RESUMO
The intestinal epithelial barrier includes columnar epithelial, Paneth, goblet, enteroendocrine, and tuft cells as well as other cell populations, all of which contribute properties essential for gastrointestinal homeostasis. The intestinal mucosa is covered by mucin, which contains antimicrobial peptides and secretory IgA and prevents luminal bacteria, fungi, and viruses from stimulating intestinal immune responses. Conversely, the transport of luminal microorganisms-mediated by M, dendritic, and goblet cells-into intestinal tissues facilitates the harmonization of active and quiescent mucosal immune responses. The bacterial population within gut-associated lymphoid tissues creates the intratissue cohabitations for harmonized mucosal immunity. Intermolecular and intercellular communication among epithelial, immune, and mesenchymal cells creates an environment conducive for epithelial regeneration and mucosal healing. This review summarizes the so-called intestinal mucosal ecological network-the complex but vital molecular and cellular interactions of epithelial mesenchymal cells, immune cells, and commensal microbiota that achieve intestinal homeostasis, regeneration, and healing.
Assuntos
Células Epiteliais/fisiologia , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Animais , Comunicação Celular , Homeostase , Humanos , Imunidade Inata , Imunoglobulina A/metabolismo , Mucosa Intestinal/patologia , CicatrizaçãoRESUMO
Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations, charted their spatial organization, and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.
Assuntos
Colite Ulcerativa , Colite , Animais , Humanos , Camundongos , Colite/metabolismo , Colite/patologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Hibridização in Situ Fluorescente/métodos , Inflamação/metabolismo , Inflamação/patologia , Comunicação Celular , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologiaRESUMO
The continuous migration of immune cells between lymphoid and nonlymphoid organs is a key feature of the immune system, facilitating the distribution of effector cells within nearly all compartments of the body. Furthermore, reaching their correct position within primary, secondary, or tertiary lymphoid organs is a prerequisite to ensure immune cells' unimpaired differentiation, maturation, and selection, as well as their activation or functional silencing. The superfamilies of chemokines and chemokine receptors are of major importance in guiding immune cells to and within lymphoid and nonlymphoid tissues. In this review we focus on the role of the chemokine system in the migration dynamics of immune cells within lymphoid organs at the steady state and on how these dynamics are affected by infectious and inflammatory processes.
Assuntos
Quimiocinas/imunologia , Sistema Imunitário , Infecções/imunologia , Inflamação/imunologia , Linfócitos/imunologia , Tecido Linfoide/imunologia , Receptores de Quimiocinas/imunologia , Animais , Comunicação Celular , Movimento Celular , Humanos , Ativação LinfocitáriaRESUMO
Evolution has yielded multiple complex and complementary mechanisms to detect environmental danger and protect tissues from damage. The nervous system rapidly processes information and coordinates complex defense behaviors, and the immune system eliminates diverse threats by virtue of mobile, specialized cell populations. The two systems are tightly integrated, cooperating in local and systemic reflexes that restore homeostasis in response to tissue injury and infection. They further share a broad common language of cytokines, growth factors, and neuropeptides that enables bidirectional communication. However, this reciprocal cross talk permits amplification of maladaptive feedforward inflammatory loops that contribute to the development of allergy, autoimmunity, itch, and pain. Appreciating the immune and nervous systems as a holistic, coordinated defense system provides both new insights into inflammation and exciting opportunities for managing acute and chronic inflammatory diseases.
Assuntos
Hipersensibilidade/fisiopatologia , Inflamação , Neuroimunomodulação , Dor/fisiopatologia , Animais , Autoimunidade , Comunicação Celular , Citocinas/metabolismo , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neuropeptídeos/metabolismoRESUMO
The cerebral cortex is the brain's outermost layer. It is responsible for processing motor and sensory information that support high-level cognitive abilities and shape personality. Its development and functional organization strongly rely on cell communication that is established via an intricate system of diffusible signals and physical contacts during development. Interfering with this cellular crosstalk can cause neurodevelopmental disorders. Here, we review how crosstalk between migrating cells and their environment influences cerebral cortex development, ranging from neurogenesis to synaptogenesis and assembly of cortical circuits.
Assuntos
Córtex Cerebral , Neurogênese , Comunicação Celular , CogniçãoRESUMO
The development of molecular couriers to selectively package, export, and recover RNA molecules within human cells is a significant challenge. In this issue of Cell, Horns et al.1 introduce cellular RNA exporters, termed COURIERs, that package, secrete, and protect RNA cargo and establish the foundation for sophisticated cell-to-cell RNA communication.
Assuntos
Células Artificiais , Comunicação Celular , RNA , Animais , HumanosRESUMO
Intercellular communication is a key feature of cancer progression and metastasis. Extracellular vesicles (EVs) are generated by all cells, including cancer cells, and recent studies have identified EVs as key mediators of cell-cell communication via packaging and transfer of bioactive constituents to impact the biology and function of cancer cells and cells of the tumor microenvironment. Here, we review recent advances in understanding the functional contribution of EVs to cancer progression and metastasis, as cancer biomarkers, and the development of cancer therapeutics.
Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Neoplasias/patologia , Comunicação Celular/fisiologia , Biomarcadores Tumorais , Microambiente Tumoral/fisiologiaRESUMO
Inflammation is an unstable state. It either resolves or persists. Why inflammation persists and the factors that define tissue tropism remain obscure. Increasing evidence suggests that tissue-resident stromal cells not only provide positional memory but also actively regulate the differential accumulation of inflammatory cells within inflamed tissues. Furthermore, at many sites of chronic inflammation, structures that mimic secondary lymphoid tissues are observed, suggesting that chronic inflammation and lymphoid tissue formation share common activation programs. Similarly, blood and lymphatic endothelial cells contribute to tissue homeostasis and disease persistence in chronic inflammation. This review highlights our increasing understanding of the role of stromal cells in inflammation and summarizes the novel immunological role that stromal cells exert in the persistence of inflammatory diseases.
Assuntos
Inflamação/imunologia , Inflamação/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Células Estromais/imunologia , Células Estromais/metabolismo , Animais , Comunicação Celular , Doença Crônica , Humanos , Inflamação/patologia , Organogênese/imunologia , FenótipoRESUMO
In the 40 years since their discovery, dendritic cells (DCs) have been recognized as central players in immune regulation. DCs sense microbial stimuli through pathogen-recognition receptors (PRRs) and decode, integrate, and present information derived from such stimuli to T cells, thus stimulating immune responses. DCs can also regulate the quality of immune responses. Several functionally specialized subsets of DCs exist, but DCs also display functional plasticity in response to diverse stimuli. In addition to sensing pathogens via PRRs, emerging evidence suggests that DCs can also sense stress signals, such as amino acid starvation, through ancient stress and nutrient sensing pathways, to stimulate adaptive immunity. Here, I discuss these exciting advances in the context of a historic perspective on the discovery of DCs and their role in immune regulation. I conclude with a discussion of emerging areas in DC biology in the systems immunology era and suggest that the impact of DCs on immunity can be usefully contextualized in a hierarchy-of-organization model in which DCs, their receptors and signaling networks, cell-cell interactions, tissue microenvironment, and the host macroenvironment represent different levels of the hierarchy. Immunity or tolerance can then be represented as a complex function of each of these hierarchies.
Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Animais , Comunicação Celular/imunologia , Diferenciação Celular/imunologia , Seleção Clonal Mediada por Antígeno , Resistência à Doença , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Linfócitos/citologia , Linfócitos/imunologia , Linfócitos/metabolismo , Estresse FisiológicoRESUMO
Despite having been identified as the organism that causes tuberculosis in 1882, Mycobacterium tuberculosis has managed to still evade our understanding of the protective immune response against it, defying the development of an effective vaccine. Technology and novel experimental models have revealed much new knowledge, particularly with respect to the heterogeneity of the bacillus and the host response. This review focuses on certain immunological elements that have recently yielded exciting data and highlights the importance of taking a holistic approach to understanding the interaction of M. tuberculosis with the many host cells that contribute to the development of protective immunity.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Comunicação Celular , Tuberculose/imunologiaRESUMO
In their recent Nature paper, Garcia-Martin et al. show that sequences within a microRNA influence how much of that microRNA is sent to another cell through extracellular vesicles. This supports a growing body of data demonstrating that cells use RNA to talk, but we know much less about how they listen.
Assuntos
MicroRNAs , Vesículas Transportadoras/metabolismo , Comunicação Celular , MicroRNAs/metabolismoRESUMO
In multicellular organisms, cells actively sense and control their own population density. Synthetic mammalian quorum-sensing circuits could provide insight into principles of population control and extend cell therapies. However, a key challenge is reducing their inherent sensitivity to "cheater" mutations that evade control. Here, we repurposed the plant hormone auxin to enable orthogonal mammalian cell-cell communication and quorum sensing. We designed a paradoxical population control circuit, termed "Paradaux," in which auxin stimulates and inhibits net cell growth at different concentrations. This circuit limited population size over extended timescales of up to 42 days of continuous culture. By contrast, when operating in a non-paradoxical regime, population control became more susceptible to mutational escape. These results establish auxin as a versatile "private" communication system and demonstrate that paradoxical circuit architectures can provide robust population control.
Assuntos
Comunicação Celular , Transdução de Sinais , Animais , Contagem de Células , Engenharia Celular , Ácidos Indolacéticos , Mamíferos , Percepção de Quorum , Biologia Sintética/métodosRESUMO
Glucagon-like peptide-1 (GLP-1) is a signal peptide released from enteroendocrine cells of the lower intestine. GLP-1 exerts anorectic and antimotility actions that protect the body against nutrient malabsorption. However, little is known about how intestinal GLP-1 affects distant organs despite rapid enzymatic inactivation. We show that intestinal GLP-1 inhibits gastric emptying and eating via intestinofugal neurons, a subclass of myenteric neurons that project to abdominal sympathetic ganglia. Remarkably, cell-specific ablation of intestinofugal neurons eliminated intestinal GLP-1 effects, and their chemical activation functioned as a GLP-1 mimetic. GLP-1 sensing by intestinofugal neurons then engaged a sympatho-gastro-spinal-reticular-hypothalamic pathway that links abnormal stomach distension to craniofacial programs for food rejection. Within this pathway, cell-specific activation of discrete neuronal populations caused systemic GLP-1-like effects. These molecularly identified, delimited enteric circuits may be targeted to ameliorate the abdominal bloating and loss of appetite typical of gastric motility disorders.
Assuntos
Apetite , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Íleo , Neurônios , Estômago , Abdome , Animais , Comunicação Celular , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Íleo/inervação , Íleo/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Estômago/inervação , Estômago/metabolismoRESUMO
Cell-cell communication is critical for the development and function of multicellular organisms. A crucial means by which cells communicate with one another is physical interactions between receptors on one cell and their ligands on a neighboring cell. Trans ligand:receptor interactions activate the receptor, ultimately leading to changes in the fate of the receptor-expressing cells. Such trans signaling is known to be critical for the functions of cells in the nervous and immune systems, among others. Historically, trans interactions are the primary conceptual framework for understanding cell-cell communication. However, cells often coexpress many receptors and ligands, and a subset of these has been reported to interact in cis and profoundly impact cell functions. Cis interactions likely constitute a fundamental, understudied regulatory mechanism in cell biology. Here, I discuss how cis interactions between membrane receptors and ligands regulate immune cell functions, and I also highlight outstanding questions in the field.
Assuntos
Comunicação Celular , Transdução de Sinais , LigantesRESUMO
In 1952, Alan Turing published the reaction-diffusion (RD) mathematical framework, laying the foundations of morphogenesis as a self-organized process emerging from physicochemical first principles. Regrettably, this approach has been widely doubted in the field of developmental biology. First, we summarize Turing's line of thoughts to alleviate the misconception that RD is an artificial mathematical construct. Second, we discuss why phenomenological RD models are particularly effective for understanding skin color patterning at the meso/macroscopic scales, without the need to parameterize the profusion of variables at lower scales. More specifically, we discuss how RD models (a) recapitulate the diversity of actual skin patterns, (b) capture the underlying dynamics of cellular interactions, (c) interact with tissue size and shape, (d) can lead to ordered sequential patterning, (e) generate cellular automaton dynamics in lizards and snakes, (f) predict actual patterns beyond their statistical features, and (g) are robust to model variations. Third, we discuss the utility of linear stability analysis and perform numerical simulations to demonstrate how deterministic RD emerges from the underlying chaotic microscopic agents.
Assuntos
Modelos Biológicos , Pigmentação da Pele , Animais , Morfogênese , Comunicação Celular , Vertebrados , Difusão , Padronização CorporalRESUMO
The immune system comprises diverse specialized cell types that cooperate to defend the host against a wide range of pathogenic threats. Recent advancements in single-cell and spatial multi-omics technologies provide rich information about the molecular state of immune cells. Here, we review how the integration of single-cell and spatial multi-omics data with prior knowledge-gathered from decades of detailed biochemical studies-allows us to obtain functional insights, focusing on gene regulatory processes and cell-cell interactions. We present diverse applications in immunology and critically assess underlying assumptions and limitations. Finally, we offer a perspective on the ongoing technological and algorithmic developments that promise to get us closer to a systemic mechanistic understanding of the immune system.
Assuntos
Sistema Imunitário , Multiômica , Comunicação CelularRESUMO
Tissue and organ development during embryogenesis relies on the collective and coordinated action of many cells. Recent studies have revealed that tissue material properties, including transitions between fluid and solid tissue states, are controlled in space and time to shape embryonic structures and regulate cell behaviours. Although the collective cellular flows that sculpt tissues are guided by tissue-level physical changes, these ultimately emerge from cellular-level and subcellular-level molecular mechanisms. Adherens junctions are key subcellular structures, built from clusters of classical cadherin receptors. They mediate physical interactions between cells and connect biochemical signalling to the physical characteristics of cell contacts, hence playing a fundamental role in tissue morphogenesis. In this Review, we take advantage of the results of recent, quantitative measurements of tissue mechanics to relate the molecular and cellular characteristics of adherens junctions, including adhesion strength, tension and dynamics, to the emergent physical state of embryonic tissues. We focus on systems in which cell-cell interactions are the primary contributor to morphogenesis, without significant contribution from cell-matrix interactions. We suggest that emergent tissue mechanics is an important direction for future research, bridging cell biology, developmental biology and mechanobiology to provide a holistic understanding of morphogenesis in health and disease.
Assuntos
Junções Aderentes , Caderinas , Junções Aderentes/metabolismo , Caderinas/metabolismo , Comunicação Celular , Morfogênese , Desenvolvimento Embrionário , Adesão Celular/fisiologiaRESUMO
Primary cilia are solitary, immotile sensory organelles present on most cells in the body that participate broadly in human health, physiology and disease. Cilia generate a unique environment for signal transduction with tight control of protein, lipid and second messenger concentrations within a relatively small compartment, enabling reception, transmission and integration of biological information. In this Review, we discuss how cilia function as signalling hubs in cell-cell communication using three signalling pathways as examples: ciliary G-protein-coupled receptors (GPCRs), the Hedgehog (Hh) pathway and polycystin ion channels. We review how defects in these ciliary signalling pathways lead to a heterogeneous group of conditions known as 'ciliopathies', including metabolic syndromes, birth defects and polycystic kidney disease. Emerging understanding of these pathways' transduction mechanisms reveals common themes between these cilia-based signalling pathways that may apply to other pathways as well. These mechanistic insights reveal how cilia orchestrate normal and pathophysiological signalling outputs broadly throughout human biology.
Assuntos
Cílios , Proteínas Hedgehog , Transdução de Sinais , Cílios/metabolismo , Cílios/fisiologia , Humanos , Animais , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canais de Cátion TRPP/metabolismo , Comunicação Celular , Ciliopatias/metabolismo , Ciliopatias/patologia , Ciliopatias/genéticaRESUMO
Cytotoxic T lymphocyte (CTL) responses against tumors are maintained by stem-like memory cells that self-renew but also give rise to effector-like cells. The latter gradually lose their anti-tumor activity and acquire an epigenetically fixed, hypofunctional state, leading to tumor tolerance. Here, we show that the conversion of stem-like into effector-like CTLs involves a major chemotactic reprogramming that includes the upregulation of chemokine receptor CXCR6. This receptor positions effector-like CTLs in a discrete perivascular niche of the tumor stroma that is densely occupied by CCR7+ dendritic cells (DCs) expressing the CXCR6 ligand CXCL16. CCR7+ DCs also express and trans-present the survival cytokine interleukin-15 (IL-15). CXCR6 expression and IL-15 trans-presentation are critical for the survival and local expansion of effector-like CTLs in the tumor microenvironment to maximize their anti-tumor activity before progressing to irreversible dysfunction. These observations reveal a cellular and molecular checkpoint that determines the magnitude and outcome of anti-tumor immune responses.
Assuntos
Receptores CXCR6/metabolismo , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral , Animais , Antígeno B7-H1/metabolismo , Comunicação Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Quimiocina CXCL16 , Células Dendríticas/metabolismo , Interleucina-12/metabolismo , Interleucina-15/metabolismo , Ligantes , Linfonodos/metabolismo , Melanoma/imunologia , Melanoma/patologia , Camundongos Endogâmicos C57BLRESUMO
COVID-19-induced "acute respiratory distress syndrome" (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyze pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single-cell genomics, immunohistology, and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.