Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34684804

RESUMO

This paper presents a new method for the simultaneous speciation analysis of arsenic (As(III)-arsenite, As(V)-arsenate, DMA-dimethylarsinic acid, MMA-methylarsonic acid, and AsB-arsenobetaine) and selenium (Se(IV)-selenite, Se(VI)-selenate, Se-Methionine, and Se-Cystine), which was applied to a variety of seafood and onion samples. The determination of the forms of arsenic and selenium was undertaken using the High-Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry (HPLC-ICP-MS) analytical technique. The separation of both organic and inorganic forms of arsenic and selenium was performed using two analytical columns: an anion exchange column, Dionex IonPac AS22, containing an alkanol quaternary ammonium ion, and a double bed cation-anion exchange guard column, Dionex Ion Pac CG5A, containing, as a first layer, fully sulfonated latex for cation exchange and a fully aminated layer for anion exchange as the second layer. The ammonium nitrate, at pH = 9.0, was used as a mobile phase. The method presented here allowed us to separate the As and Se species within 10 min with a suitable resolution. The applicability was presented with different sample matrix types: seafood and onion.


Assuntos
Arsênio/análise , Contaminação de Alimentos/análise , Cebolas/química , Cebolas/toxicidade , Alimentos Marinhos/análise , Alimentos Marinhos/toxicidade , Selênio/análise , Animais , Intoxicação por Arsênico , Arsenicais/análise , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Humanos , Espectrometria de Massas , Compostos Organosselênicos/análise , Compostos Organosselênicos/toxicidade , Compostos de Selênio/análise , Compostos de Selênio/toxicidade
2.
Anal Chem ; 91(5): 3567-3574, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30727735

RESUMO

A current remaining challenge in nanotechnology is the fast and reliable determination of the ratios between engineered nanoparticles and the species attached to their surface after chemical functionalization. The approach proposed herein based on the online coupling of asymmetric flow field-flow fractionation (AF4) with inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS) allows for the first time the direct determination of such ratios in CdSe/ZnS core-shell quantum dot:rat monoclonal IgG2a antibody (QD:Ab) conjugate mixtures in a single run without any previous sample preparation (i.e., derivatization). AF4 provides full recovery and adequate resolution of the resulting bioconjugate from the excess of nanoparticles and proteins used in the different bioconjugation mixtures (1:1, 2:1, and 3:1 QD:Ab molar ratios were assessed). The point-by-point determination by ICP-MS/MS of the metal to sulfur ratios along the bioconjugate fractographic peak allowed disclosing the mixture of the different species in the bioconjugated sample, providing not only the limits of the range of QD:Ab ratios in the different bioconjugate species resulting after functionalization but also a good estimation of their individual relative abundance in the mixture. Interestingly, a wide variety of compositions were observed for the different bioconjugate mixtures studied (QD:Ab molar ratios ranging from 0.27 to 4.6). The resulting weighted QD:Ab ratio computed in this way for each bioconjugate peak matches well with both the global (average) QD:Ab ratio experimentally obtained by the simpler peak area ratio computation and the theoretical QD:Ab molar ratios assayed, which internally validates the procedure developed.


Assuntos
Compostos de Cádmio/análise , Fracionamento por Campo e Fluxo , Imunoglobulina G/análise , Nanopartículas/análise , Pontos Quânticos/análise , Compostos de Selênio/análise , Sulfetos/análise , Compostos de Zinco/análise , Nanotecnologia , Espectrometria de Massas em Tandem
3.
Anal Chem ; 90(6): 4119-4125, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466857

RESUMO

Selenocysteine (Sec) is a primary kind of reactive selenium species in cells, and its vital roles in physiological processes have been featured. Thus, the development of highly sensitive and selective methods for the sensing of Sec is of great significance. This work reports a turn-on fluorescent probe for selenol based on the unique fluorescence OFF-ON switching between the Schiff base (SB) and its complementary protonated Schiff base (PSB) form of merocyanine dyes. The probe consists of a merocyanine Schiff base fluorophore and a 2,4-dinitrobenzenesulfonamide moiety that reacts especially with selenol. The fluorescence turn-on response of MC-Sec is realized via the selective removal of the strongly electron withdrawing 2,4-dinitrobenzenesulfonyl group by Sec, leading to a shift in the p Ka of the imine nitrogen of the probe from 6.40 to 9.04 and thus significantly increasing the population of the fluorescent PSB form of the dye at physiological pH. MC-Sec shows good selectivity and sensitivity for Sec and has been applied in the imaging of exogenous and endogenous selenol in living cells by confocal fluorescence microscopy. The proposed mechanism should be useful for developing future probes directed to other target molecules by employing this simple but effective p Ka shift strategy.


Assuntos
Benzopiranos/química , Corantes Fluorescentes/química , Indóis/química , Imagem Óptica/métodos , Compostos de Selênio/análise , Linhagem Celular , Fluorescência , Humanos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Bases de Schiff/química , Espectrometria de Fluorescência/métodos
4.
Anal Chem ; 89(3): 1734-1741, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28208245

RESUMO

Selenocysteine (Sec) carries out the majority of the functions of the various Se-containing species in vivo. Thus, it is of great importance to develop sensitive and selective assays to detect Sec. Herein, a carbon-dot-based fluorescent turn-on probe for highly selective detection of selenol in living cells is presented. The highly photoluminescent carbon dots that emit yellow-green fluorescence (Y-G-CDs; λmax = 520 nm in water) were prepared by using m-aminophenol as carbon precursor through a facile solvothermal method. The surface of Y-G-CDs was then covalently functionalized with 2,4-dinitrobenzenesulfonyl chloride (DNS-Cl) to afford the 2,4-dinitrobenzene-functionalized CDs (CD-DNS) as a nanoprobe for selenol. CD-DNS is almost nonfluorescent. However, upon treating with Sec, the DNS moiety of CD-DNS can be readily cleaved by selenolate through a nucleophilic substitution process, resulting in the formation of highly fluorescent Y-G-CDs and hence leads to a dramatic increase in fluorescence intensity. The proposed nanoprobe exhibits high sensitivity and selectivity toward Sec over biothiols and other biological species. A preliminary study shows that CD-DNS can function as a useful tool for fluorescence imaging of exogenous and endogenous selenol in living cells.


Assuntos
Carbono/química , Corantes Fluorescentes/química , Microscopia de Fluorescência , Pontos Quânticos/química , Compostos de Selênio/análise , Aminofenóis/química , Animais , Linhagem Celular , Dinitrobenzenos/química , Concentração de Íons de Hidrogênio , Camundongos , Compostos de Selênio/química
5.
Anal Biochem ; 532: 1-8, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28552757

RESUMO

The low redox potential of selenide and selenol is physiologically important, as it confers efficient catalytic abilities to selenoproteins. Quantitative determination of selenol and selenide provide important clues for understanding the metabolism and physiological function of selenium. However, selective detection of selenol and selenide is extremely difficult because of their chemical similarity to thiol and sulfide. In this study, we established a highly sensitive, selective, quantitative, and simple method for detection of selenol and selenide, using a reaction with monochlorobimane (MCB), followed by ethyl acetate extraction of the product syn-(methyl,methyl)bimane. We analyzed selenide production from selenite, catalyzed by human glutathione reductase, and also determined selenide and selenol concentrations in Hepa1-6 cells using the MCB method, to demonstrate its practical applications. This study provides a new tool for selenium detection in biology.


Assuntos
Carcinoma Hepatocelular/diagnóstico , Fluorescência , Neoplasias Hepáticas/diagnóstico , Pirazóis/química , Compostos de Selênio/análise , Selenito de Sódio/análise , Animais , Carcinoma Hepatocelular/metabolismo , Glutationa Redutase/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Camundongos , Pirazóis/metabolismo , Células Tumorais Cultivadas
6.
J Fluoresc ; 27(2): 611-618, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27981405

RESUMO

A highly selective fluorescent probe 2-(2-(2-aminoethylamino)ethyl)-3',6'-bis(ethylamino)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one (ABDO) for Se (IV) had been synthesized in our earlier report. In this study, this fluorescent sensor is applied on analysis fluorescent imaging of Se (IV) in Hela cells. The experiment conditions, such as the MTT assay, different concentration of saline, incubated time of Hela cells with ABDO and Se (IV), and intracellular action position of Se (IV), are investigated. Through a series of experiments, the fluorescent image of Se (IV) in Hela cells can be observed when the cells cultured by 2 µM ABDO and 2 µM Se (IV) for 210 min. And the intracellular action position of Se (IV) is verified after the co-localization experiments are done. It is mitochondria. These experimental results show that ABDO will be an eagerly anticipated sensor for fluorescent imaging analysis of selenium ion in living cells. Besides, we also can use the complexes of ABDO-Se to observe morphology and distribution of mitochondria in cells like JG-B.


Assuntos
Fluorescência , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Rodaminas/química , Compostos de Selênio/análise , Células HeLa , Humanos , Modelos Moleculares , Estrutura Molecular
7.
J Nanobiotechnology ; 15(1): 45, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619032

RESUMO

BACKGROUND: Nanoparticle interactions with cellular membranes and the kinetics of their transport and localization are important determinants of their functionality and their biological consequences. Understanding these phenomena is fundamental for the translation of such NPs from in vitro to in vivo systems for bioimaging and medical applications. Two CdSe/ZnS quantum dots (QD) with differing surface functionality (NH2 or COOH moieties) were used here for investigating the intracellular uptake and transport kinetics of these QDs. RESULTS: In water, the COOH- and NH2-QDs were negatively and positively charged, respectively, while in serum-containing medium the NH2-QDs were agglomerated, whereas the COOH-QDs remained dispersed. Though intracellular levels of NH2- and COOH-QDs were very similar after 24 h exposure, COOH-QDs appeared to be continuously internalised and transported by endosomes and lysosomes, while NH2-QDs mainly remained in the lysosomes. The results of (intra)cellular QD trafficking were correlated to their toxicity profiles investigating levels of reactive oxygen species (ROS), mitochondrial ROS, autophagy, changes to cellular morphology and alterations in genes involved in cellular stress, toxicity and cytoskeletal integrity. The continuous flux of COOH-QDs perhaps explains their higher toxicity compared to the NH2-QDs, mainly resulting in mitochondrial ROS and cytoskeletal remodelling which are phenomena that occur early during cellular exposure. CONCLUSIONS: Together, these data reveal that although cellular QD levels were similar after 24 h, differences in the nature and extent of their cellular trafficking resulted in differences in consequent gene alterations and toxicological effects.


Assuntos
Autofagia/efeitos dos fármacos , Compostos de Cádmio/toxicidade , Pontos Quânticos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Compostos de Selênio/toxicidade , Sulfetos/toxicidade , Compostos de Zinco/toxicidade , Compostos de Cádmio/análise , Compostos de Cádmio/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Pontos Quânticos/análise , Pontos Quânticos/metabolismo , Compostos de Selênio/análise , Compostos de Selênio/metabolismo , Sulfetos/análise , Sulfetos/metabolismo , Compostos de Zinco/análise , Compostos de Zinco/metabolismo
8.
Chem Pharm Bull (Tokyo) ; 65(11): 1045-1050, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093291

RESUMO

Selenium is an essential trace element for humans and animals. Fish and shellfish are known to be rich in selenium and suppose to be an effective selenium source. In this study, we characterized the selenium species in the Shijimi clam (Corbicula japonica), which is a typical clam eaten in Japan. The Shijimi clam contains a relatively high concentration of selenium (3.5 µg-selenium/g-dry Shijimi). Approximately 30% of the total selenium in the Shijimi clam meat was extractable with water, while selenium in the Shijimi clam was hardly extracted with ethanol, chloroform and hexane. Based on an ultrafiltration study, the molecular mass of the major selenium species in the Shijimi water-extract was estimated to be less than 5000. Because amphoteric selenium species were contained in the Shijimi water-extract, which was indicated by ion-exchange chromatographic separation, an ion-pair reagent was utilized to extract the ionic selenium species into an organic solvent. A matrix assisted laser desorption ionization (MALDI) time of flight (TOF)-mass spectrometric analysis revealed the selenium isotopic pattern involving one selenium atom in a molecule with the 80Se molecular ion peak at m/z 534. This selenium species was mainly found in the visceral part of the Shijimi clam by imaging mass spectrometry.


Assuntos
Compostos de Selênio/análise , Animais , Cromatografia por Troca Iônica , Corbicula , Japão , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Molecules ; 22(6)2017 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-28587216

RESUMO

The ability of some crops to accumulate selenium (Se) is crucial for human nutrition and health. Selenium has been identified as a cofactor of the enzyme glutathione peroxidase, which is a catalyzer in the reduction of peroxides that can damage cells and tissues, and can act as an antioxidant. Plants are the first link in the food chain, which ends with humans. Increasing the Se quantity in plant products, including leafy and fruity vegetables, and fruit crops, without exceeding the toxic threshold, is thus a good way to increase animal and human Se intake, with positive effects on long-term health. In many Se-enriched plants, most Se is in its major organic form. Given that this form is more available to humans and more efficient in increasing the selenium content than inorganic forms, the consumption of Se-enriched plants appears to be beneficial. An antioxidant effect of Se has been detected in Se-enriched vegetables and fruit crops due to an improved antioxidative status and to a reduced biosynthesis of ethylene, which is the hormone with a primary role in plant senescence and fruit ripening. This thus highlights the possible positive effect of Se in preserving a longer shelf-life and longer-lasting quality.


Assuntos
Produtos Agrícolas/química , Compostos de Selênio/análise , Selênio/análise , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/metabolismo , Alimentos Fortificados , Frutas/química , Glutationa Peroxidase/química , Glutationa Peroxidase/metabolismo , Humanos , Compostos de Selênio/metabolismo
10.
Anal Chem ; 88(11): 6084-91, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27161304

RESUMO

Selenocysteine (Sec), encoded as the 21st amino acid, is the predominant chemical form of selenium that is closely related to various human diseases. Thus, it is of high importance to identify novel probes for sensitive and selective recognition of Sec and Sec-containing proteins. Although a few probes have been reported to detect artificially introduced selenols in cells or tissues, none of them has been shown to be sensitive enough to detect endogenous selenols. We report the characterization and application of a new fluorogenic molecular probe for the detection of intracellular selenols. This probe exhibits near-zero background fluorescence but produces remarkable fluorescence enhancement upon reacting with selenols in a fast chemical reaction. It is highly specific and sensitive for intracellular selenium-containing molecules such as Sec and selenoproteins. When combined with flow cytometry, this probe is able to detect endogenous selenols in various human cancer cells. It is also able to image endogenous selenol-containing molecules in zebrafish under a fluorescence microscope. These results demonstrate that this molecular probe can function as a useful molecular tool for intracellular selenol sensing, which is valuable in the clinical diagnosis for human diseases associated with Sec-deficiency or overdose.


Assuntos
Corantes Fluorescentes/química , Compostos de Selênio/análise , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Citometria de Fluxo , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Células HEK293 , Humanos , Estrutura Molecular , Espectrometria de Fluorescência , Peixe-Zebra
11.
Opt Express ; 24(17): 19627-37, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27557241

RESUMO

In this work, we established a fluorescence resonance energy transfer (FRET) system between ZnSe:Mn/ZnS quantum dots and Hypocrellin A (HA, a photosensitizer used for photodynamic therapy of cancer) in aqueous solution, excited by four-photon. Here, the QDs are the donors and the HA are the acceptors. The four-photon-excited fluorescence resonance energy transfer spectrum was obtained under 1300nm femtosecond laser pluses. The experimental results indicated that the highest efficiency of FRET can reach up to 61.3%. Furthermore, the viability test in cancer cells was further demonstrated for biological applications of FRET system. When FRET occurs the cell killing rate of the cancer cells will reach to 84.8% with the 1mM concentration of HA. Our work demonstrates that while the four-photon excited FRET system is promising in both optics and biological applications, is also needs further investigation.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Perileno/análogos & derivados , Quinonas/química , Compostos de Selênio/análise , Sulfetos/análise , Compostos de Zinco/análise , Perileno/química , Fenol , Fótons , Pontos Quânticos
12.
Crit Rev Food Sci Nutr ; 56(1): 36-55, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-24987868

RESUMO

Selenium, a "dual-surface" element, maintains a very thin line between a level of necessity and harmfulness. Because of this, a deficiency or excess of this element in an organism is dangerous and causes health-related problems, both physically and mentally. The main source of selenium is a balanced diet, with a proper selection of meat and plant products. Meanwhile, the proper assimilation of selenium into these products depends on their bioavailability, bioaccessibility, and/or bioactivity of a given selenium compound. From the time when it was discovered that selenium and its compounds have a significant influence on metabolic processes and in many countries throughout the world, a low quantity of selenium was found in different parts of the environment, pressure was put upon an effective and fast method of supplementing the environment with the help of selenium. This work describes supplementation methods applied with the use of selenium, as well as new ideas for increasing the level of this element in various organisms. Based on the fact that selenium appears in the environment at trace levels, the determination of total amount of selenium or selenium speciation in a given sample demands the selection of appropriate measurement methods. These methods are most often comprised of a sample preparation technique and/or a separation technique as well as a detection system. The work presents information on the subject of analytical methods used for determining selenium and its compounds as well as examples in literature of their application.


Assuntos
Ração Animal , Suplementos Nutricionais , Compostos de Selênio/uso terapêutico , Selênio/uso terapêutico , Ração Animal/efeitos adversos , Ração Animal/análise , Animais , Deficiências Nutricionais/dietoterapia , Deficiências Nutricionais/prevenção & controle , Deficiências Nutricionais/veterinária , Suplementos Nutricionais/efeitos adversos , Análise de Alimentos/métodos , Humanos , Valor Nutritivo , Selênio/análise , Selênio/deficiência , Selênio/intoxicação , Compostos de Selênio/efeitos adversos , Compostos de Selênio/análise , Compostos de Selênio/metabolismo
13.
Nanotechnology ; 27(7): 075102, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26782947

RESUMO

The influence of the chirality of semiconductor nanocrystals, CdSe/ZnS quantum dots (QDs) capped with L- and D-cysteine, on the efficiency of their uptake by living Ehrlich Ascite carcinoma cells is studied by spectral- and time-resolved fluorescence microspectroscopy. We report an evident enantioselective process where cellular uptake of the L-Cys QDs is almost twice as effective as that of the D-Cys QDs. This finding paves the way for the creation of novel approaches to control the biological properties and behavior of nanomaterials in living cells.


Assuntos
Compostos de Cádmio/metabolismo , Cisteína/metabolismo , Pontos Quânticos/metabolismo , Compostos de Selênio/metabolismo , Sulfetos/metabolismo , Compostos de Zinco/metabolismo , Animais , Transporte Biológico , Compostos de Cádmio/análise , Linhagem Celular , Cisteína/química , Fluorescência , Camundongos , Imagem Óptica , Pontos Quânticos/análise , Compostos de Selênio/análise , Estereoisomerismo , Sulfetos/análise , Compostos de Zinco/análise
14.
Anal Bioanal Chem ; 408(4): 1033-42, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26547190

RESUMO

A new anion-exchange chromatographic separation method was used for the simultaneous speciation analysis of selenoamino acids and the more ubiquitous inorganic selenium oxyanions, selenite and selenate. For quantification, this separation was coupled to inductively coupled plasma-mass spectrometry to achieve an instrumental detection limit of 5 ng Se L(-1) for all species. This chromatographic method was also coupled to electrospray tandem mass spectrometry to observe the negative ion mode fragmentation of selenomethionine and one of its oxidation products. Low detection limits were achieved, which were similar to those obtained using inductively coupled plasma-mass spectrometry. An extensive preconcentration and cleanup procedure using cation-exchange solid-phase extraction was developed for the identification and quantification of trace levels of selenomethionine in environmental samples. Preconcentration factors of up to five were observed for selenomethionine, which in addition to the removal of high concentrations of sulphate and chloride from industrial process waters, allowed for an unambiguous analysis that would have been impossible otherwise. Following these methods, selenomethionine was identified at an original concentration of 3.2 ng Se L(-1) in samples of effluent collected at a coal-fired power plant's biological remediation site. It is the first time that this species has been identified in the environment, outside of a biological entity. Additionally, oxidation products of selenomethionine were identified in river water and laboratory algal culture samples. High-resolution mass spectrometry was employed to postulate the chemical structures of these species.


Assuntos
Cromatografia por Troca Iônica/métodos , Água Doce/análise , Selenometionina/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Ânions , Água Doce/química , Limite de Detecção , Compostos Organosselênicos/análise , Concentração Osmolar , Oxirredução , Ácido Selênico/análise , Compostos de Selênio/análise , Selenometionina/química , Extração em Fase Sólida
15.
Anal Chem ; 86(16): 8167-75, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25082790

RESUMO

A simple and highly efficient online system coupling of capillary electrophoresis to inductively coupled plasma-mass spectrometry (CE-ICP-MS) for simultaneous separation and determination of arsenic and selenium compounds was developed. CE was coupled to an ICP-MS system by a sprayer with a novel direct-injection high-efficiency nebulizer (DIHEN) chamber as the interface. By using this interface, six arsenic species, including arsenite (As(III), arsenate (As(V)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB), and arsenocholine (AsC) and five selenium species (such as sodium selenite (Se(IV)), sodium selenate (Se(VI)), selenocysteine (SeCys), selenomethionine (SeMet), and Se-methylselenocysteine (MeSeCys)) were baseline-separated and determined in a single run within 9 min under the optimized conditions. Minimum dead volume, low and steady sheath flow liquid, high nebulization efficiency, and high sample transport efficiency were obtained by using this interface. Detection limits were in the range of 0.11-0.37 µg L(-1) for the six arsenic compounds (determined as (75)As at m/z 75) and 1.33-2.31 µg L(-1) for the five selenium species (determined as (82)Se at m/z 82). Repeatability expressed as the relative standard deviations (RSD, n = 6) of both migration time and peak area were better than 2.68% for arsenic compounds and 3.28% for selenium compounds, respectively. The proposed method had been successfully applied for the determination of arsenic and selenium species in the certified reference materials DORM-3, water, urine, and fish samples.


Assuntos
Arsenicais/análise , Eletroforese Capilar/instrumentação , Espectrometria de Massas/instrumentação , Compostos Organosselênicos/análise , Compostos de Selênio/análise , Animais , Arsênio/análise , Arsênio/urina , Arsenicais/urina , Monitoramento Ambiental/instrumentação , Desenho de Equipamento , Peixes/metabolismo , Humanos , Limite de Detecção , Compostos Organosselênicos/urina , Selênio/análise , Selênio/urina , Compostos de Selênio/urina , Água/análise
16.
Anal Bioanal Chem ; 406(15): 3717-22, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24652154

RESUMO

The aim of this study was to evaluate the biological and chemical response of Allium cepa L. exposed to inorganic selenium compounds. Besides the investigation of the total content of selenium as well as its chemical speciation, the Allium test was used to evaluate the growth of onion roots and mitotic activity in the roots' meristem. The total content of selenium was determined by inductively coupled plasma mass spectrometry (ICP MS). High-performance liquid chromatography (HPLC), coupled to ICP MS, was used for the selenium chemical speciation. Results indicated that A. cepa plants are able to biotransform inorganic selenium compounds into their organic derivatives, e.g., Se-methylselenocysteine from the Se(IV) inorganic precursor. Although the differences in the biotransformation of selenium are due mainly to the oxidation state of selenium, the experiment has also shown a fine effect of counter ions (H(+), Na(+), NH4 (+)) on the response of plants and on the specific metabolism of selenium.


Assuntos
Cebolas/metabolismo , Compostos de Selênio/análise , Selênio/química , Selenocisteína/análogos & derivados , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Mitose , Oxigênio/química , Raízes de Plantas/metabolismo , Selenocisteína/análise , Temperatura
17.
Environ Sci Technol ; 47(2): 1148-54, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23241207

RESUMO

To fully understand the biological and environmental impacts of nanomaterials requires studies that address both sublethal end points and multigenerational effects. Here, we use a nematode to examine these issues as they relate to exposure to two different types of quantum dots, core (CdSe) and core-shell (CdSe/ZnS), and to compare the effect to those observed after cadmium salt exposures. The strong fluorescence of the core-shell QDs allowed for the direct visualization of the materials in the digestive track within a few hours of exposure. Multiple end points, including both developmental and locomotive, were examined at QD exposures of low (10 mg/L Cd), medium (50 mg/L Cd), and high concentrations (100 mg/L Cd). While the core-shell QDs showed no effect on fitness (lifespan, fertility, growth, and three parameters of motility behavior), the core QDs caused acute effects similar to those found for cadmium salts, suggesting that biological effects may be attributed to cadmium leaching from the more soluble QDs. Over multiple generations, we commonly found that for lower life-cycle exposures to core QDs the parents response was generally a poor predictor of the effects on progeny. At the highest concentrations, however, biological effects found for the first generation were commonly similar in magnitude to those found in future generations.


Assuntos
Compostos de Cádmio/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Pontos Quânticos , Compostos de Selênio/toxicidade , Animais , Tamanho Corporal/efeitos dos fármacos , Compostos de Cádmio/análise , Caenorhabditis elegans/fisiologia , Fertilidade/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Compostos de Selênio/análise , Sulfetos/análise , Sulfetos/toxicidade , Compostos de Zinco/análise , Compostos de Zinco/toxicidade
18.
J Trace Elem Med Biol ; 79: 127266, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37499550

RESUMO

INTRODUCTION: Selenium (Se) is a trace element with different toxicological and nutritional properties according to its chemical forms. Among the wide range of selenium species, human serum albumin-bound selenium (Se-HSA) has still uncertain composition in terms of organic or inorganic selenium species. This study aimed at investigating the relation between Se-HSA levels with total selenium and the specific organic and inorganic selenium species. METHODS: We determined levels of total selenium and selenium species in serum of participants enrolled in two populations of the Emilia-Romagna region, in Northern Italy. Anion exchange chromatography coupled with inductively coupled plasma dynamic reaction cell mass spectrometry was used as quantification method. Correlations between Se-HSA and the other selenium compounds were analyzed using linear regression and restricted cubic spline regression models, adjusted for potential confounders. RESULTS: The first cohort comprised 50 participants (men/women: 26/24) with median (interquartile range, IQR) age 50 (55-62) years, while the second was composed of 104 participants (M/W: 50/54), median (IQR) age 48 (44-53) years. Median (IQR) levels of total selenium were 118.5 (109-136) µg/L and 116.5 (106-128) µg/L, respectively, while Se-HSA was 25.5 µg/L (16.2-51.5) and 1.1 (0.03-3.1) µg/L, respectively. In both populations, Se-HSA was positively associated with inorganic selenium species. Conversely, Se-HSA was inversely associated with organic selenium, especially with selenoprotein P-bound-Se (Se-SELENOP) and less strongly with selenomethionine-bound-Se (Se-Met), while the relation was null or even positive with other organic species. Evaluation of non-linear trends showed a substantially positive association with inorganic selenium, particularly selenite, until a concentration of 30 µg/L, above which a plateau was reached. The association with Se-SELENOP was inverse and strong until 100 µg/L, while it was almost null at higher levels. CONCLUSIONS: Our findings seem to indicate that Se-HSA incorporates more selenium when circulating levels of inorganic compounds are higher, thus supporting its mainly inorganic nature, particularly at high circulating levels of selenite.


Assuntos
Compostos de Selênio , Selênio , Oligoelementos , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Albumina Sérica Humana , Selenometionina/análise , Compostos de Selênio/análise , Ácido Selenioso , Selenoproteína P
19.
Anal Chem ; 84(10): 4452-9, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22506873

RESUMO

Following a preliminary work (Costas-Mora, I.; Romero, V.; Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Anal. Chem.2011, 83, 2388-2393), a quenching mechanism has been established for the selective detection of Se (as selenium hydride) by microfluorospectrometry using CdSe quantum dots (QDs) as luminescent probes stabilized with hexadecylamine and confined in an organic droplet. For this purpose, luminescence, luminescence lifetime, UV-vis absorption, total reflection X-ray fluorescence, transmission electron microscopy, and atomic force microscopy measurements were performed. The presence of stabilizing agents of QDs in the droplet was found to cause a critical effect on both extraction efficiency of selenium hydride in the drop and luminescence quenching. A self-quenching mechanism due to the aggregation of QDs is suggested. Aggregation is thought to occur as a result of the binding between selenide trapped into the organic drop as selenium hydride and Cd(2+) present in the surface of QDs, which in turn, may cause the loss of stabilizing hexadecylamine groups. After full optimization of main variables influencing the luminescent response, the analytical performance was established. A detection limit as low as 0.08 µg L(-1) Se(IV) and a repeatability expressed as relative standard deviation of 4.6% were obtained. The method was validated against CRM NWTM-27.2 lake water, and a recovery study was performed with synthetic seawater. The use of CdSe as luminescent probes in an organic drop may constitute an extremely selective, sensitive, and miniaturized assay for in situ detection of Se(IV) in water.


Assuntos
Corantes Fluorescentes/química , Fluorometria , Pontos Quânticos , Compostos de Selênio/análise , Aminas/química , Compostos de Cádmio/química , Hidrocarbonetos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Compostos de Selênio/química , Água/química
20.
Anal Chem ; 84(11): 4979-83, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22548680

RESUMO

Biological volatilization of selenium, Se, in a contaminated area is an economical and environmentally friendly approach to phytoremediation techniques, but analytical methods for monitoring and studying volatile compounds released in the process of phytovolatilization are currently limited in their performance. Thus, a new method for real time quantification of trace amounts of the vapors of hydrogen selenide (H(2)Se), methylselenol (CH(3)SeH), dimethylselenide ((CH(3))(2)Se), and dimethyldiselenide ((CH(3))(2)Se(2)) present in ambient air adjacent to living plants has been developed. This involves the characterization of the mechanism and kinetics of the reaction of H(3)O(+), NO(+), and O(2)(+•) reagent ions with molecules of these compounds and then use of the rate constants so obtained to determine their absolute concentrations in air by selected ion flow tube mass spectrometry, SIFT-MS. The results of experiments demonstrating this method on emissions from maize (Zea mays) seedlings cultivated in Se rich medium are also presented.


Assuntos
Metanol/análogos & derivados , Óxido Nítrico/química , Compostos Organosselênicos/análise , Compostos de Selênio/análise , Superóxidos/química , Ar , Umidade , Íons , Cinética , Espectrometria de Massas , Metanol/análise , Metanol/metabolismo , Compostos Organosselênicos/metabolismo , Plântula/metabolismo , Compostos de Selênio/metabolismo , Fatores de Tempo , Volatilização , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA