increased Comt mRNA in placebo-treated male MIA offspring relative to placebo-treated controls. These data demonstrate an underlying dopamine dysregulation in MIA animals that can become more apparent with raloxifene treatment, and may involve selective alterations in dopamine receptor levels and dopamine breakdown processes in the SN. Our findings support sex-specific, differential behavioural responses to ER modulation in MIA compared to control offspring, with beneficial effects of raloxifene treatment on dopamine-related behaviours relevant to schizophrenia found in male MIA offspring only.
Assuntos
Efeitos Tardios da Exposição Pré-Natal , Cloridrato de Raloxifeno , Humanos , Adulto Jovem , Ratos , Feminino , Masculino , Animais , Adulto , Cloridrato de Raloxifeno/farmacologia , Dopamina/metabolismo , Receptores de Estrogênio , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Anfetamina/farmacologia , RNA Mensageiro , Comportamento Animal/fisiologia , Poli I-C/farmacologia , Modelos Animais de Doenças , Mamíferos/metabolismoRESUMO
PURPOSE: Green tea is a widely consumed beverage. A recent clinical study reported green tea decreased systemic exposure of raloxifene and its glucuronide metabolites by 34-43%. However, the underlying mechanism(s) remains unknown. This study investigated a change in raloxifene's solubility as the responsible mechanism. METHODS: The effects of green tea extract, (-)-epigallocatechin gallate (EGCG), and (-)-epigallocatechin (EGC) on raloxifene's solubility were assessed in fasted state simulated intestinal fluids (FaSSIF) and fed state simulated intestinal fluids (FeSSIF). EGCG and EGC represent green tea's main bioactive constituents, flavan-3-gallate and flavan-3-ol catechins respectively, and the tested concentrations (mM) match the µg/mg of each compound in the extract. Our mouse study (n = 5/time point) evaluated the effect of green tea extract and EGCG on the systemic exposure of raloxifene. RESULTS: EGCG (1 mM) and EGC (1.27 mM) decreased raloxifene's solubility in FaSSIF by 78% and 13%, respectively. Micelle size in FaSSIF increased with increasing EGCG concentrations (> 1000% at 1 mM), whereas EGC (1.27 mM) did not change micelle size. We observed 3.4-fold higher raloxifene solubility in FeSSIF compared to FaSSIF, and neither green tea extract nor EGCG significantly affected raloxifene solubility or micelle size in FeSSIF. The mice study showed that green tea extract significantly decreased raloxifene Cmax by 44%, whereas EGCG had no effect. Green tea extract and EGCG did not affect the AUC0-24 h of raloxifene or the metabolite-to-parent AUC ratio. CONCLUSIONS: This study demonstrated flavan-3-gallate catechins may decrease solubility of poorly water-soluble drugs such as raloxifene, particularly in the fasted state.
Assuntos
Catequina , Chá , Camundongos , Animais , Catequina/análise , Catequina/metabolismo , Catequina/farmacologia , Cloridrato de Raloxifeno/farmacologia , Solubilidade , Micelas , Antioxidantes , Extratos Vegetais/farmacologiaRESUMO
All three possible sulfamate derivatives of the selective estrogen receptor modulator Raloxifene (bis-sulfamate 7 and two mono-sulfamates 8-9) were synthesized and evaluated as inhibitors of the clinical drug target steroid sulfatase (STS), both in cell-free and in cell-based assays, and also as estrogen receptor (ER) modulators. Bis-sulfamate 7 was the most potent STS inhibitor with an IC50 of 12.2 nM in a whole JEG3 cell-based assay, with the two mono-sulfamates significantly weaker. The estrogen receptor-modulating activities of 7-9 showed generally lower affinities compared to Raloxifene HCl, diethylstilbestrol and other known ligands, with mono-sulfamate 8 being the best ligand (Ki of 1.5 nM) for ERα binding, although 7 had a Ki of 13 nM and both showed desirable antagonist activity. The antiproliferative activities of the sulfamate derivatives against the T-47D breast cancer cell line showed 7 as most potent (GI50 = 7.12 µM), comparable to that of Raloxifene. Compound 7 also showed good antiproliferative potency in the NCI-60 cell line panel with a GI50 of 1.34 µM against MDA-MB-231 breast cancer cells. Stability testing of 7-9 showed that bis-sulfamate 7 hydrolyzed by desulfamoylation at a surprisingly rapid rate, initially leading selectively to 8 and finally to Raloxifene 3 without formation of 9. The mechanisms of these hydrolysis reactions could be extensively rationalized. Conversion of Raloxifene (3) into its bis-sulfamate (7) thus produced a promising drug lead with nanomolar dual activity as an STS inhibitor and ERα antagonist, as a potential candidate for treatment of estrogen-dependent breast cancer.
Assuntos
Neoplasias da Mama , Cloridrato de Raloxifeno , Ácidos Sulfônicos , Humanos , Feminino , Cloridrato de Raloxifeno/farmacologia , Receptor alfa de Estrogênio , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Esteril-Sulfatase , Neoplasias da Mama/tratamento farmacológico , Moduladores de Receptor EstrogênicoRESUMO
PURPOSE: Selective androgen (ostarine, OST) and estrogen (raloxifene, RAL) receptor modulators with improved tissue selectivity have been developed as alternatives to hormone replacement therapy. We investigated the combined effects of OST and RAL on muscle tissue in an estrogen-deficient rat model of postmenopausal conditions. METHODS: Three-month-old Sprague Dawley rats were divided into groups: (1) untreated non-ovariectomized rats (Non-OVX), (2) untreated ovariectomized rats (OVX), (3) OVX rats treated with OST, (4) OVX rats treated with RAL, (5) OVX rats treated with OST and RAL. Both compounds were administered in the diet. The average dose received was 0.6 ± 0.1 mg for OST and 11.1 ± 1.2 mg for RAL per kg body weight/day. After thirteen weeks, rat activity, muscle weight, structure, gene expression, and serum markers were analyzed. RESULTS: OST increased muscle weight, capillary ratio, insulin-like growth factor 1 (Igf-1) expression, serum phosphorus, uterine weight. RAL decreased muscle weight, capillary ratio, food intake, serum calcium and increased Igf-1 and Myostatin expression, serum follicle stimulating hormone (FSH). OST + RAL increased muscle nucleus ratio, uterine weight, serum phosphorus, FSH and luteinizing hormone and decreased body and muscle weight, serum calcium. Neither treatment changed muscle fiber size. OVX increased body and muscle weight, decreased uterine weight, serum calcium and magnesium. CONCLUSION: OST had beneficial effects on muscle in OVX rats. Side effects of OST on the uterus and serum electrolytes should be considered before using it for therapeutic purposes. RAL and RAL + OST had less effect on muscle and showed endocrinological side effects on pituitary-gonadal axis.
Assuntos
Anilidas , Fator de Crescimento Insulin-Like I , Cloridrato de Raloxifeno , Feminino , Ratos , Animais , Cloridrato de Raloxifeno/farmacologia , Cálcio , Ratos Sprague-Dawley , Estrogênios/farmacologia , Fibras Musculares Esqueléticas , Hormônio Foliculoestimulante , FósforoRESUMO
The success of obtaining solid dispersions for solubility improvement invariably depends on the miscibility of the drug and polymeric carriers. This study aimed to categorize and select polymeric carriers via the classical group contribution method using the multivariate analysis of the calculated solubility parameter of RX-HCl. The total, partial, and derivate parameters for RX-HCl were calculated. The data were compared with the results of excipients (N = 36), and a hierarchical clustering analysis was further performed. Solid dispersions of selected polymers in different drug loads were produced using solvent casting and characterized via X-ray diffraction, infrared spectroscopy and scanning electron microscopy. RX-HCl presented a Hansen solubility parameter (HSP) of 23.52 MPa1/2. The exploratory analysis of HSP and relative energy difference (RED) elicited a classification for miscible (n = 11), partially miscible (n = 15), and immiscible (n = 10) combinations. The experimental validation followed by a principal component regression exhibited a significant correlation between the crystallinity reduction and calculated parameters, whereas the spectroscopic evaluation highlighted the hydrogen-bonding contribution towards amorphization. The systematic approach presented a high discrimination ability, contributing to optimal excipient selection for the obtention of solid solutions of RX-HCl.
Assuntos
Química Farmacêutica , Excipientes , Polímeros , Cloridrato de Raloxifeno , Solubilidade , Difração de Raios X , Polímeros/química , Excipientes/química , Cloridrato de Raloxifeno/química , Análise Multivariada , Difração de Raios X/métodos , Química Farmacêutica/métodos , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Microscopia Eletrônica de Varredura/métodos , Ligação de Hidrogênio , Cristalização/métodosRESUMO
PKN1 (protein kinase N1), a serine/threonine protein kinase family member, is associated with various cancers. However, the role of PKN1 in gliomas has rarely been studied. We suggest that PKN1 expression in glioma specimens is considerably upregulated and positively correlates with the histopathological grading of gliomas. Knocking down PKN1 expression in glioblastoma (GBM) cells inhibits GBM cell proliferation, invasion and migration and promotes apoptosis. In addition, yes-associated protein (YAP) expression, an essential effector of the Hippo pathway contributing to the oncogenic role of gliomagenesis, was also downregulated. In contrast, PKN1 upregulation enhances the malignant characteristics of GBM cells and simultaneously upregulates YAP expression. Therefore, PKN1 is a promising therapeutic target for gliomas. Raloxifene (Ralo), a commonly used selective oestrogen-receptor modulator to treat osteoporosis in postmenopausal women, was predicted to target PKN1 according to the bioinformatics team from the School of Mathematics, Tianjin Nankai University. We showed that Ralo effectively targets PKN1, inhibits GBM cells proliferation and migration and sensitizes GBM cells to the major chemotherapeutic drug, Temozolomide. Ralo also reverses the effect of PKN1 on YAP activation. Thus, we confirm that PKN1 contributes to the pathogenesis of gliomas and may be a potential target for Ralo adjuvant glioma therapy.
Assuntos
Glioblastoma , Glioma , Feminino , Humanos , Cloridrato de Raloxifeno/farmacologia , Glioma/tratamento farmacológico , Glioma/genética , Apoptose , Proliferação de CélulasRESUMO
Atherosclerosis, a leading cause of cardiovascular disease, remains a significant global health concern. Tamoxifen and raloxifene, selective estrogen receptor modulators (SERMs), have demonstrated potential cardioprotective effects. However, the underlying molecular mechanisms by which these SERMs modulate Transforming Growth Factor-ß (TGF-ß) signaling in human vascular smooth muscle cells (VSMCs) remain largely unexplored. This study sought to investigate the impact of tamoxifen and raloxifene on TGF-ß-induced CHSY1 expression and Smad2 linker region phosphorylation in VSMCs and to elucidate the role of reactive oxygen species (ROS), NADPH oxidase (NOX), and kinase pathways in mediating these effects. Employing a comprehensive experimental strategy, VSMCs were treated with TGF-ß in the presence or absence of tamoxifen, raloxifene, and various pharmacological inhibitors. Subsequently, CHSY1 mRNA expression, Smad2C and Smad2L phosphorylation, ROS production, p47phox and ERK 1/2 phosphorylation were assessed. Our results revealed that tamoxifen and raloxifene significantly attenuated TGF-ß-mediated CHSY1 mRNA expression and Smad2 linker region phosphorylation, without affecting the canonical TGF-ß-Smad2C pathway. Furthermore, these compounds effectively inhibited ROS production, p47phox and ERK 1/2 phosphorylation, implicating the involvement of the TGF-ß-NOX-ERK-Smad2L signaling cascade in their cardioprotective properties. This study provides a comprehensive understanding of the molecular mechanisms underlying the cardioprotective effects of tamoxifen and raloxifene in VSMCs, offering valuable insights for the development of targeted therapeutic strategies aimed at atherosclerosis prevention and the promotion of cardiovascular health.
Assuntos
Aterosclerose , Fator de Crescimento Transformador beta , Humanos , Fosforilação , Fator de Crescimento Transformador beta/metabolismo , Cloridrato de Raloxifeno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Tamoxifeno/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Proteoglicanas/metabolismo , NADPH Oxidases/metabolismo , RNA Mensageiro/genéticaRESUMO
PURPOSE: Chemoprevention with a selective estrogen receptor modulator (tamoxifen or raloxifene) is a non-surgical option offered to high-risk women to reduce the risk of breast cancer. The evidence for tamoxifen benefit is based on trials conducted among predominantly postmenopausal women from the general population and on studies of contralateral breast cancer in women with a pathogenic variant (mutation hereafter) in BRCA1 or BRCA2. Tamoxifen has not been assessed as a primary prevention agent in women with an inherited BRCA mutation. METHODS: We conducted a prospective analysis of tamoxifen chemoprevention and the risk of breast cancer in women with a BRCA1 or BRCA2 mutation. Data on tamoxifen (and raloxifene) use was collected by questionnaire and updated biennially. Information on incident cancers was collected by self-report and was confirmed by medical record review. In a matched analysis, we estimated the hazard ratio (HR) and 95% confidence intervals (CI) for developing a first primary breast cancer associated with tamoxifen or raloxifene use, using Cox proportional hazards analysis. RESULTS: There were 4578 unaffected women in the cohort, of whom 137 reported tamoxifen use (3%), 83 reported raloxifene use (2%) and 12 used both drugs (0.3%). Women who used tamoxifen or raloxifene were matched 1:3 with women who used neither drug on year of birth, country of residence, year of study entry and gene (BRCA1 or BRCA2). We generated 202 matched pairs. After a mean follow-up of 6.8 years, there were 22 incident breast cancers diagnosed among tamoxifen/raloxifene users (10.9% of users) and 71 cases diagnosed among non-users (14.3% of non-users; HR = 0.64; 95% CI 0.40-1.03; P = 0.07). CONCLUSION: Chemoprevention may be an effective risk-reduction option for BRCA mutation carriers, but further studies with longer follow-up are necessary.
Assuntos
Neoplasias da Mama , Tamoxifeno , Humanos , Feminino , Tamoxifeno/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Cloridrato de Raloxifeno/efeitos adversos , Genes BRCA1 , Mutação , Fatores de Risco , Proteína BRCA1/genética , Proteína BRCA2/genéticaRESUMO
Thermoneutral housing and Raloxifene (RAL) treatment both have potential for improving mechanical and architectural properties of bone. Housing mice within a 30 to 32 °C range improves bone quality by reducing the consequences of cold stress, such as shivering and metabolic energy consumption (Chevalier et al. in Cell Metab 32(4):575-590.e7, 2020; Martin et al. in Endocr Connect 8(11):1455-1467, 2019; Hankenson et al. in Comp Med 68(6):425-438, 2018). Previous work suggests that Raloxifene can enhance bone strength and geometry (Ettinger et al. in Jama 282(7):637-645, 1999; Powell et al. in Bone Rep 12:100246, 2020). An earlier study in our lab utilized long bones to examine the effect of thermoneutral housing and Raloxifene treatment in mice, but no significant interactive effects were found. The lack of an impact is hypothesized to be connected to the short 6-week duration of the study and the type of bone analyzed. This study will examine the same question within the axial skeleton, which has a higher proportion of trabecular bone. After 6 weeks of treatment with RAL, vertebrae from female C57BL/6 J mice underwent microcomputed tomography (µCT), architectural analysis, and compression testing. Most of the tested geometric properties (bone volume/tissue volume percent, trabecular thickness, trabecular number, trabecular spacing) improved with both the housing and RAL treatment. The effect sizes suggested an additive effect when treating mice housed under thermoneutral conditions. While ultimate force was enhanced with the treatment and housing, force normalized by bone volume fraction was not significantly different between groups. For longer pre-clinical trials, it may be important to consider the impacts of temperature on mice to improve the accuracy of these models.
Assuntos
Osso Esponjoso , Cloridrato de Raloxifeno , Camundongos , Feminino , Animais , Cloridrato de Raloxifeno/uso terapêutico , Microtomografia por Raio-X , Habitação , Camundongos Endogâmicos C57BL , Densidade ÓsseaRESUMO
The positive link between osteoporosis and hypercholesterolemia has been documented, and bone resorption inhibitors, such as nitrogen-containing bisphosphonates (N-BP) and selective estrogen receptor modulators (SERMs), are known to reduce serum cholesterol levels. However, the relationship between the baseline cholesterol level and incident fracture rate under the treatment using the bone resorption inhibitors has not been documented. We investigated the relation between vertebral fracture incident and the baseline cholesterol levels and cholesterol-lowering effect of N-BP and SERM in osteoporosis through a prospective randomized open-label study design. Patients with osteoporosis (n = 3986) were allocated into two groups based on the drug used for treatment: minodronic acid (MIN) (n = 1624) as an N-BP and raloxifene (RLX) as an SERM (n = 1623). Serum levels of cholesterol and incidence of vertebral fracture were monitored for 2 years. The vertebral fracture rates between the two groups were compared using the pre-specified stratification factors. The patients receiving MIN with baseline low-density lipoprotein (LDL)-cholesterol level of ≥ 140 mg/dL, high-density lipoprotein cholesterol level < 40 mg/dL, age group of ≥ 75 years, and T score of BMD ≥ -3 SD had significantly lower vertebral fracture rates than those receiving RLX (incidence rate ratios (IRR) 0.45 [95% confidence interval (CI) 0.30 0.75, p = 0.001], 0.25 [95% CI 0.09 0.65, p = 0.005], 0.71 [95% CI 0.56 0.91, p = 0.006], 0.47 [95% CI 0.30 0.75, p = 0.0012], respectively). The cholesterol-lowering effect was stronger in the RLX group than in the MIN group, regardless of prior statin use. These results indicated that MIN treatment was more effective in reducing fracture risk in patients with higher LDL cholesterol levels, although its cholesterol-lowering ability was lesser than the RLX treatment.Trial registration University Hospital Medical Information Network-Clinical Trials Registry (UMIN-CTR), No. UMIN000005433; date: April 13, 2011.
Assuntos
Conservadores da Densidade Óssea , Fraturas Ósseas , Osteoporose Pós-Menopausa , Osteoporose , Fraturas da Coluna Vertebral , Humanos , Idoso , Feminino , Cloridrato de Raloxifeno/farmacologia , Cloridrato de Raloxifeno/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Conservadores da Densidade Óssea/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Fraturas da Coluna Vertebral/complicações , Estudos Prospectivos , Densidade Óssea , Osteoporose/complicações , Osteoporose/tratamento farmacológico , Fraturas Ósseas/etiologia , Colesterol , Osteoporose Pós-Menopausa/tratamento farmacológicoRESUMO
To assess the effectiveness and safety of denosumab (Prolia®) compared to bisphosphonates (alendronate, ibandronate, risedronate, zoledronate), selective estrogen receptor modulators (SERMs; bazedoxifene, raloxifene) or placebo, for the treatment of osteoporosis in postmenopausal women (PMW). Systematic searches were run in PubMed, Embase & Cochrane Library on 27-April-2022. Randomized controlled trials (RCTs) that included osteoporotic PMW allocated to denosumab, SERMs, bisphosphonates, or placebo were eligible for inclusion. RCTs were appraised using Cochrane Risk of Bias 2.0. Bayesian network and/or pairwise meta-analyses were conducted on predetermined outcomes (i.e. vertebral/nonvertebral fractures, bone mineral density [BMD], mortality, adverse events [AEs], serious AEs (SAEs), withdrawals due to AEs, AEs caused by denosumab discontinuation). A total of 12 RCTs (k = 22 publications; n = 25,879 participants) were included in the analyses. Denosumab, reported a statistically significant increase in lumbar spine (LS) and total hip (TH) BMD, compared to placebo. Similarly, denosumab also resulted in a statistically significant increase in TH BMD compared to the raloxifene and bazedoxifene. However, relative to denosumab, alendronate, ibandronate and risedronate resulted in significant improvements in both femoral neck (FN) and LS BMD. With regards to vertebral fractures and all safety outcomes, there were no statistically significant differences between denosumab and any of the comparator. Relative to placebo, denosumab was associated with significant benefits in both LS and TH BMD. Additionally, denosumab (compared to placebo) was not associated with reductions in vertebral and nonvertebral fractures. Finally, denosumab was not associated with improvement in safety outcomes, compared to placebo. These findings should be interpreted with caution as some analyses suffered from statistical imprecision.
Assuntos
Conservadores da Densidade Óssea , Osteoporose Pós-Menopausa , Osteoporose , Fraturas da Coluna Vertebral , Feminino , Humanos , Difosfonatos/uso terapêutico , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Denosumab/uso terapêutico , Alendronato/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Ácido Risedrônico/uso terapêutico , Cloridrato de Raloxifeno/uso terapêutico , Ácido Ibandrônico/uso terapêutico , Metanálise em Rede , Pós-Menopausa , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/complicações , Osteoporose/tratamento farmacológico , Densidade Óssea , Fraturas da Coluna Vertebral/complicações , Resultado do TratamentoRESUMO
OBJECTIVES: We conducted a comprehensive meta-analysis of all available trials to evaluate the efficacy and safety of estrogen and selective estrogen receptor modulators as adjunctive treatment for women with schizophrenia. METHODS: Multiple databases were searched from the inception until March 2022. Only randomized, double-blind, placebo-controlled studies (randomized controlled trials) were included. Mean differences (MDs) and their 95% confidence intervals (CIs) were calculated using random effects models. RESULTS: The meta-analysis included six estradiol versus placebo studies (n = 724) and seven raloxifene versus placebo studies (n = 419), covering a total of 1143 patients. Adjunctive estradiol outperformed the placebo in terms of the Positive and Negative Syndrome Scale (PANSS) total score (MD = -7.29; 95% CI = -10.67 to -3.91; I2 = 59.1%; p < 0.001; k = 9; N = 858), positive symptom score (MD = -1.54; 95% CI = -3.04 to -0.72; I2 = 45.8%; p < 0.001; k = 7; N = 624), negative symptom score (MD = -1.9; 95% CI = -1.77 to -0.34; I2 = 37.6%; p < 0.05; k = 14; N = 1042), and general psychopathology score (MD = -4.27; 95% CI = -7.14 to -1.41; I2 = 76.3%; p < 0.005; k = 7; N = 624). Adjunctive raloxifene outperformed the placebo in terms of the PANSS total score (MD = -6.83; 95% CI = -11.69 to -1.97; I2 = 67.8%; p = 0.006; k = 8; N = 432) and general psychopathology score (MD = -3.82; 95% CI = -6.36 to -1.28; I2 = 65.3%; p < 0.005; k = 8; N = 432). CONCLUSIONS: Our meta-analysis showed that estradiol and raloxifene are effective and safe adjunctive treatments that improve schizophrenia symptoms in women. Moreover, the effects of estradiol and raloxifene differed in terms of timing and dosage. Both are promising adjunctive treatments that merit further study.
Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Feminino , Cloridrato de Raloxifeno/farmacologia , Cloridrato de Raloxifeno/uso terapêutico , Esquizofrenia/tratamento farmacológico , Esquizofrenia/diagnóstico , Estradiol , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Quimioterapia Combinada , Pós-Menopausa , Método Duplo-Cego , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
The intramolecular electrophilic cyclization of alkynes with disulfides to form thieno[2,3-b]quinoxaline structures and to introduce thioether substituents afforded quinoxaline derivatives (7a-7d, 8a-8d). Among obtained eight derivatives, the raloxifene analogues (7c, 8b) showed specifically high cytotoxicity against breast cancer cells (SK-BR-3), and raloxifene analogues (8a) showed the highest cytotoxicity against human leukemia cells (HL-60). None of the raloxifene analogues (7a-7d, 8a-8d) showed cytotoxicity against human lung fibroblasts (WI-38), which are normal cells.
Assuntos
Quinoxalinas , Cloridrato de Raloxifeno , Humanos , Ciclização , Quinoxalinas/farmacologia , Cloridrato de Raloxifeno/farmacologia , DissulfetosRESUMO
PURPOSE OF REVIEW: Despite clear evidence that sex differences largely impact the efficacy and tolerability of antipsychotic medication, current treatment guidelines for schizophrenia spectrum disorders (SSD) do not differentiate between men and women. This review summarizes the available evidence on strategies that may improve pharmacotherapy for women and provides evidence-based recommendations to optimize treatment for women with schizophrenia. RECENT FINDINGS: We systematically searched PubMed and Embase for peer-reviewed studies on three topics: (1) sex differences in dose-adjusted antipsychotic serum concentrations, (2) hormonal augmentation therapy with estrogen and estrogen-like compounds to improve symptom severity, and (3) strategies to reduce antipsychotic-induced hyperprolactinemia. Based on three database studies and one RCT, we found higher dose-adjusted concentrations in women compared to men for most antipsychotics. For quetiapine, higher concentrations were specifically found in older women. Based on two recent meta-analyses, both estrogen and raloxifene improved overall symptomatology. Most consistent findings were found for raloxifene augmentation in postmenopausal women. No studies evaluated the effects of estrogenic contraceptives on symptoms. Based on two meta-analyses and one RCT, adjunctive aripiprazole was the best-studied and safest strategy for lowering antipsychotic-induced hyperprolactinemia. Evidence-based recommendations for female-specific pharmacotherapy for SSD consist of (1) female-specific dosing for antipsychotics (guided by therapeutic drug monitoring), (2) hormonal replacement with raloxifene in postmenopausal women, and (3) aripiprazole addition as best evidenced option in case of antipsychotic-induced hyperprolactinemia. Combining these strategies could reduce side effects and improve outcome of women with SSD, which should be confirmed in future longitudinal RCTs.
Assuntos
Antipsicóticos , Hiperprolactinemia , Esquizofrenia , Feminino , Humanos , Masculino , Idoso , Antipsicóticos/efeitos adversos , Esquizofrenia/tratamento farmacológico , Aripiprazol/efeitos adversos , Hiperprolactinemia/induzido quimicamente , Hiperprolactinemia/tratamento farmacológico , Cloridrato de Raloxifeno/efeitos adversos , Estrogênios/uso terapêuticoRESUMO
In Canada, the Canadian Environmental Protection Act (1999) requires human health and environmental risk assessments be conducted for new substances prior to their manufacture or import. While this toxicity data is historically obtained using rodents, in response to the international effort to eliminate animal testing, Health Canada is collaborating with the National Research Council (NRC) of Canada to develop a New Approach Method by refining existing NRC zebrafish models. The embryo/larval zebrafish model evaluates systemic (whole body) general toxicity which is currently unachievable with cell-based testing. The model is strengthened using behavioral, toxicokinetic and transcriptomic responses to assess non-visible indicators of toxicity following chemical exposure at sub-phenotypic concentrations. In this paper, the predictive power of zebrafish transcriptomics is demonstrated using two chemicals; Raloxifene and Resorcinol. Raloxifene exposure produced darkening of the liver and malformation of the nose/mandible, while Resorcinol exposure produced increased locomotor activity. Transcriptomic analysis correlated differentially expressed genes with the phenotypic effects and benchmark dose calculations determined that the transcriptomic Point of Departure (POD) occurred at subphenotypic concentrations. Correlating gene expression with apical (phenotypic) effects strengthens confidence in evaluation of chemical toxicity, thereby demonstrating the significant advancement that the larval zebrafish transcriptomics model represents in chemical risk assessment.
Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Transcriptoma , Larva , Cloridrato de Raloxifeno , Canadá , Medição de Risco , Poluentes Químicos da Água/toxicidadeRESUMO
A sensitive, rapid, reproducible, and economical HPLC method is reported for the quantification of raloxifene hydrochloride employing Quality by Design (QbD) principles. Factor screening studies, employing Taguchi design, indicated buffer volume percentage and isocratic flow rate as the critical method parameters (CMPs), which significantly influence the chosen critical analytical attributes, that is, tailing factor and theoretical plate number. Method conditions were subsequently optimized using face-centered cubic design with magnitude of variance inflation factor for assessing multicollinearity among CMPs. Method operable design region (MODR) was earmarked and liquid chromatographic separation optimized using 0.05 M citrate buffer, acetonitrile, and methanol (57:40:3 v/v/v) as ggmobile phase at 0.9 mL min-1 flow rate, λmax of 280 nm, and column temperature of 40°C. Validation of the developed analytical method was accomplished as per International Council on Harmonization (ICH) guidelines confirming high levels of linearity, precision, accuracy, robustness, and sensitivity. Application of Monte Carlo simulations enabled the attainment of best plausible chromatographic resolution and corroboration of the demarcated MODR. Establishment and validation of the bioanalytical method using rat plasma samples, along with forced degradation and stability studies, corroborated the aptness of developed HPLC methods for drug quantification in the biological fluids, as well as in bulk and marketed dosage forms.