Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 786
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(4): 837-849.e11, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36693376

RESUMO

Concomitant with DNA replication, the chromosomal cohesin complex establishes cohesion between newly replicated sister chromatids. Cohesion establishment requires acetylation of conserved cohesin lysine residues by Eco1 acetyltransferase. Here, we explore how cohesin acetylation is linked to DNA replication. Biochemical reconstitution of replication-coupled cohesin acetylation reveals that transient DNA structures, which form during DNA replication, control the acetylation reaction. As polymerases complete lagging strand replication, strand displacement synthesis produces DNA flaps that are trimmed to result in nicked double-stranded DNA. Both flaps and nicks stimulate cohesin acetylation, while subsequent nick ligation to complete Okazaki fragment maturation terminates the acetylation reaction. A flapped or nicked DNA substrate constitutes a transient molecular clue that directs cohesin acetylation to a window behind the replication fork, next to where cohesin likely entraps both sister chromatids. Our results provide an explanation for how DNA replication is linked to sister chromatid cohesion establishment.


Assuntos
Cromátides , Proteínas de Saccharomyces cerevisiae , Cromátides/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicação do DNA , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA , Acetiltransferases/genética , Acetiltransferases/metabolismo
2.
Cell ; 184(24): 5970-5984.e18, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34793701

RESUMO

Numerous DNA double-strand breaks (DSBs) arise during meiosis to initiate homologous recombination. These DSBs are usually repaired faithfully, but here, we uncover a distinct type of mutational event in which deletions form via joining of ends from two closely spaced DSBs (double cuts) within a single hotspot or at adjacent hotspots on the same or different chromatids. Deletions occur in normal meiosis but are much more frequent when DSB formation is dysregulated in the absence of the ATM kinase. Events between chromosome homologs point to multi-chromatid damage and aborted gap repair. Some deletions contain DNA from other hotspots, indicating that double cutting at distant sites creates substrates for insertional mutagenesis. End joining at double cuts can also yield tandem duplications or extrachromosomal circles. Our findings highlight the importance of DSB regulation and reveal a previously hidden potential for meiotic mutagenesis that is likely to affect human health and genome evolution.


Assuntos
Deleção de Genes , Duplicação Gênica , Células Germinativas/metabolismo , Recombinação Genética/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sequência de Bases , Cromátides/metabolismo , Cromossomos de Mamíferos/genética , Cruzamentos Genéticos , Quebras de DNA de Cadeia Dupla , DNA Circular/genética , Feminino , Genoma , Haplótipos/genética , Recombinação Homóloga/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Mutagênese Insercional/genética , Mutação/genética
3.
Cell ; 172(3): 465-477.e15, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29358048

RESUMO

The ring-shaped structural maintenance of chromosome (SMC) complexes are multi-subunit ATPases that topologically encircle DNA. SMC rings make vital contributions to numerous chromosomal functions, including mitotic chromosome condensation, sister chromatid cohesion, DNA repair, and transcriptional regulation. They are thought to do so by establishing interactions between more than one DNA. Here, we demonstrate DNA-DNA tethering by the purified fission yeast cohesin complex. DNA-bound cohesin efficiently and topologically captures a second DNA, but only if that is single-stranded DNA (ssDNA). Like initial double-stranded DNA (dsDNA) embrace, second ssDNA capture is ATP-dependent, and it strictly requires the cohesin loader complex. Second-ssDNA capture is relatively labile but is converted into stable dsDNA-dsDNA cohesion through DNA synthesis. Our study illustrates second-DNA capture by an SMC complex and provides a molecular model for the establishment of sister chromatid cohesion.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Cromátides/metabolismo , Replicação do DNA , Saccharomyces cerevisiae , Schizosaccharomyces , Coesinas
4.
Mol Cell ; 84(6): 1139-1148.e5, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38452765

RESUMO

Eukaryotic genomes are folded into DNA loops mediated by structural maintenance of chromosomes (SMC) complexes such as cohesin, condensin, and Smc5/6. This organization regulates different DNA-related processes along the cell cycle, such as transcription, recombination, segregation, and DNA repair. During the G2 stage, SMC-mediated DNA loops coexist with cohesin complexes involved in sister chromatid cohesion (SCC). However, the articulation between the establishment of SCC and the formation of SMC-mediated DNA loops along the chromatin remains unknown. Here, we show that SCC is indeed a barrier to cohesin-mediated DNA loop expansion along G2/M Saccharomyces cerevisiae chromosomes.


Assuntos
Proteínas Cromossômicas não Histona , Proteínas de Saccharomyces cerevisiae , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromátides/metabolismo , Coesinas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , DNA/genética , DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Cell ; 165(7): 1672-1685, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27315481

RESUMO

Long intergenic noncoding RNAs (lincRNAs) are important regulators of gene expression. Although lincRNAs are expressed in immune cells, their functions in immunity are largely unexplored. Here, we identify an immunoregulatory lincRNA, lincRNA-EPS, that is precisely regulated in macrophages to control the expression of immune response genes (IRGs). Transcriptome analysis of macrophages from lincRNA-EPS-deficient mice, combined with gain-of-function and rescue experiments, revealed a specific role for this lincRNA in restraining IRG expression. Consistently, lincRNA-EPS-deficient mice manifest enhanced inflammation and lethality following endotoxin challenge in vivo. lincRNA-EPS localizes at regulatory regions of IRGs to control nucleosome positioning and repress transcription. Further, lincRNA-EPS mediates these effects by interacting with heterogeneous nuclear ribonucleoprotein L via a CANACA motif located in its 3' end. Together, these findings identify lincRNA-EPS as a repressor of inflammatory responses, highlighting the importance of lincRNAs in the immune system.


Assuntos
Regulação da Expressão Gênica , Inflamação/genética , Macrófagos/imunologia , RNA Longo não Codificante/metabolismo , Animais , Cromátides/metabolismo , Deleção de Genes , Humanos , Listeria monocytogenes/fisiologia , Listeriose/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Longo não Codificante/genética , Infecções por Respirovirus/imunologia , Vírus Sendai/fisiologia , Receptores Toll-Like/metabolismo , Transcriptoma
6.
Genes Dev ; 37(7-8): 259-260, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37045607

RESUMO

Cohesin is an ATPase that drives chromosome organization through the generation of intramolecular loops and sister chromatid cohesion. Cohesin's ATPase is stimulated by Scc2 binding but attenuated by acetylation of its Smc3 subunit. In this issue of Genes & Development, Boardman and colleagues (pp. 277-290) take a genetic approach to generate a mechanistic model for the opposing regulation of cohesin's ATPase by Scc2 and Smc3 acetylation. Their findings provide in vivo insight into how this important genome organizer functions in vivo.


Assuntos
Adenosina Trifosfatases , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina , Cromátides/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Genes Dev ; 37(7-8): 277-290, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37055084

RESUMO

The evolutionarily conserved cohesin complex mediates sister chromatid cohesion and facilitates mitotic chromosome condensation, DNA repair, and transcription regulation. These biological functions require cohesin's two ATPases, formed by the Smc1p and Smc3p subunits. Cohesin's ATPase activity is stimulated by the Scc2p auxiliary factor. This stimulation is inhibited by Eco1p acetylation of Smc3p at an interface with Scc2p. It was unclear how cohesin's ATPase activity is stimulated by Scc2p or how acetylation inhibits Scc2p, given that the acetylation site is distal to cohesin's ATPase active sites. Here, we identify mutations in budding yeast that suppressed the in vivo defects caused by Smc3p acetyl-mimic and acetyl-defective mutations. We provide compelling evidence that Scc2p activation of cohesin ATPase depends on an interface between Scc2p and a region of Smc1p proximal to cohesin's Smc3p ATPase active site. Furthermore, substitutions at this interface increase or decrease ATPase activity to overcome ATPase modulation by acetyl-mimic and acetyl-null mutations. Using these observations and an existing cryo-EM structure, we propose a model for regulating cohesin ATPase activity. We suggest that Scc2p binding to Smc1p causes the adjacent Smc1p residues and ATP to shift, stimulating Smc3p's ATPase. This stimulatory shift is inhibited through acetylation of the distal Scc2p-Smc3p interface.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Acetilação , Cromátides/metabolismo , Proteínas de Ciclo Celular/metabolismo , Coesinas
8.
Nature ; 626(7999): 653-660, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267580

RESUMO

Two newly duplicated copies of genomic DNA are held together by the ring-shaped cohesin complex to ensure faithful inheritance of the genome during cell division1-3. Cohesin mediates sister chromatid cohesion by topologically entrapping two sister DNAs during DNA replication4,5, but how cohesion is established at the replication fork is poorly understood. Here, we studied the interplay between cohesin and replication by reconstituting a functional replisome using purified proteins. Once DNA is encircled before replication, the cohesin ring accommodates replication in its entirety, from initiation to termination, leading to topological capture of newly synthesized DNA. This suggests that topological cohesin loading is a critical molecular prerequisite to cope with replication. Paradoxically, topological loading per se is highly rate limiting and hardly occurs under the replication-competent physiological salt concentration. This inconsistency is resolved by the replisome-associated cohesion establishment factors Chl1 helicase and Ctf4 (refs. 6,7), which promote cohesin loading specifically during continuing replication. Accordingly, we found that bubble DNA, which mimics the state of DNA unwinding, induces topological cohesin loading and this is further promoted by Chl1. Thus, we propose that cohesin converts the initial electrostatic DNA-binding mode to a topological embrace when it encounters unwound DNA structures driven by enzymatic activities including replication. Together, our results show how cohesin initially responds to replication, and provide a molecular model for the establishment of sister chromatid cohesion.


Assuntos
Coesinas , Replicação do DNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cromátides/metabolismo , Coesinas/metabolismo , DNA Fúngico/biossíntese , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Eletricidade Estática
9.
Mol Cell ; 82(9): 1616-1630, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35477004

RESUMO

SMC protein complexes are molecular machines that provide structure to chromosomes. These complexes bridge DNA elements and by doing so build DNA loops in cis and hold together the sister chromatids in trans. We discuss how drastic conformational changes allow SMC complexes to build such intricate DNA structures. The tight regulation of these complexes controls fundamental chromosomal processes such as transcription, recombination, repair, and mitosis.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA/genética , Mitose/genética
10.
EMBO J ; 43(12): 2424-2452, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714893

RESUMO

The 16-subunit Constitutive Centromere-associated Network (CCAN)-based inner kinetochore is well-known for connecting centromeric chromatin to the spindle-binding outer kinetochore. Here, we report a non-canonical role for the inner kinetochore in directly regulating sister-chromatid cohesion at centromeres. We provide biochemical, X-ray crystal structure, and intracellular ectopic localization evidence that the inner kinetochore directly binds cohesin, a ring-shaped multi-subunit complex that holds sister chromatids together from S-phase until anaphase onset. This interaction is mediated by binding of the 5-subunit CENP-OPQUR sub-complex of CCAN to the Scc1-SA2 sub-complex of cohesin. Mutation in the CENP-U subunit of the CENP-OPQUR complex that abolishes its binding to the composite interface between Scc1 and SA2 weakens centromeric cohesion, leading to premature separation of sister chromatids during delayed metaphase. We further show that CENP-U competes with the cohesin release factor Wapl for binding the interface of Scc1-SA2, and that the cohesion-protecting role for CENP-U can be bypassed by depleting Wapl. Taken together, this study reveals an inner kinetochore-bound pool of cohesin, which strengthens centromeric sister-chromatid cohesion to resist metaphase spindle pulling forces.


Assuntos
Proteínas de Ciclo Celular , Centrômero , Cromátides , Proteínas Cromossômicas não Histona , Cinetocoros , Cinetocoros/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Cromátides/metabolismo , Cromátides/genética , Centrômero/metabolismo , Coesinas , Células HeLa , Ligação Proteica , Cristalografia por Raios X
11.
Nature ; 606(7912): 197-203, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35585235

RESUMO

Eukaryotic genomes are compacted into loops and topologically associating domains (TADs)1-3, which contribute to transcription, recombination and genomic stability4,5. Cohesin extrudes DNA into loops that are thought to lengthen until CTCF boundaries are encountered6-12. Little is known about whether loop extrusion is impeded by DNA-bound machines. Here we show that the minichromosome maintenance (MCM) complex is a barrier that restricts loop extrusion in G1 phase. Single-nucleus Hi-C (high-resolution chromosome conformation capture) of mouse zygotes reveals that MCM loading reduces CTCF-anchored loops and decreases TAD boundary insulation, which suggests that loop extrusion is impeded before reaching CTCF. This effect extends to HCT116 cells, in which MCMs affect the number of CTCF-anchored loops and gene expression. Simulations suggest that MCMs are abundant, randomly positioned and partially permeable barriers. Single-molecule imaging shows that MCMs are physical barriers that frequently constrain cohesin translocation in vitro. Notably, chimeric yeast MCMs that contain a cohesin-interaction motif from human MCM3 induce cohesin pausing, indicating that MCMs are 'active' barriers with binding sites. These findings raise the possibility that cohesin can arrive by loop extrusion at MCMs, which determine the genomic sites at which sister chromatid cohesion is established. On the basis of in vivo, in silico and in vitro data, we conclude that distinct loop extrusion barriers shape the three-dimensional genome.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , DNA , Proteínas de Manutenção de Minicromossomo , Animais , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/química , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/química , DNA/metabolismo , Fase G1 , Células HCT116 , Humanos , Camundongos , Componente 3 do Complexo de Manutenção de Minicromossomo/química , Componente 3 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Conformação de Ácido Nucleico , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
12.
Mol Cell ; 77(6): 1279-1293.e4, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32032532

RESUMO

Cohesin, a member of the SMC complex family, holds sister chromatids together but also shapes chromosomes by promoting the formation of long-range intra-chromatid loops, a process proposed to be mediated by DNA loop extrusion. Here we describe the roles of three cohesin partners, Pds5, Wpl1, and Eco1, in loop formation along either unreplicated or mitotic Saccharomyces cerevisiae chromosomes. Pds5 limits the size of DNA loops via two different pathways: the canonical Wpl1-mediated releasing activity and an Eco1-dependent mechanism. In the absence of Pds5, the main barrier to DNA loop expansion appears to be the centromere. Our data also show that Eco1 acetyl-transferase inhibits the translocase activity that powers loop formation and contributes to the positioning of loops through a mechanism that is distinguishable from its role in cohesion establishment. This study reveals that the mechanisms regulating cohesin-dependent chromatin loops are conserved among eukaryotes while promoting different functions.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/química , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetiltransferases/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Mitose , Proteínas Nucleares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Coesinas
13.
EMBO J ; 42(16): e113475, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37357575

RESUMO

Genetic information is stored in linear DNA molecules, which are highly folded inside cells. DNA replication along the folded template path yields two sister chromatids that initially occupy the same nuclear region in an intertwined arrangement. Dividing cells must disentangle and condense the sister chromatids into separate bodies such that a microtubule-based spindle can move them to opposite poles. While the spindle-mediated transport of sister chromatids has been studied in detail, the chromosome-intrinsic mechanics presegregating sister chromatids have remained elusive. Here, we show that human sister chromatids resolve extensively already during interphase, in a process dependent on the loop-extruding activity of cohesin, but not that of condensins. Increasing cohesin's looping capability increases sister DNA resolution in interphase nuclei to an extent normally seen only during mitosis, despite the presence of abundant arm cohesion. That cohesin can resolve sister chromatids so extensively in the absence of mitosis-specific activities indicates that DNA loop extrusion is a generic mechanism for segregating replicated genomes, shared across different Structural Maintenance of Chromosomes (SMC) protein complexes in all kingdoms of life.


Assuntos
Cromátides , Proteínas Cromossômicas não Histona , Humanos , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mitose , DNA , Fase G2 , Coesinas
14.
Proc Natl Acad Sci U S A ; 121(33): e2405177121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39110738

RESUMO

The ring-shaped Cohesin complex, consisting of core subunits Smc1, Smc3, Scc1, and SA2 (or its paralog SA1), topologically entraps two duplicated sister DNA molecules to establish sister chromatid cohesion in S-phase. It remains largely elusive how the Cohesin release factor Wapl binds the Cohesin complex, thereby inducing Cohesin disassociation from mitotic chromosomes to allow proper resolution and separation of sister chromatids. Here, we show that Wapl uses two structural modules containing the FGF motif and the YNARHWN motif, respectively, to simultaneously bind distinct pockets in the extensive composite interface between Scc1 and SA2. Strikingly, only when both docking modules are mutated, Wapl completely loses the ability to bind the Scc1-SA2 interface and release Cohesin, leading to erroneous chromosome segregation in mitosis. Surprisingly, Sororin, which contains a conserved FGF motif and functions as a master antagonist of Wapl in S-phase and G2-phase, does not bind the Scc1-SA2 interface. Moreover, Sgo1, the major protector of Cohesin at mitotic centromeres, can only compete with the FGF motif but not the YNARHWN motif of Wapl for binding Scc1-SA2 interface. Our data uncover the molecular mechanism by which Wapl binds Cohesin to ensure precise chromosome segregation.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Segregação de Cromossomos , Coesinas , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Humanos , Ligação Proteica , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Motivos de Aminoácidos , Mitose , Cromátides/metabolismo , Proteínas de Transporte , Proteínas Proto-Oncogênicas
15.
Nat Rev Mol Cell Biol ; 15(9): 601-14, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25145851

RESUMO

Structural maintenance of chromosomes (SMC) complexes, which in eukaryotic cells include cohesin, condensin and the Smc5/6 complex, are central regulators of chromosome dynamics and control sister chromatid cohesion, chromosome condensation, DNA replication, DNA repair and transcription. Even though the molecular mechanisms that lead to this large range of functions are still unclear, it has been established that the complexes execute their functions through their association with chromosomal DNA. A large set of data also indicates that SMC complexes work as intermolecular and intramolecular linkers of DNA. When combining these insights with results from ongoing analyses of their chromosomal binding, and how this interaction influences the structure and dynamics of chromosomes, a picture of how SMC complexes carry out their many functions starts to emerge.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromossomos Humanos/metabolismo , Complexos Multiproteicos/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona , Cromossomos Humanos/genética , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , Humanos , Complexos Multiproteicos/genética , Transcrição Gênica/fisiologia
16.
Nature ; 580(7804): 536-541, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32322060

RESUMO

Separation of eukaryotic sister chromatids during the cell cycle is timed by the spindle assembly checkpoint (SAC) and ultimately triggered when separase cleaves cohesion-mediating cohesin1-3. Silencing of the SAC during metaphase activates the ubiquitin ligase APC/C (anaphase-promoting complex, also known as the cyclosome) and results in the proteasomal destruction of the separase inhibitor securin1. In the absence of securin, mammalian chromosomes still segregate on schedule, but it is unclear how separase is regulated under these conditions4,5. Here we show that human shugoshin 2 (SGO2), an essential protector of meiotic cohesin with unknown functions in the soma6,7, is turned into a separase inhibitor upon association with SAC-activated MAD2. SGO2-MAD2 can functionally replace securin and sequesters most separase in securin-knockout cells. Acute loss of securin and SGO2, but not of either protein individually, resulted in separase deregulation associated with premature cohesin cleavage and cytotoxicity. Similar to securin8,9, SGO2 is a competitive inhibitor that uses a pseudo-substrate sequence to block the active site of separase. APC/C-dependent ubiquitylation and action of the AAA-ATPase TRIP13 in conjunction with the MAD2-specific adaptor p31comet liberate separase from SGO2-MAD2 in vitro. The latter mechanism facilitates a considerable degree of sister chromatid separation in securin-knockout cells that lack APC/C activity. Thus, our results identify an unexpected function of SGO2 in mitotically dividing cells and a mechanism of separase regulation that is independent of securin but still supervised by the SAC.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Mad2/metabolismo , Securina , Separase/antagonistas & inibidores , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/metabolismo , Linhagem Celular , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Ligação Proteica , Securina/metabolismo , Separase/metabolismo , Coesinas
17.
Nature ; 586(7827): 139-144, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32968280

RESUMO

The three-dimensional organization of the genome supports regulated gene expression, recombination, DNA repair, and chromosome segregation during mitosis. Chromosome conformation capture (Hi-C)1,2 analysis has revealed a complex genomic landscape of internal chromosomal structures in vertebrate cells3-7, but the identical sequence of sister chromatids has made it difficult to determine how they topologically interact in replicated chromosomes. Here we describe sister-chromatid-sensitive Hi-C (scsHi-C), which is based on labelling of nascent DNA with 4-thio-thymidine and nucleoside conversion chemistry. Genome-wide conformation maps of human chromosomes reveal that sister-chromatid pairs interact most frequently at the boundaries of topologically associating domains (TADs). Continuous loading of a dynamic cohesin pool separates sister-chromatid pairs inside TADs and is required to focus sister-chromatid contacts at TAD boundaries. We identified a subset of TADs that are overall highly paired and are characterized by facultative heterochromatin and insulated topological domains that form separately within individual sister chromatids. The rich pattern of sister-chromatid topologies and our scsHi-C technology will make it possible to investigate how physical interactions between identical DNA molecules contribute to DNA repair, gene expression, chromosome segregation, and potentially other biological processes.


Assuntos
Cromátides/química , Pareamento Cromossômico , Replicação do DNA , Genoma Humano/genética , Conformação de Ácido Nucleico , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/análise , DNA/biossíntese , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Coesinas
18.
Mol Cell ; 70(6): 1134-1148.e7, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29932904

RESUMO

Cohesin organizes DNA into chromatids, regulates enhancer-promoter interactions, and confers sister chromatid cohesion. Its association with chromosomes is regulated by hook-shaped HEAT repeat proteins that bind Scc1, namely Scc3, Pds5, and Scc2. Unlike Pds5, Scc2 is not a stable cohesin constituent but, as shown here, transiently replaces Pds5. Scc1 mutations that compromise its interaction with Scc2 adversely affect cohesin's ATPase activity and loading. Moreover, Scc2 mutations that alter how the ATPase responds to DNA abolish loading despite cohesin's initial association with loading sites. Lastly, Scc2 mutations that permit loading in the absence of Scc4 increase Scc2's association with chromosomal cohesin and reduce that of Pds5. We suggest that cohesin switches between two states: one with Pds5 bound that is unable to hydrolyze ATP efficiently but is capable of release from chromosomes and another in which Scc2 replaces Pds5 and stimulates ATP hydrolysis necessary for loading and translocation from loading sites.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , DNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Coesinas
19.
Nucleic Acids Res ; 52(10): 5774-5791, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597669

RESUMO

RAD51 filament is crucial for the homology-dependent repair of DNA double-strand breaks and stalled DNA replication fork protection. Positive and negative regulators control RAD51 filament assembly and disassembly. RAD51 is vital for genome integrity but excessive accumulation of RAD51 on chromatin causes genome instability and growth defects. However, the detailed mechanism underlying RAD51 disassembly by negative regulators and the physiological consequence of abnormal RAD51 persistence remain largely unknown. Here, we report the role of the human AAA+ ATPase FIGNL1 in suppressing a novel type of RAD51-mediated genome instability. FIGNL1 knockout human cells were defective in RAD51 dissociation after replication fork restart and accumulated ultra-fine chromosome bridges (UFBs), whose formation depends on RAD51 rather than replication fork stalling. FIGNL1 suppresses homologous recombination intermediate-like UFBs generated between sister chromatids at genomic loci with repeated sequences such as telomeres and centromeres. These data suggest that RAD51 persistence per se induces the formation of unresolved linkage between sister chromatids resulting in catastrophic genome instability. FIGNL1 facilitates post-replicative disassembly of RAD51 filament to suppress abnormal recombination intermediates and UFBs. These findings implicate FIGNL1 as a key factor required for active RAD51 removal after processing of stalled replication forks, which is essential to maintain genome stability.


Assuntos
Instabilidade Genômica , Rad51 Recombinase , Humanos , Cromátides/metabolismo , Cromátides/genética , Replicação do DNA/genética , Instabilidade Genômica/genética , Recombinação Homóloga/genética , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética , Linhagem Celular , Técnicas de Inativação de Genes
20.
Annu Rev Biochem ; 79: 131-53, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20331362

RESUMO

Chromosome cohesion is the term used to describe the cellular process in which sister chromatids are held together from the time of their replication until the time of separation at the metaphase to anaphase transition. In this capacity, chromosome cohesion, especially at centromeric regions, is essential for chromosome segregation. However, cohesion of noncentromeric DNA sequences has been shown to occur during double-strand break (DSB) repair and the transcriptional regulation of genes. Cohesion for the purposes of accurate chromosome segregation, DSB repair, and gene regulation are all achieved through a similar network of proteins, but cohesion for each purpose may be regulated differently. In this review, we focus on recent developments regarding the regulation of this multipurpose network for tying DNA sequences together. In particular, regulation via effectors and posttranslational modifications are reviewed. A picture is emerging in which complex regulatory networks are capable of differential regulation of cohesion in various contexts.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Animais , Centrômero/metabolismo , Cromátides/metabolismo , DNA/metabolismo , Humanos , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA