Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(3): e1009437, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33760868

RESUMO

Legionella pneumophila (L. pneumophila) is a gram-negative bacterium that replicates in a compartment that resembles the host endoplasmic reticulum (ER). To create its replicative niche, L. pneumophila manipulates host membrane traffic and fusion machineries. Bacterial proteins called Legionella effectors are translocated into the host cytosol and play a crucial role in these processes. In an early stage of infection, Legionella subverts ER-derived vesicles (ERDVs) by manipulating GTPase Rab1 to facilitate remodeling of the Legionella-containing vacuole (LCV). Subsequently, the LCV associates with the ER in a mechanism that remains elusive. In this study, we show that L. pneumophila recruits GTPases Rab33B and Rab6A, which regulate vesicle trafficking from the Golgi to the ER, to the LCV to promote the association of LCV with the ER. We found that recruitment of Rab6A to the LCV depends on Rab33B. Legionella effector SidE family proteins, which phosphoribosyl-ubiquitinate Rab33B, were found to be necessary for the recruitment of Rab33B to the LCV. Immunoprecipitation experiments revealed that L. pneumophila facilitates the interaction of Rab6 with ER-resident SNAREs comprising syntaxin 18, p31, and BNIP1, but not tethering factors including NAG, RINT-1, and ZW10, which are normally required for syntaxin 18-mediated fusion of Golgi-derived vesicles with the ER. Our results identified a Rab33B-Rab6A cascade on the LCV and the interaction of Rab6 with ER-resident SNARE proteins for the association of LCV with the ER and disclosed the unidentified physiological role of SidE family proteins.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Legionella pneumophila/patogenicidade , Doença dos Legionários/metabolismo , Vacúolos/microbiologia , Proteínas de Bactérias/metabolismo , Retículo Endoplasmático/microbiologia , Complexo de Golgi/microbiologia , Células HEK293 , Células HeLa , Humanos , Legionella pneumophila/metabolismo , Transporte Proteico/fisiologia , Vacúolos/metabolismo
2.
Immunity ; 39(4): 697-710, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24138881

RESUMO

Macrophages possess numerous mechanisms to combat microbial invasion, including sequestration of essential nutrients, like zinc (Zn). The pleiotropic cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) enhances antimicrobial defenses against intracellular pathogens such as Histoplasma capsulatum, but its mode of action remains elusive. We have found that GM-CSF-activated infected macrophages sequestered labile Zn by inducing binding to metallothioneins (MTs) in a STAT3 and STAT5 transcription-factor-dependent manner. GM-CSF upregulated expression of Zn exporters, Slc30a4 and Slc30a7; the metal was shuttled away from phagosomes and into the Golgi apparatus. This distinctive Zn sequestration strategy elevated phagosomal H⁺ channel function and triggered reactive oxygen species generation by NADPH oxidase. Consequently, H. capsulatum was selectively deprived of Zn, thereby halting replication and fostering fungal clearance. GM-CSF mediated Zn sequestration via MTs in vitro and in vivo in mice and in human macrophages. These findings illuminate a GM-CSF-induced Zn-sequestration network that drives phagocyte antimicrobial effector function.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Histoplasma/imunologia , Histoplasmose/metabolismo , Macrófagos Peritoneais/imunologia , Superóxidos/metabolismo , Zinco/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/imunologia , Regulação da Expressão Gênica , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/imunologia , Complexo de Golgi/microbiologia , Histoplasma/efeitos dos fármacos , Histoplasmose/imunologia , Histoplasmose/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Ativação de Macrófagos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/microbiologia , Metalotioneína/genética , Metalotioneína/imunologia , Camundongos , Camundongos Transgênicos , NADPH Oxidases/genética , NADPH Oxidases/imunologia , Fagossomos/efeitos dos fármacos , Fagossomos/imunologia , Fagossomos/microbiologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/imunologia , Transdução de Sinais , Superóxidos/imunologia , Zinco/imunologia
3.
PLoS Pathog ; 14(4): e1007005, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29668757

RESUMO

Coxiella burnetii is an intracellular bacterium that replicates within an expansive phagolysosome-like vacuole. Fusion between the Coxiella-containing vacuole (CCV) and late endosomes/multivesicular bodies requires Rab7, the HOPS tethering complex, and SNARE proteins, with actin also speculated to play a role. Here, we investigated the importance of actin in CCV fusion. Filamentous actin patches formed around the CCV membrane that were preferred sites of vesicular fusion. Accordingly, the mediators of endolysosomal fusion Rab7, VAMP7, and syntaxin 8 were concentrated in CCV actin patches. Generation of actin patches required C. burnetii type 4B secretion and host retromer function. Patches decorated with VPS29 and VPS35, components of the retromer, FAM21 and WASH, members of the WASH complex that engage the retromer, and Arp3, a component of the Arp2/3 complex that generates branched actin filaments. Depletion by siRNA of VPS35 or VPS29 reduced CCV actin patches and caused Rab7 to uniformly distribute in the CCV membrane. C. burnetii grew normally in VPS35 or VPS29 depleted cells, as well as WASH-knockout mouse embryo fibroblasts, where CCVs are devoid of actin patches. Endosome recycling to the plasma membrane and trans-Golgi of glucose transporter 1 (GLUT1) and cationic-independent mannose-6-phosphate receptor (CI-M6PR), respectively, was normal in infected cells. However, siRNA knockdown of retromer resulted in aberrant trafficking of GLUT1, but not CI-M6PR, suggesting canonical retrograde trafficking is unaffected by retromer disruption. Treatment with the specific Arp2/3 inhibitor CK-666 strongly inhibited CCV formation, an effect associated with altered endosomal trafficking of transferrin receptor. Collectively, our results show that CCV actin patches generated by retromer, WASH, and Arp2/3 are dispensable for CCV biogenesis and stability. However, Arp2/3-mediated production of actin filaments required for cargo transport within the endosomal system is required for CCV generation. These findings delineate which of the many actin related events that shape the endosomal compartment are important for CCV formation.


Assuntos
Actinas/metabolismo , Coxiella burnetii/patogenicidade , Endossomos/microbiologia , Proteínas dos Microfilamentos/fisiologia , Febre Q/microbiologia , Vacúolos/microbiologia , Proteínas de Transporte Vesicular/fisiologia , Animais , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/microbiologia , Humanos , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Polimerização , Transporte Proteico , Febre Q/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo
4.
J Biol Chem ; 293(25): 9662-9673, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29610274

RESUMO

In mammalian cells, autophagy plays crucial roles in restricting further spread of invading bacterial pathogens. Previous studies have established that the Salmonella virulence factors SseF and SseG are required for intracellular bacterial survival and replication. However, the underlying mechanism by which these two effectors facilitate bacterial infection remains elusive. Here, we report that SseF and SseG secreted by Salmonella Typhimurium (S. Typhimurium) inhibit autophagy in host cells and thereby establish a replicative niche for the bacteria in the cytosol. Mechanistically, SseF and SseG impaired autophagy initiation by directly interacting with the small GTPase Rab1A in the host cell. This interaction abolished Rab1A activation by disrupting the interaction with its guanine nucleotide exchange factor (GEF), the TRAPPIII (transport protein particle III) complex. This disruption of Rab1A signaling blocked the recruitment and activation of Unc-51-like autophagy-activating kinase 1 (ULK1) and decreased phosphatidylinositol 3-phosphate biogenesis, which ultimately impeded autophagosome formation. Furthermore, SseF- or SseG-deficient bacterial strains exhibited reduced survival and growth in both mammalian cell lines and mouse infection models, and Rab1A depletion could rescue these defects. These results reveal that virulence factor-dependent inactivation of the small GTPase Rab1A represents a previously unrecognized strategy of S Typhimurium to evade autophagy and the host defense system.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Virulência , Proteínas rab1 de Ligação ao GTP/fisiologia , Animais , Autofagia , Proteínas de Bactérias/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/microbiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Salmonella typhimurium/crescimento & desenvolvimento , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
Biochim Biophys Acta ; 1863(12): 3148-3159, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27742471

RESUMO

The Yersinia outer protein J (YopJ) plays a pivotal role in evading the host immune response and establishes a persistent infection in host cells after bacterial infection. YopJ is a cysteine protease and can act as a deubiquitinating enzyme that deubiquitinates several targets in multiple signaling pathways. Stimulator of interferon genes (STING) is a critical adapter for the induction of interferon regulatory factor 3 (IRF3) phosphorylation and subsequent production of the cytokines in response to nucleic acids in the cytoplasm. Our studies demonstrate that YopJ targets STING to inhibit IRF3 signaling. Specially, YopJ interacts with STING to block its ER-to-Golgi traffic and remove its K63-linked ubiquitination chains. Deubiquited STING perturbs the formation of STING-TBK1 complex and the activation of IRF3. The 172th cysteine of YopJ mediated STING deubiquitination and IRF3 signaling inhibition. Consequently, mice infected with WT and ΔYopJ/YopJ bacteria induced lower levels of IRF3 and IFN-ß, decreased inflammation and reduced staining of STING as compared to ΔYopJ and ΔYopJ/YopJ C172A strains infection. The data herein reveal a previously unrecognized mechanism by which YopJ modulates innate immune signaling.


Assuntos
Proteínas de Bactérias/genética , DNA/genética , Evasão da Resposta Imune , Fator Regulador 3 de Interferon/genética , Proteínas de Membrana/genética , Yersinia pestis/genética , Animais , Proteínas de Bactérias/imunologia , Linhagem Celular , DNA/imunologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/microbiologia , Deleção de Genes , Regulação da Expressão Gênica , Complexo de Golgi/metabolismo , Complexo de Golgi/microbiologia , Células HEK293 , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/imunologia , Interferon beta/genética , Interferon beta/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Proteínas de Membrana/imunologia , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Transdução de Sinais , Ubiquitinação , Yersinia pestis/crescimento & desenvolvimento , Yersinia pestis/patogenicidade
6.
Cell Microbiol ; 18(8): 1078-93, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26780191

RESUMO

Vibrio vulnificus infects humans and causes lethal septicemia. The primary virulence factor is a multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin consisting of conserved repeats-containing regions and various effector domains. Recent genomic analyses for the newly emerged V. vulnificus biotype 3 strain revealed that its MARTX toxin has two previously unknown effector domains. Herein, we characterized one of these domains, Domain X (DmXVv ). A structure-based homology search revealed that DmXVv belongs to the C58B cysteine peptidase subfamily. When ectopically expressed in cells, DmXVv was autoprocessed and induced cytopathicity including Golgi dispersion. When the catalytic cysteine or the region flanking the scissile bond was mutated, both autoprocessing and cytopathicity were significantly reduced indicating that DmXVv cytopathicity is activated by amino-terminal autoprocessing. Consistent with this, host cell protein export was affected by Vibrio cells producing a toxin with wild-type, but not catalytically inactive, DmXVv . DmXVv was found to localize to Golgi and to directly interact with Golgi-associated ADP-ribosylation factors ARF1, ARF3 and ARF4, although ARF binding was not necessary for the subcellular localization. Rather, this interaction was found to induce autoprocessing of DmXVv . These data demonstrate that the V. vulnificus hijacks the host ARF proteins to activate the cytopathic DmXVv effector domain of MARTX toxin.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Toxinas Bacterianas/metabolismo , Complexo de Golgi/enzimologia , Vibrioses/microbiologia , Vibrio vulnificus/fisiologia , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Complexo de Golgi/microbiologia , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Fenótipo , Transporte Proteico
7.
Cell Microbiol ; 18(7): 982-97, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27282465

RESUMO

Invasion and multiplication of the facultative, cytosolic, enteropathogen Shigella flexneri within the colonic epithelial lining leads to an acute inflammatory response, fever and diarrhea. During the inflammatory process, infected cells are subjected to numerous stresses including heat, oxidative stress and genotoxic stress. The evolutionarily conserved pathway of cellular stress management is the formation of stress granules that store translationally inactive cellular mRNAs and interfere with cellular signalling pathways by sequestering signalling components. In this study, we investigated the ability of S. flexneri-infected cells to form stress granules in response to exogenous stresses. We found that S. flexneri infection inhibits movement of the stress granule markers eIF3 and eIF4B into stress granules and prevents the aggregation of G3BP1 and eIF4G-containing stress granules. This inhibition occurred only with invasive, but not with non-invasive bacteria and occurred in response to stresses that induce translational arrest through the phosphorylation of eIF2α and by treating cells with pateamine A, a drug that induces stress granules by inhibiting the eIF4A helicase. The S. flexneri-mediated stress granule inhibition could be largely phenocopied by the microtubule-destabilizing drug nocodazole and while S. flexneri infection did not lead to microtubule depolymerization, infection greatly enhanced acetylation of alpha-tubulin. Our data suggest that qualitative differences in the microtubule network or subversion of the microtubule-transport machinery by S. flexneri may be involved in preventing the full execution of this cellular stress response.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Shigella flexneri/patogenicidade , Estresse Fisiológico/fisiologia , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Grânulos Citoplasmáticos/metabolismo , DNA Helicases , Disenteria Bacilar/metabolismo , Disenteria Bacilar/microbiologia , Disenteria Bacilar/patologia , Compostos de Epóxi/farmacologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/microbiologia , Células HeLa/microbiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Macrolídeos/farmacologia , Microtúbulos/metabolismo , Mutação , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Shigella flexneri/efeitos dos fármacos , Shigella flexneri/genética , Tiazóis/farmacologia
8.
Mol Microbiol ; 94(1): 186-201, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25116793

RESUMO

Chlamydia trachomatis is an obligate intracellular pathogen responsible for a high burden of human disease. Here, a loss-of-function screen using a set of lentivirally transduced shRNAs identified 14 human host cell factors that modulate C. trachomatis infectivity. Notably, knockdown of dynamin, a host GTPase, decreased C. trachomatis infectivity. Dynamin functions in multiple cytoplasmic locations, including vesicle formation at the plasma membrane and the trans-Golgi network. However, its role in C. trachomatis infection remains unclear. Here we report that dynamin is essential for homotypic fusion of C. trachomatis inclusions but not for C. trachomatis internalization into the host cell. Further, dynamin activity is necessary for lipid transport into C. trachomatis inclusions and for normal re-differentiation from reticulate to elementary bodies. Fragmentation of the Golgi apparatus is proposed to be an important strategy used by C. trachomatis for efficient lipid acquisition and replication within the host. Here we show that a subset of C. trachomatis-infected cells displayed Golgi fragmentation, which was concurrent with increased mitotic accumulation. Golgi fragmentation was dispensable for dynamin-mediated lipid acquisition into C. trachomatis inclusions, irrespective of the cell cycle phase. Thus, our study reveals a critical role of dynamin in host-derived lipid acquisition for C. trachomatis development.


Assuntos
Infecções por Chlamydia/enzimologia , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/metabolismo , Dinamina I/metabolismo , Dinaminas/metabolismo , Metabolismo dos Lipídeos , Infecções por Chlamydia/genética , Chlamydia trachomatis/citologia , Chlamydia trachomatis/genética , Dinamina I/genética , Dinamina II , Dinaminas/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/microbiologia , Humanos
9.
Nature ; 457(7230): 731-5, 2009 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19060882

RESUMO

The obligate intracellular bacterium Chlamydia trachomatis survives and replicates within a membrane-bound vacuole, termed the inclusion, which intercepts host exocytic pathways to obtain nutrients. Like many other intracellular pathogens, C. trachomatis has a marked requirement for host cell lipids, such as sphingolipids and cholesterol, produced in the endoplasmic reticulum and the Golgi apparatus. However, the mechanisms by which intracellular pathogens acquire host cell lipids are not well understood. In particular, no host cell protein responsible for transporting Golgi-derived lipids to the chlamydial inclusions has yet been identified. Here we show that Chlamydia infection in human epithelial cells induces Golgi fragmentation to generate Golgi ministacks surrounding the bacterial inclusion. Ministack formation is triggered by the proteolytic cleavage of the Golgi matrix protein golgin-84. Inhibition of golgin-84 truncation prevents Golgi fragmentation, causing a block in lipid acquisition and maturation of C. trachomatis. Golgi fragmentation by means of RNA-interference-mediated knockdown of distinct Golgi matrix proteins before infection enhances bacterial maturation. Our data functionally connect bacteria-induced golgin-84 cleavage, Golgi ministack formation, lipid acquisition and intracellular pathogen growth. We show that C. trachomatis subverts the structure and function of an entire host cell organelle for its own advantage.


Assuntos
Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/patogenicidade , Complexo de Golgi/microbiologia , Complexo de Golgi/patologia , Chlamydia muridarum/crescimento & desenvolvimento , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Técnicas de Silenciamento de Genes , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi , Células HeLa , Humanos , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Interferência de RNA , Proteínas de Transporte Vesicular
10.
Eukaryot Cell ; 12(2): 265-77, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23243063

RESUMO

The prokaryote Chlamydia trachomatis and the protozoan Toxoplasma gondii, two obligate intracellular pathogens of humans, have evolved a similar modus operandi to colonize their host cell and salvage nutrients from organelles. In order to gain fundamental knowledge on the pathogenicity of these microorganisms, we have established a cell culture model whereby single fibroblasts are coinfected by C. trachomatis and T. gondii. We previously reported that the two pathogens compete for the same nutrient pools in coinfected cells and that Toxoplasma holds a significant competitive advantage over Chlamydia. Here we have expanded our coinfection studies by examining the respective abilities of Chlamydia and Toxoplasma to co-opt the host cytoskeleton and recruit organelles. We demonstrate that the two pathogen-containing vacuoles migrate independently to the host perinuclear region and rearrange the host microtubular network around each vacuole. However, Toxoplasma outcompetes Chlamydia to the host microtubule-organizing center to the detriment of the bacterium, which then shifts to a stress-induced persistent state. Solely in cells preinfected with Chlamydia, the centrosomes become associated with the chlamydial inclusion, while the Toxoplasma parasitophorous vacuole displays growth defects. Both pathogens fragment the host Golgi apparatus and recruit Golgi elements to retrieve sphingolipids. This study demonstrates that the productive infection by both Chlamydia and Toxoplasma depends on the capability of each pathogen to successfully adhere to a finely tuned developmental program that aims to remodel the host cell for the pathogen's benefit. In particular, this investigation emphasizes the essentiality of host organelle interception by intravacuolar pathogens to facilitate access to nutrients.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia/fisiologia , Toxoplasma/fisiologia , Toxoplasmose/parasitologia , Células Cultivadas , Centrossomo/metabolismo , Centrossomo/microbiologia , Centrossomo/parasitologia , Ceramidas/metabolismo , Infecções por Chlamydia/parasitologia , Infecções por Chlamydia/patologia , Coinfecção , Fibroblastos/microbiologia , Fibroblastos/parasitologia , Fibroblastos/patologia , Complexo de Golgi/microbiologia , Complexo de Golgi/parasitologia , Complexo de Golgi/patologia , Interações Hospedeiro-Parasita , Interações Hospedeiro-Patógeno , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/microbiologia , Membranas Intracelulares/parasitologia , Viabilidade Microbiana , Microtúbulos/metabolismo , Microtúbulos/microbiologia , Microtúbulos/parasitologia , Mitocôndrias/microbiologia , Mitocôndrias/parasitologia , Mitocôndrias/patologia , Toxoplasmose/microbiologia , Toxoplasmose/patologia , Vacúolos/microbiologia , Vacúolos/parasitologia
11.
J Biol Chem ; 287(8): 5574-87, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22190682

RESUMO

Several intracellular pathogens have developed diverse strategies to avoid targeting to lysosomes. However, they universally recruit lysosome-associated membrane protein 1 (LAMP1); the mechanism of LAMP1 recruitment remains unclear. Here, we report that a Salmonella effector protein, SipC, specifically binds with host Syntaxin6 through its C terminus and thereby recruits Syntaxin6 and other accessory molecules like VAMP2, Rab6, and Rab8 on Salmonella-containing phagosomes (SCP) and acquires LAMP1 by fusing with LAMP1-containing Golgi-derived vesicles. In contrast, sipC knock-out:SCP (sipC(-):SCP) or sipC(M398K):SCP fails to obtain significant amounts of Syntaxin6 and is unable to acquire LAMP1. Moreover, phagosomes containing respective knock-out Salmonella like sipA(-), sipB(-), sipD(-), sopB(-), or sopE(-) recruit LAMP1, demonstrating the specificity of SipC in this process. In addition, depletion of Syntaxin6 by shRNA in macrophages significantly inhibits LAMP1 recruitment on SCP. Additionally, survival of sipC(-):Salmonella in mice is found to be significantly inhibited in comparison with WT:Salmonella. Our results reveal a novel mechanism showing how Salmonella acquires LAMP1 through a SipC-Syntaxin6-mediated interaction probably to stabilize their niche in macrophages and also suggest that similar modalities might be used by other intracellular pathogens to recruit LAMP1.


Assuntos
Proteínas de Bactérias/metabolismo , Complexo de Golgi/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Fagossomos/metabolismo , Fagossomos/microbiologia , Proteínas Qa-SNARE/metabolismo , Salmonella typhimurium/metabolismo , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Complexo de Golgi/microbiologia , Espaço Intracelular/metabolismo , Espaço Intracelular/microbiologia , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Mutação , Transporte Proteico , Salmonella typhimurium/genética , Salmonella typhimurium/fisiologia , Especificidade por Substrato
12.
PLoS Pathog ; 7(9): e1002283, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21990969

RESUMO

Chlamydiae are obligate intracellular bacteria that propagate in a cytosolic vacuole. Recent work has shown that growth of Chlamydia induces the fragmentation of the Golgi apparatus (GA) into ministacks, which facilitates the acquisition of host lipids into the growing inclusion. GA fragmentation results from infection-associated cleavage of the integral GA protein, golgin-84. Golgin-84-cleavage, GA fragmentation and growth of Chlamydia trachomatis can be blocked by the peptide inhibitor WEHD-fmk. Here we identify the bacterial protease chlamydial protease-like activity factor (CPAF) as the factor mediating cleavage of golgin-84 and as the target of WEHD-fmk-inhibition. WEHD-fmk blocked cleavage of golgin-84 as well as cleavage of known CPAF targets during infection with C. trachomatis and C. pneumoniae. The same effect was seen when active CPAF was expressed in non-infected cells and in a cell-free system. Ectopic expression of active CPAF in non-infected cells was sufficient for GA fragmentation. GA fragmentation required the small GTPases Rab6 and Rab11 downstream of CPAF-activity. These results define CPAF as the first protein that is essential for replication of Chlamydia. We suggest that this role makes CPAF a potential anti-infective therapeutic target.


Assuntos
Chlamydia trachomatis/crescimento & desenvolvimento , Endopeptidases/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Oligopeptídeos/farmacologia , Linhagem Celular , Sistema Livre de Células , Chlamydia trachomatis/efeitos dos fármacos , Chlamydia trachomatis/patogenicidade , Chlamydophila pneumoniae/efeitos dos fármacos , Chlamydophila pneumoniae/crescimento & desenvolvimento , Chlamydophila pneumoniae/patogenicidade , Endopeptidases/biossíntese , Complexo de Golgi/microbiologia , Complexo de Golgi/patologia , Proteínas da Matriz do Complexo de Golgi , Células HEK293 , Células HeLa , Humanos , Oligopeptídeos/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Proteínas de Transporte Vesicular , Proteínas rab de Ligação ao GTP/metabolismo
13.
Proteomics ; 11(23): 4477-91, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21919203

RESUMO

To identify host factors involved in Salmonella replication, SILAC-based quantitative proteomics was used to investigate the interactions of Salmonella typhimurium with the secretory pathway in human epithelial cells. Protein profiles of Golgi-enriched fractions isolated from S. typhimurium-infected cells were compared with those of mock-infected cells, revealing significant depletion or enrichment of 105 proteins. Proteins annotated to play a role in membrane traffic were overrepresented among the depleted proteins whereas proteins annotated to the cytoskeleton showed a diverse behavior with some proteins being enriched, others being depleted from the Golgi fraction upon Salmonella infection. To study the functional relevance of identified proteins in the Salmonella infection cycle, small interfering RNA (siRNA) experiments were performed. siRNA-mediated depletion of a selection of affected proteins identified five host factors involved in Salmonella infection. Depletion of peroxiredoxin-6 (PRDX6), isoform ß-4c of integrin ß-4 (ITGB4), isoform 1 of protein lap2 (erbin interacting protein; ERBB2IP), stomatin (STOM) or TBC domain containing protein 10b (TBC1D10B) resulted in increased Salmonella replication. Surprisingly, in addition to the effect on Salmonella replication, depletion of STOM or ITGB4 resulted in a dispersal of intracellular Salmonella microcolonies. It can be concluded that by using SILAC-based quantitative proteomics we were able to identify novel host cell proteins involved in the complex interplay between Salmonella and epithelial cells.


Assuntos
Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Proteoma/metabolismo , Infecções por Salmonella/metabolismo , Salmonella typhimurium/fisiologia , Células Epiteliais/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/microbiologia , Células HeLa , Humanos , Integrina beta4/genética , Integrina beta4/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteoma/genética , RNA Interferente Pequeno/genética , Infecções por Salmonella/genética , Salmonella typhimurium/citologia
14.
PLoS Pathog ; 5(10): e1000615, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19816566

RESUMO

Many intracellular pathogens that replicate in special membrane bound compartments exploit cellular trafficking pathways by targeting small GTPases, including Rab proteins. Members of the Chlamydiaceae recruit a subset of Rab proteins to their inclusions, but the significance of these interactions is uncertain. Using RNA interference, we identified Rab6 and Rab11 as important regulators of Chlamydia infections. Depletion of either Rab6 or Rab11, but not the other Rab proteins tested, decreased the formation of infectious particles. We further examined the interplay between these Rab proteins and the Golgi matrix components golgin-84 and p115 with regard to Chlamydia-induced Golgi fragmentation. Silencing of the Rab proteins blocked Chlamydia-induced and golgin-84 knockdown-stimulated Golgi disruption, whereas Golgi fragmentation was unaffected in p115 depleted cells. Interestingly, p115-induced Golgi fragmentation could rescue Chlamydia propagation in Rab6 and Rab11 knockdown cells. Furthermore, transport of nutrients to Chlamydia, as monitored by BODIPY-Ceramide, was inhibited by Rab6 and Rab11 knockdown. Taken together, our results demonstrate that Rab6 and Rab11 are key regulators of Golgi stability and further support the notion that Chlamydia subverts Golgi structure to enhance its intracellular development.


Assuntos
Chlamydia trachomatis/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Cegueira/epidemiologia , Cegueira/microbiologia , Divisão Celular , Infecções por Chlamydia/epidemiologia , Infecções por Chlamydia/genética , Infecções por Chlamydia/metabolismo , Infecções por Chlamydia/transmissão , Chlamydia trachomatis/genética , Chlamydia trachomatis/patogenicidade , Retículo Endoplasmático/microbiologia , Feminino , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/microbiologia , Humanos , Incidência , Infertilidade Feminina/microbiologia , Interferência de RNA , Infecções Sexualmente Transmissíveis/epidemiologia , Infecções Sexualmente Transmissíveis/transmissão , Proteínas rab de Ligação ao GTP/antagonistas & inibidores , Proteínas rab de Ligação ao GTP/genética
15.
mBio ; 12(1)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563838

RESUMO

Group A Streptococcus (GAS; Streptococcus pyogenes) is a major human pathogen that causes streptococcal pharyngitis, skin and soft tissue infections, and life-threatening conditions such as streptococcal toxic-shock syndrome. During infection, GAS not only invades diverse host cells but also injects effector proteins such as NAD-glycohydrolase (Nga) into the host cells through a streptolysin O (SLO)-dependent mechanism without invading the cells; Nga and SLO are two major virulence factors that are associated with increased bacterial virulence. Here, we have shown that the invading GAS induces fragmentation of the Golgi complex and inhibits anterograde transport in the infected host cells through the secreted toxins SLO and Nga. GAS infection-induced Golgi fragmentation required both bacterial invasion and SLO-mediated Nga translocation into the host cytosol. The cellular Golgi network is critical for the sorting of surface molecules and is thus essential for the integrity of the epithelial barrier and for the immune response of macrophages to pathogens. In epithelial cells, inhibition of anterograde trafficking by invading GAS and Nga resulted in the redistribution of E-cadherin to the cytosol and an increase in bacterial translocation across the epithelial barrier. Moreover, in macrophages, interleukin-8 secretion in response to GAS infection was found to be suppressed by intracellular GAS and Nga. Our findings reveal a previously undescribed bacterial invasion-dependent function of Nga as well as a previously unrecognized GAS-host interaction that is associated with GAS pathogenesis.IMPORTANCE Two prominent virulence factors of group A Streptococcus (GAS), streptolysin O (SLO) and NAD-glycohydrolase (Nga), are linked to enhanced pathogenicity of the prevalent GAS strains. Recent advances show that SLO and Nga are important for intracellular survival of GAS in epithelial cells and macrophages. Here, we found that invading GAS disrupts the Golgi complex in host cells through SLO and Nga. We show that GAS-induced Golgi fragmentation requires bacterial invasion into host cells, SLO pore formation activity, and Nga NADase activity. GAS-induced Golgi fragmentation results in the impairment of the epithelial barrier and chemokine secretion in macrophages. This immune inhibition property of SLO and Nga by intracellular GAS indicates that the invasion of GAS is associated with virulence exerted by SLO and Nga.


Assuntos
Células Epiteliais/microbiologia , Complexo de Golgi/patologia , Interações Hospedeiro-Patógeno/genética , NAD+ Nucleosidase/genética , Streptococcus pyogenes/patogenicidade , Estreptolisinas/genética , Células A549 , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citoplasma/microbiologia , Complexo de Golgi/genética , Complexo de Golgi/microbiologia , Células HeLa , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interleucina-8/imunologia , NAD+ Nucleosidase/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/imunologia , Estreptolisinas/metabolismo , Células THP-1 , Fatores de Virulência
16.
FEBS Lett ; 594(17): 2782-2799, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32484234

RESUMO

Intracellular pathogens affect diverse host cellular defence and metabolic pathways. Here, we used infection with Francisella tularensis to identify SON DNA-binding protein as a central determinant of macrophage activities. RNAi knockdown of SON increases survival of human macrophages following F. tularensis infection or inflammasome stimulation. SON is required for macrophage autophagy, interferon response factor 3 expression, type I interferon response and inflammasome-associated readouts. SON knockdown has gene- and stimulus-specific effects on inflammatory gene expression. SON is required for accurate splicing and expression of GBF1, a key mediator of cis-Golgi structure and function. Chemical GBF1 inhibition has similar effects to SON knockdown, suggesting that SON controls macrophage functions at least in part by controlling Golgi-associated processes.


Assuntos
Autofagia/genética , Proteínas de Ligação a DNA/genética , Francisella tularensis/patogenicidade , Complexo de Golgi/imunologia , Fatores de Troca do Nucleotídeo Guanina/genética , Interações Hospedeiro-Patógeno/genética , Macrófagos/imunologia , Antígenos de Histocompatibilidade Menor/genética , Autofagia/efeitos dos fármacos , Morte Celular , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/imunologia , Francisella tularensis/genética , Francisella tularensis/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Complexo de Golgi/metabolismo , Complexo de Golgi/microbiologia , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Antígenos de Histocompatibilidade Menor/imunologia , Piridinas/farmacologia , Quinolinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Células THP-1 , Acetato de Tetradecanoilforbol/farmacologia
17.
J Cell Biol ; 121(3): 521-41, 1993 May.
Artigo em Inglês | MEDLINE | ID: mdl-8486734

RESUMO

Vaccinia virus, the prototype of the Poxviridae, is a large DNA virus which replicates in the cytoplasm of the host cell. The assembly pathway of vaccinia virus displays several unique features, such as the production of two structurally distinct, infectious forms. One of these, termed intracellular naked virus (INV), remains cells associated while the other, termed extracellular enveloped virus (EEV), is released from the cell. In addition, it has long been believed that INVs acquire their lipid envelopes by a unique example of de novo membrane biogenesis. To examine the structure and assembly of vaccinia virus we have used immunoelectron microscopy using antibodies to proteins of different subcellular compartments as well as a phospholipid analysis of purified INV and EEV. Our data are not consistent with the de novo model of viral membrane synthesis but rather argue that the vaccinia virus DNA becomes enwrapped by a membrane cisterna derived from the intermediate compartment between the ER and the Golgi stacks, thus acquiring two membranes in one step. Phospholipid analysis of purified INV supports its derivation from an early biosynthetic compartment. This unique assembly process is repeated once more when the INV becomes enwrapped by an additional membrane cisterna, in agreement with earlier reports. The available data suggest that after fusion between the outer envelope and the plasma membrane, mature EEV is released from the cell.


Assuntos
Membranas Intracelulares/microbiologia , Vaccinia virus/crescimento & desenvolvimento , Retículo Endoplasmático/microbiologia , Complexo de Golgi/microbiologia , Células HeLa/microbiologia , Células HeLa/ultraestrutura , Humanos , Membranas Intracelulares/ultraestrutura , Modelos Biológicos , Vaccinia virus/patogenicidade , Vaccinia virus/ultraestrutura , Eliminação de Partículas Virais
18.
J Cell Biol ; 105(3): 1215-26, 1987 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-2821011

RESUMO

Murine hepatitis virus (strain A59), (MHV-A59) is a coronavirus that buds into pre-Golgi compartments and then exploits the exocytic pathway of the host cell to reach the exterior. The fibroblastic cells in which replication of this virus is usually studied have only a constitutive exocytic pathway that the virus uses. MHV-A59 also infects, albeit inefficiently, AtT20 cells, murine pituitary tumor cells with a regulated as well as a constitutive exocytic pathway. Here we examine AtT20 cells at early times after the infection, when the Golgi apparatus retains its morphological and biochemical integrity. We observe that progeny coronavirus and secretory protein destined for the secretory granules of the regulated exocytic pathway traverse the same Golgi stacks and accumulate in the trans-Golgi network. Their pathways diverge at this site, the condensed secretory proteins including the ACTH going to the secretory granules and the coronavirus to post-Golgi transport vesicles devoid of ACTH. On very rare occasions there is missorting such that aggregates of condensed secretory proteins and viruses occur together in post-Golgi vesicles. We conclude that the constitutive and regulated exocytic pathways, identified respectively by the progeny virions and the secretory protein ACTH, diverge at the exit from the trans-Golgi network.


Assuntos
Complexo de Golgi/metabolismo , Vírus da Hepatite Murina/genética , Hormônio Adrenocorticotrópico/análise , Animais , Linhagem Celular , Transformação Celular Viral , Cloroquina/farmacologia , Replicação do DNA , Complexo de Golgi/microbiologia , Complexo de Golgi/ultraestrutura , Microscopia Eletrônica , Vírus da Hepatite Murina/efeitos dos fármacos , Vírus da Hepatite Murina/ultraestrutura , Vírion/ultraestrutura , Replicação Viral
19.
J Cell Biol ; 107(5): 1707-15, 1988 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-2846585

RESUMO

Using monoclonal antibodies and indirect immunofluorescence microscopy, we investigated the distribution of the M protein in situ in vesicular stomatitis virus-(VSV) infected MDCK cells. M protein was observed free in the cytoplasm and associated with the plasma membrane. Using the ts045 mutant of VSV to uncouple the synthesis and transport of the VSV G protein we demonstrated that this distribution was not related to the presence of G protein on the cell surface. Sections of epon-embedded infected cells labeled with antibody to the M protein and processed for indirect horseradish peroxidase immunocytochemistry revealed that the M protein was associated specifically with the basolateral plasma membrane. The G and M proteins of VSV have therefore evolved features which bring them independently to the basolateral membrane of polarized epithelial cells and allow virus to bud specifically from that membrane.


Assuntos
Membrana Celular/microbiologia , Vírus da Estomatite Vesicular Indiana/fisiologia , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/metabolismo , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Transporte Biológico , Membrana Celular/metabolismo , Células Cultivadas , Centrifugação com Gradiente de Concentração , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/microbiologia , Ensaio de Imunoadsorção Enzimática , Células Epiteliais , Epitélio/microbiologia , Imunofluorescência , Complexo de Golgi/metabolismo , Complexo de Golgi/microbiologia , Imuno-Histoquímica , Metabolismo dos Lipídeos , Testes de Precipitina , Ligação Proteica , Processamento de Proteína Pós-Traducional
20.
J Cell Biol ; 106(5): 1475-87, 1988 May.
Artigo em Inglês | MEDLINE | ID: mdl-2836431

RESUMO

By pulse-chase labeling with [35S]methionine and long-term labeling with 3H-sugars, the E1 glycoprotein of coronavirus MHV-A59 has been shown to acquire O-linked oligosaccharides in a two-step process. About 10 min after synthesis of the E1 protein, N-acetyl-galactosamine was added. This was followed approximately 10 min later by the addition of both galactose and sialic acid to give the mature oligosaccharides. This sequence of additions was confirmed by analyzing the 3H-labeled oligosaccharides bound to each of the E1 forms using gel filtration on P4 columns. The intracellular location of the first step was determined by exploiting the temperature sensitivity of virus release. The virus normally buds first into a smooth membrane compartment lying between the rough endoplasmic reticulum and the cis side of the Golgi stack (Tooze et al., 1984). At 31 degrees C the virus is assembled but does not appear to enter the Golgi stacks. The addition of N-acetyl-galactosamine is unaffected although the addition of galactose and sialic acid is inhibited. These results strongly suggest that addition of N-acetyl-galactosamine occurs in this budding compartment, the morphology of which is similar to that of transitional elements and vesicles.


Assuntos
Acetilgalactosamina/metabolismo , Galactosamina/análogos & derivados , Glicoproteínas/metabolismo , Vírus da Hepatite Murina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Retículo Endoplasmático/análise , Retículo Endoplasmático/microbiologia , Imunofluorescência , Galactose/metabolismo , Glicoproteínas/análise , Glicosilação , Complexo de Golgi/análise , Complexo de Golgi/microbiologia , Técnicas Imunoenzimáticas , Microscopia Eletrônica , Vírus da Hepatite Murina/crescimento & desenvolvimento , Vírus da Hepatite Murina/ultraestrutura , Ácido N-Acetilneuramínico , Oligossacarídeos/metabolismo , Ácidos Siálicos/metabolismo , Temperatura , Proteínas Virais/análise , Vírion/crescimento & desenvolvimento , Ativação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA