Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Planta Med ; 90(4): 276-285, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38272038

RESUMO

Cuphea carthagenensis (Jacq.) J. F. Macbr. is a popular plant in Brazilian folk medicine owing to its hypotensive and central nervous system depressant effects. This study aimed to validate the hypotensive effect of the plant's aqueous extract (AE) in rats and examine the vascular actions of three hydrolyzable tannins, oenothein B, woodfordin C, and eucalbanin B, isolated from AE. Systolic blood pressure in unanesthetized rats was determined using the non-invasive tail-cuff method. Oral treatment of normotensive rats with 0.5 and 1.0 g/kg/day AE induced a dose-related hypotensive effect after 1 week. In rat aortic rings pre-contracted with noradrenaline, all ellagitannins (20 - 180 µM) induced a concentration-related vasorelaxation. This effect was blocked by either removing the endothelium or pre-incubating with NG-nitro-l-arginine methyl ester (10 µM), an inhibitor of nitric oxide (NO) synthase. In KCl-depolarized rat portal vein preparations, the investigated compounds did not affect significantly the maximal contractile responses and pD2 values of the concentration-response curves to CaCl2. Our results demonstrated the hypotensive effect of C. carthagenensis AE in unanesthetized rats. All isolated ellagitannins induced vasorelaxation in vitro via activating NO synthesis/NO release from endothelial cells, without altering the Ca2+ influx in vascular smooth muscle preparations. Considering the low oral bioavailability of ellagitannins, the determined in vitro actions of these compounds are unlikely to account for the hypotensive effect of AE in vivo. It remains to be determined the role of the bioactive ellagitannin-derived metabolites in the hypotensive effect observed after oral treatment of unanesthetized rats with the plant extract.


Assuntos
Cuphea , Hipotensão , Ratos , Animais , Vasodilatadores/farmacologia , Cuphea/metabolismo , Taninos Hidrolisáveis/farmacologia , Ratos Wistar , Células Endoteliais , Vasodilatação , Endotélio Vascular , Óxido Nítrico/metabolismo , Aorta Torácica/metabolismo , NG-Nitroarginina Metil Éster/farmacologia
2.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047590

RESUMO

Cuphea P. Browne (Lythraceae) is a monophyletic taxon comprising some 240-260 species that grow wild in the warm, temperate, and tropical regions of South and Central America and the southern part of North America. They have been valued as traditional medicinal remedies for numerous indications, including treating wounds, parasitic infections, hypertension, digestive disorders, cough, rheumatism, and pain. Modern pharmacological research provides data that support many of these traditional uses. Such a wide array of medicinal applications may be due to the exceptionally rich phytochemical profile of these plants, which includes bioactive compounds classified into various metabolite groups, such as polyphenols, triterpenes, alkaloids, and coumarins. Furthermore, Cuphea seed oils, containing medium-chain fatty acids, are of increasing interest in various industries as potential substitutes for coconut and palm oils. This review aims to summarize the results of phytochemical and pharmacological studies on Cuphea plants, with a particular focus on the therapeutic potential and molecular mechanisms of the action of polyphenolic compounds (especially flavonoids and tannins), which have been the subject of many recently published articles.


Assuntos
Cuphea , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Medicina Tradicional , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/química
3.
Chem Biodivers ; 18(7): e2100041, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34000101

RESUMO

The present study investigates the chemical composition, anti-inflammatory, and antihypertensive activities, in vitro, from extracts of Cuphea lindmaniana and Cuphea urbaniana leaves. The extraction was performed ultrasound-assisted, and UHPLC/MS analysis was in positive mode ionization. The anti-inflammatory activity of the extracts and miquelianin were assayed at concentrations 0.001-10 µg/mL by chemotaxis on rat polymorphonuclear neutrophils. The antihypertensive activity was performed by angiotensin-converting enzyme (ACE) inhibition. From the nineteen proposed compounds, six of them are described for the first time in this genus. The extracts displayed antichemotactic effect with a reduction of 100 % of the neutrophil migration, in vitro, in most concentrations. The ACE-inhibition presented results ranging from 19.58 to 22.82 %. In conclusion, C. lindmaniana and C. urbaniana extracts contain a rich diversity of flavonoids and display in vitro anti-inflammatory and antihypertensive potential. Thus, this study could serve as a scientific baseline for further investigation, on developmental novel products with therapeutic actions.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Hipertensivos/farmacologia , Cuphea/química , Neutrófilos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Angiotensinas/antagonistas & inibidores , Angiotensinas/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Hipertensivos/química , Anti-Hipertensivos/isolamento & purificação , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Polifenóis/química , Polifenóis/isolamento & purificação , Ratos
4.
Inflammopharmacology ; 29(1): 295-306, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32333259

RESUMO

Cuphea aequipetala Cav (Lythraceae) is an herb used in folk treatment for pain and inflammation. The aim of this study was to evaluate the antinociceptive and anti-inflammatory actions of an ethanol extract from the leaves and stem of Cuphea aequipetala (CAE). The antinociceptive actions of CAE (10-200 mg/kg p.o.) were assessed with the acetic acid-induced writhing, hot plate, and formalin tests. The possible mechanism of action of CAE was evaluated using inhibitors. The effects of CAE on motor coordination were assessed by the rotarod test. The in vitro anti-inflammatory actions of CAE were evaluated using LPS-stimulated primary murine macrophages, and the in vivo anti-inflammatory actions were assessed by the TPA-induced ear oedema and the carrageenan-induced paw oedema tests. The production of inflammatory mediators was estimated from both in vitro and in vivo assays. CAE showed antinociception (ED50 = 90 mg/kg) in the acetic acid test and in the second phase of the formalin test (ED50 = 158 mg/kg). Pretreatment with glibenclamide or L-NAME partially reversed the antinociception shown by the plant extract. CAE (50-200 mg/kg) did not affect motor coordination in mice. CAE increased the production of IL-10 in LPS-stimulated macrophages (EC50 = 10 pg/ml) and, in the carrageenan-induced paw oedema test (threefold increase). In conclusion, CAE induced antinociceptive effects without affecting motor coordination, probably due to the involvement of nitric oxide and ATP-sensitive K+ channels. CAE also exerts in vitro and in vivo anti-inflammatory effects by increasing the release of IL-10.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Cuphea/química , Extratos Vegetais/farmacologia , Analgésicos/administração & dosagem , Analgésicos/isolamento & purificação , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/isolamento & purificação , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Edema/tratamento farmacológico , Edema/patologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Canais KATP/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Dor/tratamento farmacológico , Extratos Vegetais/administração & dosagem
5.
Biochem J ; 475(23): 3861-3873, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30409825

RESUMO

In plants and bacteria that use a Type II fatty acid synthase, isozymes of acyl-acyl carrier protein (ACP) thioesterase (TE) hydrolyze the thioester bond of acyl-ACPs, terminating the process of fatty acid biosynthesis. These TEs are therefore critical in determining the fatty acid profiles produced by these organisms. Past characterizations of a limited number of plant-sourced acyl-ACP TEs have suggested a thiol-based, papain-like catalytic mechanism, involving a triad of Cys, His, and Asn residues. In the present study, the sequence alignment of 1019 plant and bacterial acyl-ACP TEs revealed that the previously proposed Cys catalytic residue is not universally conserved and therefore may not be a catalytic residue. Systematic mutagenesis of this residue to either Ser or Ala in three plant acyl-ACP TEs, CvFatB1 and CvFatB2 from Cuphea viscosissima and CnFatB2 from Cocos nucifera, resulted in enzymatically active variants, demonstrating that this Cys residue (Cys348 in CvFatB2) is not catalytic. In contrast, the multiple sequence alignment, together with the structure modeling of CvFatB2, suggests that the highly conserved Asp309 and Glu347, in addition to previously proposed Asn311 and His313, may be involved in catalysis. The substantial loss of catalytic competence associated with site-directed mutants at these positions confirmed the involvement of these residues in catalysis. By comparing the structures of acyl-ACP TE and the Pseudomonas 4-hydroxybenzoyl-CoA TE, both of which fold in the same hotdog tertiary structure and catalyze the hydrolysis reaction of thioester bond, we have proposed a two-step catalytic mechanism for acyl-ACP TE that involves an enzyme-bound anhydride intermediate.


Assuntos
Aminoácidos/metabolismo , Domínio Catalítico , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Tioléster Hidrolases/metabolismo , Sequência de Aminoácidos , Aminoácidos/genética , Biocatálise , Cocos/enzimologia , Cocos/genética , Cocos/metabolismo , Cuphea/enzimologia , Cuphea/genética , Cuphea/metabolismo , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/genética , Plantas/metabolismo , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Tioléster Hidrolases/química , Tioléster Hidrolases/genética
6.
BMC Complement Altern Med ; 19(1): 345, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791313

RESUMO

BACKGROUND: Cuphea ignea is one of the herbal resources belonging to Lythraceae family. Some species of this family have been used traditionally in South and Central America's folk medicine for treating stomach disorders. Therefore, the present study was performed to evaluate the gastropreventive effect of aqueous ethanolic extract of C. ignea aerial parts on ethanol-induced gastric ulcer. METHODS: Gastric ulcers were induced in Sprague Dawley rats using one oral dose of absolute ethanol (1.5 mL/rat). The C. ignea aerial parts extract at doses of 250 and 500 mg/kg body weight and ranitidine (a reference drug) at a dose of 30 mg/kg body weight were orally administrated daily for 7 days before ulcer induction. One hour after ethanol administration blood samples were collected and then stomachs of sacrificed rats were subjected to biochemical, macroscopic and microscopic studies. RESULTS: Oral administration of C. ignea extract significantly attenuated gastric ulcer as revealed by significant reduction in the gastric ulcer index and volume of gastric juice while significantly increased preventive percentage, gastric pH value and pepsin activity. Pre-treatment of C. ignea extract markedly improved the serum level of TNF-α, the gastric MPO activity and NO content. Furthermore, C. ignea pre-treatment significantly increased the gastric levels of enzymatic and non- enzymatic antioxidants namely CAT, SOD, GSH-Px, and GSH with concomitant reduction in MDA level compared with those in the ethanol group. These results were further supported by histopathological findings which revealed the curing effect of C. ignea on the hemorrhagic shock induced by ethanol toxicity. CONCLUSIONS: C. ignea extract showed a potential gastroprotective effect on ethanol-induced gastric ulcer, and its effect may be mediated through suppression of oxidative stress and gastric inflammation.


Assuntos
Antiulcerosos/farmacologia , Antioxidantes/farmacologia , Cuphea , Extratos Vegetais/farmacologia , Úlcera Gástrica , Animais , Etanol/efeitos adversos , Feminino , Ratos , Ratos Sprague-Dawley , Estômago/efeitos dos fármacos , Estômago/patologia , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/metabolismo , Úlcera Gástrica/patologia
7.
Appl Environ Microbiol ; 84(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29549102

RESUMO

Medium-chain fatty acids are commodity chemicals. Increasing and modifying the activity of thioesterases (TEs) on medium-chain fatty acyl-acyl carrier protein (acyl-ACP) esters may enable a high-yield microbial production of these molecules. The plant Cuphea palustris harbors two distinct TEs: C. palustris FatB1 (CpFatB1) (C8 specificity, lower activity) and CpFatB2 (C14 specificity, higher activity) with 78% sequence identity. We combined structural features from these two enzymes to create several chimeric TEs, some of which showed nonnatural fatty acid production as measured by an enzymatic assay and gas chromatography-mass spectrometry (GC-MS). Notably, chimera 4 exhibited an increased C8 fatty acid production in correlation with improved microbial expression. This chimera led us to identify CpFatB2-specific amino acids between positions 219 and 272 that lead to higher protein levels. Chimera 7 produced a broad range of fatty acids and appeared to combine a fatty acid binding pocket with long-chain specificity and an ACP interaction site that may activate fatty acid extrusion. Using homology modeling and in silico docking with ACP, we identified a "positive patch" within amino acids 162 to 218, which may direct the ACP interaction and regulate access to short-chain fatty acids. On the basis of this modeling, we transplanted putative ACP interaction sequences from CpFatB1 into CpFatB2 and created a chimeric thioesterase that produced medium-chain as well as long-chain fatty acids. Thus, the engineering of chimeric enzymes and characterizing their microbial activity and chain-length specificity suggested mechanistic insights into TE functions and also generated thioesterases with potentially useful properties. These observations may inform a rational engineering of TEs to allow alkyl chain length control.IMPORTANCE Medium-chain fatty acids are important commodity chemicals. These molecules are used as plastic precursors and in shampoos and other detergents and could be used as biofuel precursors if production economics were favorable. Hydrocarbon-based liquid fuels must be optimized to have a desired boiling point, low freezing point, low viscosity, and other physical characteristics. Similarly, the solubility and harshness of detergents and the flexibility of plastic polymers can be modulated. The length and distribution of the carbon chains in the hydrophobic tails determine these properties. The biological synthesis of cell membranes and fatty acids produces chains of primarily 16 to 18 carbons, which give rise to current biofuels. The ultimate goal of the work presented here is to engineer metabolic pathways to produce designer molecules with the correct number of carbons in a chain, so that such molecules could be used directly as specialty commodity chemicals or as fuels after minimal processing.


Assuntos
Cuphea/enzimologia , Ácidos Graxos/metabolismo , Proteínas de Plantas/química , Tioléster Hidrolases/química , Tioléster Hidrolases/genética , Cuphea/genética , Ácidos Graxos/química , Cromatografia Gasosa-Espectrometria de Massas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Tioléster Hidrolases/metabolismo
8.
Plant Physiol ; 174(1): 97-109, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28325847

RESUMO

Seed oils of many Cuphea sp. contain >90% of medium-chain fatty acids, such as decanoic acid (10:0). These seed oils, which are among the most compositionally variant in the plant kingdom, arise from specialized fatty acid biosynthetic enzymes and specialized acyltransferases. These include lysophosphatidic acid acyltransferases (LPAT) and diacylglycerol acyltransferases (DGAT) that are required for successive acylation of medium-chain fatty acids in the sn-2 and sn-3 positions of seed triacylglycerols (TAGs). Here we report the identification of a cDNA for a DGAT1-type enzyme, designated CpuDGAT1, from the transcriptome of C. avigera var pulcherrima developing seeds. Microsomes of camelina (Camelina sativa) seeds engineered for CpuDGAT1 expression displayed DGAT activity with 10:0-CoA and the diacylglycerol didecanoyl, that was approximately 4-fold higher than that in camelina seed microsomes lacking CpuDGAT1. In addition, coexpression in camelina seeds of CpuDGAT1 with a C. viscosissima FatB thioesterase (CvFatB1) that generates 10:0 resulted in TAGs with nearly 15 mol % of 10:0. More strikingly, expression of CpuDGAT1 and CvFatB1 with the previously described CvLPAT2, a 10:0-CoA-specific Cuphea LPAT, increased 10:0 amounts to 25 mol % in camelina seed TAG. These TAGs contained up to 40 mol % 10:0 in the sn-2 position, nearly double the amounts obtained from coexpression of CvFatB1 and CvLPAT2 alone. Although enriched in diacylglycerol, 10:0 was not detected in phosphatidylcholine in these seeds. These findings are consistent with channeling of 10:0 into TAG through the combined activities of specialized LPAT and DGAT activities and demonstrate the biotechnological use of these enzymes to generate 10:0-rich seed oils.


Assuntos
Cuphea/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos/metabolismo , Óleos de Plantas/química , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Sequência de Aminoácidos , Brassicaceae/genética , Brassicaceae/metabolismo , Cuphea/genética , Diacilglicerol O-Aciltransferase/genética , Ácidos Graxos/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Engenharia Metabólica/métodos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Sementes/genética , Homologia de Sequência de Aminoácidos
9.
Pharmazie ; 73(4): 241-243, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29609693

RESUMO

Phenolic metabolite profiling using two dimensional paper chromatographic analysis (2 DPC) was used for assaying the complex mixture of phenolics of an aqueous ethanol aerial part extract of Cuphea ignea (Lytheraceae). A coumarin with a rare structure, namely, 7-hydroxy 3-methoxy coumarin 5-O-ß-glucopyranoside was isolated from the investigated extract. The structure was elucidated by conventional methods and spectral analysis, including one and two dimensional NMR (1D and 2D NMR), as well as by interpretation of the spectra obtained by high resolution electrospray ionization mass technique (HRESIMS). The rare coumarin significantly inhibited reactive oxygen species production with an ED50 value of 6.31±1.64 µg/ml and 5.78±0.66 µg/ml as determined by the the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the oxygen radical absorption capacity (ORAC) assay respectively. The isolated coumarin presented a cytotoxic activity assessed by using the neutral red assay (NRU) against lung cancer cell line (H23) with IC50 of 40.38±2.75 µg/ml.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Cumarínicos/química , Cumarínicos/farmacologia , Cuphea/química , Compostos de Bifenilo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/toxicidade , Flores/química , Sequestradores de Radicais Livres/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Picratos , Extratos Vegetais , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas por Ionização por Electrospray
10.
Plant J ; 84(5): 1021-33, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26505880

RESUMO

Lysophosphatidic acid acyltransferase (LPAT) catalyzes acylation of the sn-2 position on lysophosphatidic acid by an acyl CoA substrate to produce the phosphatidic acid precursor of polar glycerolipids and triacylglycerols (TAGs). In the case of TAGs, this reaction is typically catalyzed by an LPAT2 from microsomal LPAT class A that has high specificity for C18 fatty acids containing Δ9 unsaturation. Because of this specificity, the occurrence of saturated fatty acids in the TAG sn-2 position is infrequent in seed oils. To identify LPATs with variant substrate specificities, deep transcriptomic mining was performed on seeds of two Cuphea species producing TAGs that are highly enriched in saturated C8 and C10 fatty acids. From these analyses, cDNAs for seven previously unreported LPATs were identified, including cDNAs from Cuphea viscosissima (CvLPAT2) and Cuphea avigera var. pulcherrima (CpuLPAT2a) encoding microsomal, seed-specific class A LPAT2s and a cDNA from C. avigera var. pulcherrima (CpuLPATB) encoding a microsomal, seed-specific LPAT from the bacterial-type class B. The activities of these enzymes were characterized in Camelina sativa by seed-specific co-expression with cDNAs for various Cuphea FatB acyl-acyl carrier protein thioesterases (FatB) that produce a variety of saturated medium-chain fatty acids. CvLPAT2 and CpuLPAT2a expression resulted in accumulation of 10:0 fatty acids in the Camelina sativa TAG sn-2 position, indicating a 10:0 CoA specificity that has not been previously described for plant LPATs. CpuLPATB expression generated TAGs with 14:0 at the sn-2 position, but not 10:0. Identification of these LPATs provides tools for understanding the structural basis of LPAT substrate specificity and for generating altered oil functionalities.


Assuntos
Aciltransferases/química , Cuphea/enzimologia , Ácidos Graxos/metabolismo , Aciltransferases/metabolismo , Cuphea/metabolismo , Mineração de Dados , Filogenia , Domínios Proteicos , Sementes/enzimologia , Sementes/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína , Análise de Sequência de RNA , Especificidade por Substrato , Transcriptoma
11.
Biochim Biophys Acta ; 1848(5): 1175-82, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25687972

RESUMO

The phenols hydroxytyrosol and tyrosol made abundantly available through olive oil processing were enzymatically transesterified into effective lipophilic antioxidants with cuphea oil. The hydroxytyrosyl and tyrosyl esters made from cuphea oil were assessed for their ability to partition into, locate within and effect the bilayer behavior of 1,2-dioloeoylphosphatidylcholine liposomes and compared to their counterparts made from decanoic acid. Partitioning into liposomes was on the same scale for both hydroxytyrosyl derivatives and both tyrosyl derivatives. All were found to locate nearly at the same depth within the bilayer. Each was found to affect bilayer behavior in a distinct manner.


Assuntos
Antioxidantes/química , Ésteres/química , Bicamadas Lipídicas , Álcool Feniletílico/análogos & derivados , Fosfatidilcolinas/química , Cuphea , Ácidos Decanoicos/química , Esterificação , Lipossomos , Modelos Químicos , Estrutura Molecular , Álcool Feniletílico/química , Óleos de Plantas/química , Fatores de Tempo
12.
J Exp Bot ; 66(14): 4251-65, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25969557

RESUMO

Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0-14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8-C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina ß-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids.


Assuntos
Cuphea/metabolismo , Palmitoil-CoA Hidrolase/metabolismo , Sementes/metabolismo , Sequência de Aminoácidos , Cuphea/embriologia , Cuphea/enzimologia , Ácidos Graxos/metabolismo , Dados de Sequência Molecular , Palmitoil-CoA Hidrolase/química , Folhas de Planta/metabolismo , Homologia de Sequência de Aminoácidos
13.
Nat Prod Res ; 37(10): 1693-1697, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35876228

RESUMO

Cuphea ingrata is a traditional medicinal plant species of the Lythraceae family. This work reports on the cytotoxic activity of the methanolic extract from the aerial parts of C. ingrata and the n-butanol and ethyl acetate fractions against human skin and prostate cancer cells. The selectivity of action was tested in normal skin keratinocytes HaCaT and prostate epithelial cells PNT2. The ethyl acetate fraction showed the highest activity in all three human skin cancer cell lines: A375, HTB-140, WM793, with IC50 = 15.90; 3.40; 18.75 µg/mL, respectively. To obtain comparative information on the chemical composition, a quantitative analysis of oenothein B was performed using the UHPLC-PDA method. An analysis of its cytotoxic activity was also carried out.


Assuntos
Antineoplásicos , Cuphea , Plantas Medicinais , Masculino , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cuphea/química
14.
Sci Rep ; 13(1): 790, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646714

RESUMO

Nanotechnology is one of the most important and relevant disciplines today due to the specific electrical, optical, magnetic, chemical, mechanical and biomedical properties of nanoparticles. In the present study we demonstrate the efficacy of Cuphea procumbens to biogenerate silver nanoparticles (AgNPs) with antibacterial and antitumor activity. These nanoparticles were synthesized using the aqueous extract of C. procumbens as reducing agent and silver nitrate as oxidizing agent. The Transmission Electron Microscopy demonstrated that the biogenic AgNPs were predominantly quasi-spherical with an average particle size of 23.45 nm. The surface plasmonic resonance was analyzed by ultraviolet visible spectroscopy (UV-Vis) observing a maximum absorption band at 441 nm and Infrared Spectroscopy (FT IR) was used in order to structurally identify the functional groups of some compounds involved in the formation of nanoparticles. The AgNPs demonstrated to have antibacterial activity against the pathogenic bacteria Escherichia coli and Staphylococcus aureus, identifying the maximum zone of inhibition at the concentration of 0.225 and 0.158 µg/mL respectively. Moreover, compared to the extract, AgNPs exhibited better antitumor activity and higher therapeutic index (TI) against several tumor cell lines such as human breast carcinoma MCF-7 (IC50 of 2.56 µg/mL, TI of 27.65 µg/mL), MDA-MB-468 (IC50 of 2.25 µg/mL, TI of 31.53 µg/mL), human colon carcinoma HCT-116 (IC50 of 1.38 µg/mL, TI of 51.07 µg/mL) and melanoma A-375 (IC50 of 6.51 µg/mL, TI of 10.89 µg/mL). This fact is of great since it will reduce the side effects derived from the treatment. In addition, AgNPs revealed to have a photocatalytic activity of the dyes congo red (10-3 M) in 5 min and malachite green (10-3 M) in 7 min. Additionally, the degradation percentages were obtained, which were 86.61% for congo red and 82.11% for malachite green. Overall, our results demonstrated for the first time that C. procumbens biogenerated nanoparticles are excellent candidates for several biomedical and environmental applications.


Assuntos
Cuphea , Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/química , Vermelho Congo , Testes de Sensibilidade Microbiana , Prata/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Nat Prod Res ; 36(14): 3721-3725, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33390022

RESUMO

The purpose of the current study was a qualitative UHPLC-PDA-ESI-MS analysis of phenolic compounds in the aerial parts of Cuphea ingrata, which led to detection of over sixty constituents: tannins, flavonoids, phenolic acids and their derivatives. The presence of oenothein B-type macrocyclic dimeric ellagitannins seems to be of particular importance. Quercetin sulfate, that has been previously identified as characteristic chemotaxonomic marker in Cuphea carthagenensis, was found in C. ingrata, as well.


Assuntos
Cuphea , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Fenóis/análise , Componentes Aéreos da Planta/química , Extratos Vegetais/análise , Espectrometria de Massas por Ionização por Electrospray
16.
Chemosphere ; 300: 134497, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35398470

RESUMO

The green synthesis of nanoparticles (NPs) is the safest, ecofriendly, cost-effective, and non-hazardous approach of nanotechnology. In the current study, we described the green synthesis of silver nanoparticles (AgNPs) using Cuphea carthagenensis aqueous leaf extract as a reducing, capping, and stabilizing agent. The study aims at the synthesis, characterization, optimization, and determination of the antibacterial activity of Cc-AgNPs against clinically important human pathogens. Coating of cotton fabrics with Cc-AgNPs and their efficacy against skin infection causing organisms was also evaluated. Furthermore, antioxidant activity, growth assay and time kill assay of Cc-AgNPs were also performed in the study. The biosynthesized Cc-AgNPs were characterized by UV-visible spectrometry, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The spectroscopic and microscopic analysis demonstrated biosynthesis of face-centered cubic (fcc) crystalline spherical Cc-AgNPs with an average particle size of 10.65 ± 0.1 nm. Optimized peak synthesis of Cc-AgNPs was reported at pH7, 55 °C, 4 mM silver nitrate, and 5:45 (plant extract: silver nitrate). Cc-AgNPs exhibited potent antioxidant effect and antibacterial activity against both Gram-positive and Gram-negative bacteria. The lowest MIC (15 µg/ml) and MBC (25 µg/ml) values were reported against S. typhimurium. The Cc-AgNPs coated fabrics demonstrated potent antibacterial activity against tested strains. This application could be helpful in wound healing management. Furthermore, the hemolytic analysis demonstrated that Cc-AgNPs exhibit non-toxic nature against Red Blood Cells (RBCs) at the tested concentrations. In conclusion, the investigation demonstrated a fast, stable, and eco-friendly approach to the biosynthesis of Cc-AgNPs along with their antibacterial and antioxidant properties.


Assuntos
Cuphea , Nanopartículas Metálicas , Antibacterianos/química , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/farmacologia , Nitrato de Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
17.
J Med Food ; 24(4): 394-410, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32985931

RESUMO

Several species of Cuphea are used medicinally and are reported to have cardioprotective, diuretic, and antihypertensive properties. In Brazil, Cuphea species are collectively called "sete-sangrias" due to their similar appearances and are also used interchangeably for the same therapeutic purposes. So the aim of the study was to characterize morphoanatomy of leaves and stems, evaluate the safety, and investigate the diuretic, hypotensive, vasodilatory, and antioxidant properties of ethanol-soluble fraction of Cuphea calophylla var. mesostemon (Koehne) S.A. Graham. Initially, the morphoanatomical characterization of the leaves and stems of C. calophylla var. mesostemon was performed. For the pharmacological evaluation, the ethanol-soluble fraction from Cuphea calophylla (ESCC) was obtained and chemically characterized by high-performance liquid chromatography coupled with a diode array detector and tandem mass spectrometry techniques. Then, acute toxicity, diuretic, hypotensive, antioxidant, and vasodilatory effects were evaluated in Wistar rats. The main chemical compounds identified from ESCC were gallic acid derivatives, ellagitannins, and flavonoids. ESCC showed no acute toxic effect. ESCC showed no acute toxic effect and the estimated median lethal dose (LD50) was above 2000 mg/kg. ESCC treatment (30, 100, and 300 mg/kg) did not present any significant acute diuretic or hypotensive effects. However, an important reduction in the elimination of electrolytes was observed after the acute administration, and a significant increase in renal sodium elimination was observed after 7 days of treatment. In the cardiac tissue, the groups treated with ESCC presented significant increase in superoxide dismutase activity.


Assuntos
Cuphea , Animais , Brasil , Etnofarmacologia , Extratos Vegetais/farmacologia , Folhas de Planta , Ratos , Ratos Wistar
18.
Nat Prod Res ; 35(24): 6058-6061, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32911965

RESUMO

Cuphea genus (Lythraceae) popularly known in Brazil as "sete-sangrias", it's described as antimicrobial, anti-inflammatory, diuretic and antihypertensive mainly. Investigating the chemotactic ability plays an important role in the identification of new anti-inflammatory agents. Thus, this research aims to assay the antichemotactic activity of hydroethanolic extracts of C. calophylla, C. carthagenensis, C. glutinosa, and C. racemosa as well as the compounds miquelianin and myricitrin. The antichemotactic activity of the hydroethanolic extracts, miquelianin, and myricitrin were assayed at concentrations 0.001 to 10 µg/mL in the lipopolysaccharide-induced chemotaxis on rat polymorphonuclear neutrophils. All the assayed samples displayed antichemotactic activity with reduction of the neutrophil migration in the range of 4.46-100%, and an IC50 value in the range of 0.30-1.24 µg/mL. Thus, this study demonstrates that the extracts hydroethanolic of Cuphea species, miquelianin, and myricitrin display a significant antichemotactic activity. Therefore, in future studies, extracts from Cuphea spp. could be used as anti-inflammatory drugs.


Assuntos
Cuphea , Animais , Anti-Inflamatórios/farmacologia , Anti-Hipertensivos , Lipopolissacarídeos , Extratos Vegetais/farmacologia , Ratos
19.
J Ethnopharmacol ; 269: 113699, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33340600

RESUMO

ETHNOPHARMCOLOGICAL RELEVANCE: Microbial biofilm formation, a quorum sensing (QS) regulated process, is one of the major causes of nosocomial and chronic infections, foodborne diseases, and associated deaths. Various approaches have been used to eradicate the menace of biofilm. Ethnomedicinal plants as potent antibiofilm agents are gaining a lot of interest in an era where the drug resistance is increasing and the availability of potent antibiotics is no longer promised. In this context, the methanol extract of Cuphea carthagenensis (CCMD), an ethno-medicinal and culinary herb, was evaluated as an antibiofilm and anti-QS agent against Pseudomonas aeruginosa. AIM OF THE STUDY: The aim of the study is to evaluate the antibiofilm and anti-QS activity of an ethnomedicinal plant against a strong biofilm forming microorganism, P. aeruginosa. METHODS: Antibiofilm activity of CCMD was demonstrated at different concentrations by Tissue Culture Plate, Test Tube method and other microscopic techniques. The effect of CCMD on QS and QS-related virulence factors viz. Pyocyanin, exopolymeric substance matrix (EPS), total protease, elastase, pyoverdin and swimming motility in P. aeruginosa were also evaluated. Antioxidant activity (DPPH & FRAP), total phenolic and flavonoid content were also checked. In order to determine the composition of the extract HPLC analysis was also performed. RESULTS: In vitro study demonstrated a significant inhibition of biofilm formation (81.88 ± 2.57%) as well as production of QS-dependent virulence factors in P. aeruginosa. The extract also inhibited violacein production (83.31 ± 2.77%) in Chromobacterium violaceum which correlates with the reduction in QS-mediated virulence factors. The extract showed 64.79% ± 0.83% DPPH scavenging activity and reduction of ferricyanide complex (Fe3+) to the ferrous form (Fe2+) in DPPH and FRAP assay, respectively. Furthermore, the extract showed thermal stability and does not have any growth inhibitory effect on P. aeruginosa. The HPLC analysis demonstrated the presence of ellagic acid, ascorbic acid and hippuric acid in the extract. CONCLUSION: This work is the first to demonstrate that C. carthagenensis can attenuate biofilm formation and QS-mediated virulence factors of P. aeruginosa. Further investigation is required to use this ethnomedicinal plant (CCMD) as an important source of antibiofilm agents.


Assuntos
Antibacterianos/farmacologia , Cuphea/química , Medicina Tradicional/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa/fisiologia , Fatores de Virulência/antagonistas & inibidores , Antioxidantes/farmacologia , Ácido Ascórbico , Biofilmes/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Chromobacterium/efeitos dos fármacos , Ácido Elágico , Flavonoides/análise , Hipuratos , Indóis/antagonistas & inibidores , Fenóis/análise , Folhas de Planta/química , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Fatores de Virulência/metabolismo
20.
Talanta ; 216: 120988, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32456919

RESUMO

Cuphea glutinosa is a medicinal species abundant in South of Brazil, known because of its flavonoids, which have pharmacological properties as antioxidant, anti-hypertensive, diuretic, and antimicrobial. The present study aimed to optimize the extraction and validate an ultra-performance liquid chromatographic method coupled to a photodiode array detector (UPLC-PDA) method for the quantification of a chemical marker miquelianin in C. glutinosa leaves. The optimum conditions for the extraction of miquelianin from leaves of C. glutinosa were determined using a fractional factorial design (FFD) and a central composite design (CCD). An UPLC-PDA method was validated, following the ICH guidelines and RDC 166/2017 of ANVISA (Brazil). The extraction-optimization methodology was obtained with the following parameters: plant:solvent 1:60 (w/v), percentage solvent 38% ethanol, 60 min time, five extractions and particle size ≤ 180 µm. The validation parameters of the quantification method were satisfactory. The results revealed a method with excellent selectivity, linearity, precision (repeatability and intermediate precision were below 2.18 and 1.40%, respectively) and accuracy (mean recovery 90.6%). The average content of miquelianin was 1.03%. Briefly, the optimization of the extractive method in the leaves of C. glutinosa increased the concentration of miquelianin in the crude extract and the method was validated according to the current legislation.


Assuntos
Cuphea/química , Glucosídeos/análise , Folhas de Planta/química , Quercetina/análogos & derivados , Ondas Ultrassônicas , Cromatografia Líquida de Alta Pressão , Quercetina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA