Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(2): 546-558, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30517736

RESUMO

CRISPR (clustered regularly interspaced short palindromic repeat) endonucleases are at the forefront of biotechnology, synthetic biology and gene editing. Methods for controlling enzyme properties promise to improve existing applications and enable new technologies. CRISPR enzymes rely on RNA cofactors to guide catalysis. Therefore, chemical modification of the guide RNA can be used to characterize structure-activity relationships within CRISPR ribonucleoprotein (RNP) enzymes and identify compatible chemistries for controlling activity. Here, we introduce chemical modifications to the sugar-phosphate backbone of Streptococcus pyogenes Cas9 CRISPR RNA (crRNA) to probe chemical and structural requirements. Ribose sugars that promoted or accommodated A-form helical architecture in and around the crRNA 'seed' region were tolerated best. A wider range of modifications were acceptable outside of the seed, especially D-2'-deoxyribose, and we exploited this property to facilitate exploration of greater chemical diversity within the seed. 2'-fluoro was the most compatible modification whereas bulkier O-methyl sugar modifications were less tolerated. Activity trends could be rationalized for selected crRNAs using RNP stability and DNA target binding experiments. Cas9 activity in vitro tolerated most chemical modifications at predicted 2'-hydroxyl contact positions, whereas editing activity in cells was much less tolerant. The biochemical principles of chemical modification identified here will guide CRISPR-Cas9 engineering and enable new or improved applications.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , RNA Bacteriano/química , Clivagem do DNA , DNA Forma A/química , RNA Bacteriano/metabolismo , Ribonucleoproteínas/metabolismo , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética , Relação Estrutura-Atividade
2.
J Am Chem Soc ; 142(25): 11183-11191, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32459476

RESUMO

DNA bases can adopt energetically unfavorable tautomeric forms that enable the formation of Watson-Crick-like (WC-like) mispairs, which have been proposed to give rise to spontaneous mutations in DNA and misincorporation errors in DNA replication and translation. Previous NMR and computational studies have indicated that the population of WC-like guanine-thymine (G-T) mispairs depends on the environment, such as the local nucleic acid sequence and solvation. To investigate these environmental effects, herein G-T mispair tautomerization processes are studied computationally in aqueous solution, in A-form and B-form DNA duplexes, and within the active site of a DNA polymerase λ variant. The wobble G-T (wG-T), WC-like G-T*, and WC-like G*-T forms are considered, where * indicates the enol tautomer of the base. The minimum free energy paths for the tautomerization from the wG-T to the WC-like G-T* and from the WC-like G-T* to the WC-like G*-T are computed with mixed quantum mechanical/molecular mechanical (QM/MM) free energy simulations. The reaction free energies and free energy barriers are found to be significantly influenced by the environment. The wG-T→G-T* tautomerization is predicted to be endoergic in aqueous solution and the DNA duplexes but slightly exoergic in the polymerase, with Arg517 and Asn513 providing electrostatic stabilization of G-T*. The G-T*→G*-T tautomerization is also predicted to be slightly more thermodynamically favorable in the polymerase relative to these DNA duplexes. These simulations are consistent with an experimentally driven kinetic misincorporation model suggesting that G-T mispair tautomerization occurs in the ajar polymerase conformation or concertedly with the transition from the ajar to the closed polymerase conformation. Furthermore, the order of the associated two proton transfer reactions is predicted to be different in the polymerase than in aqueous solution and the DNA duplexes. These studies highlight the impact of the environment on the thermodynamics, kinetics, and fundamental mechanisms of G-T mispair tautomerization, which plays a role in a wide range of biochemically important processes.


Assuntos
DNA Forma A/química , DNA de Forma B/química , Pareamento Incorreto de Bases , Pareamento de Bases , Domínio Catalítico , DNA Polimerase beta/química , DNA Forma A/genética , DNA de Forma B/genética , Guanina/química , Isomerismo , Modelos Moleculares , Teoria Quântica , Termodinâmica , Timina/química
3.
Methods ; 169: 11-20, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30776405

RESUMO

Apart from being storage devices for genetic information, nucleic acids can provide regulatory structures through evolutionarily optimized sequences. The interaction of proteins binding specifically to such sequences and resulting secondary structures, or the exposure of single-stranded DNA add a versatile regulatory framework for cells. Biochemical and structural biology experiments have revealed important underlying concepts of protein-DNA interactions but are often limited by ensemble averaging or static information. To decipher the dynamics of conformations adopted by protein-DNA complexes, single-molecule approaches have become a powerful resource over the past two decades. In particular single-molecule FRET (smFRET), which allows a read-out of DNA or protein conformations, became widely used. Here, we illustrate how to implement the technique and exemplarily describe how smFRET yields insights into conformational changes of DNA secondary structures induced by the single-stranded DNA binding protein SSB. We further explain how we use smFRET to study mechanisms of the replication initiator DnaA and the competition of DnaA and SSB for single-stranded DNA. We anticipate that smFRET will further develop into a particularly useful technique to study dynamic competitions of proteins for the same DNA substrate.


Assuntos
DNA Forma A/química , DNA de Cadeia Simples/química , Transferência Ressonante de Energia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Sequências Repetidas Invertidas , Cadeias de Markov , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Conformação Proteica
4.
Nucleic Acids Res ; 46(9): 4344-4353, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29669113

RESUMO

The functional B-conformation of DNA succumbs to the A-form at low water activity. Methods for room temperature DNA storage that rely upon 'anhydrobiosis', thus, often encounter the loss of DNA activity due to the B→A-DNA transition. Here, we show that ionic liquids, an emerging class of green solvents, can induce conformational transitions in DNA and even rescue the dehydrated DNA in the functional B-form. CD spectroscopic analyses not only reveal rapid transition of A-DNA in 78% ethanol medium to B-conformation in presence of ILs, but also the high resistance of IL-bound B-form to transit to A-DNA under dehydration. Molecular dynamics simulations show the unique ability of ILs to disrupt Na+ ion condensation and form 'IL spine' in DNA minor groove to drive the A→B transition. Implications of these findings range from the plausible use of ILs as novel anhydrobiotic DNA storage medium to a switch for modulating DNA conformational transitions.


Assuntos
DNA de Forma B/química , Líquidos Iônicos/química , Animais , DNA Forma A/química , Simulação de Dinâmica Molecular , Salmão/genética
5.
J Chem Inf Model ; 59(5): 2324-2330, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30767527

RESUMO

B- to A-DNA transition is known to be sensitive to the macroscopic properties of the solution, such as salt and ethanol concentrations. Microenvironmental effects on DNA conformational transition have been broadly studied. Providing an intuitive picture of how DNA responds to environmental changes is, however, still needed. Analyzing the chemical equilibrium of B-to-A DNA transition at critical concentrations, employing explicit-solvent simulations, is envisioned to help understand such microenvironmental effects. In the present study, free-energy calculations characterizing the B- to A-DNA transition and the distribution of cations were carried out in solvents with different ethanol concentrations. With the addition of ethanol, the most stable structure of DNA changes from the B- to A-form, in agreement with previous experimental observation. In 60% ethanol, a chemical equilibrium is found, showing reversible transition between B- and A-DNA. Analysis of the microenvironment around DNA suggests that with the increase of ethanol concentration, the cations exhibit a significant tendency to move toward the backbone, and mobility of water molecules around the major groove and backbone decreases gradually, leading eventually to a B-to-A transition. The present results provide a free-energy view of DNA microenvironment and of the role of cation motion in the conformational transition.


Assuntos
DNA Forma A/química , DNA de Forma B/química , Modelos Moleculares , Relação Dose-Resposta a Droga , Etanol/farmacologia , Conformação de Ácido Nucleico/efeitos dos fármacos
6.
Nucleic Acids Res ; 45(7): 3643-3653, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28334863

RESUMO

Z: Little is known about the influence of multiple consecutive 'non-standard' ( , 6-amino-5-nitro-2(1H)-pyridone, and , 2-amino-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one) nucleobase pairs on the structural parameters of duplex DNA. nucleobase pairs follow standard rules for Watson-Crick base pairing but have rearranged hydrogen bonding donor and acceptor groups. Using the X-ray crystal structure as a starting point, we have modeled the motions of a DNA duplex built from a self-complementary oligonucleotide (5΄-CTTATPPPZZZATAAG-3΄) in water over a period of 50 µs and calculated DNA local parameters, step parameters, helix parameters, and major/minor groove widths to examine how the presence of multiple, consecutive nucleobase pairs might impact helical structure. In these simulations, the -containing DNA duplex exhibits a significantly wider major groove and greater average values of stagger, slide, rise, twist and h-rise than observed for a 'control' oligonucleotide in which nucleobase pairs are replaced by . The molecular origins of these structural changes are likely associated with at least two differences between and . First, the electrostatic properties of differ from in terms of density distribution and dipole moment. Second, differences are seen in the base stacking of pairs in dinucleotide steps, arising from energetically favorable stacking of the nitro group in with π-electrons of the adjacent base.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Pareamento de Bases , DNA Forma A/química , DNA de Forma B/química , Ligação de Hidrogênio , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Eletricidade Estática
7.
Langmuir ; 34(49): 15021-15027, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30160973

RESUMO

The controlled immobilization of biomolecules onto surfaces is relevant in biosensing and cell biological research. Spatial control is achieved by surface-tethering molecules in micro- or nanoscale patterns. Yet, there is an increasing demand for temporal control over how long biomolecular cargo stays immobilized until released into the medium. Here, we present a DNA hybridization-based approach to reversibly anchor biomolecular cargo onto micropatterned surfaces. Cargo is linked to a DNA oligonucleotide that hybridizes to a sequence-complementary, surface-tethered strand. The cargo is released from the substrate by the addition of an oligonucleotide that disrupts the duplex interaction via toehold-mediated strand displacement. The unbound tether strand can be reloaded. The generic strategy is implemented with small-molecule or protein cargo, varying DNA sequences, and multiple surface patterning routes. The approach may be used as a tool in biological research to switch membrane proteins from a locally fixed to a free state, or in biosensing to shed biomolecular receptors to regenerate the sensor surface.


Assuntos
DNA Forma A/química , Oligodesoxirribonucleotídeos/química , Estreptavidina/química , Animais , Biotina/química , Bovinos , DNA Forma A/genética , Vidro/química , Ácidos Nucleicos Imobilizados/química , Ácidos Nucleicos Imobilizados/genética , Proteínas Imobilizadas/química , Hibridização de Ácido Nucleico , Oligodesoxirribonucleotídeos/genética , Soroalbumina Bovina/química , Propriedades de Superfície
8.
Eur Biophys J ; 47(4): 325-332, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29404661

RESUMO

Because of open problems in the relation between results obtained by relaxation experiments and molecular dynamics simulations on the B-A transition of DNA, relaxation measurements of the B-A dynamics have been extended to a wider range of conditions. Field-induced reaction effects are measured selectively by the magic angle technique using a novel cell construction preventing perturbations from cell window anisotropy. The kinetics was recorded for the case of poly[d(AT)] up to the salt concentration limit of 4.4 mM, where aggregation does not yet interfere. Now experimental data on the B-A dynamics are available for poly[d(AT)] at salt concentrations of 0.18, 0.73, 2.44 and 4.4 mM. In all cases, a spectrum of time constants is found, ranging from ~ 10 µs up to components approaching ~ 1 ms. The relatively small dependence of these data on the salt concentration indicates that electrostatic effects on the kinetics are not as strong as may be expected. The ethanol content at the transition center is a linear function of the logarithm of the salt concentration, and the slope is close to that expected from polyelectrolyte theory. The B-A transition dynamics was also measured in D2O at a salt concentration of 2.4 mM: the center of the transition is found at 20.0 mol/l H2O and at 20.1 mol/l D2O with an estimated accuracy of ± 0.1 mol/l; the spectrum of time constants at the respective transition centers is very similar. The experimental results are discussed regarding the data obtained by molecular dynamics simulations.


Assuntos
DNA Forma A/química , DNA de Forma B/química , DNA Forma A/metabolismo , DNA de Forma B/metabolismo , Óxido de Deutério/química , Cinética , Sais/química
9.
J Struct Biol ; 200(3): 283-292, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28734842

RESUMO

Hydration forces between DNA molecules in the A- and B-Form were studied using a newly developed technique enabling simultaneous in situ control of temperature and relative humidity. X-ray diffraction data were collected from oriented calf-thymus DNA fibers in the relative humidity range of 98%-70%, during which DNA undergoes the B- to A-form transition. Coexistence of both forms was observed over a finite humidity range at the transition. The change in DNA separation in response to variation in humidity, i.e. change of chemical potential, led to the derivation of a force-distance curve with a characteristic exponential decay constant of∼2Å for both A- and B-DNA. While previous osmotic stress measurements had yielded similar force-decay constants, they were limited to B-DNA with a surface separation (wall-to-wall distance) typically>5Å. The current investigation confirms that the hydration force remains dominant even in the dry A-DNA state and at surface separation down to∼1.5Å, within the first hydration shell. It is shown that the observed chemical potential difference between the A and B states could be attributed to the water layer inside the major and minor grooves of the A-DNA double helices, which can partially interpenetrate each other in the tightly packed A phase. The humidity-controlled X-ray diffraction method described here can be employed to perform direct force measurements on a broad range of biological structures such as membranes and filamentous protein networks.


Assuntos
DNA Forma A/química , DNA de Forma B/química , Difração de Raios X/instrumentação , Difração de Raios X/métodos , Calibragem , DNA/química , DNA Forma A/metabolismo , DNA de Forma B/metabolismo , Ambiente Controlado , Desenho de Equipamento , Umidade , Temperatura
10.
Biophys J ; 110(2): 306-314, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26789754

RESUMO

Unzipping of double-stranded nucleic acids by an electric field applied across a wild-type α-hemolysin (αHL) nanopore provides structural information about different duplex forms. In this work, comparative studies on A-form DNA-RNA duplexes and B-form DNA-DNA duplexes with a single-stranded tail identified significant differences in the blockage current and the unzipping duration between the two helical forms. We observed that the B-form duplex blocks the channel 1.9 ± 0.2 pA more and unzips ∼15-fold more slowly than an A-form duplex at 120 mV. We developed a model to describe the dependence of duplex unzipping on structure. We demonstrate that the wider A-form duplex (d = 2.4 nm) is unable to enter the vestibule opening of αHL on the cis side, leading to unzipping outside of the nanopore with higher residual current and faster unzipping times. In contrast, the smaller B-form duplexes (d = 2.0 nm) enter the vestibule of αHL, resulting in decreased current blockages and slower unzipping. We investigated the effects of varying the length of the single-stranded overhang, and studied A-form DNA-PNA duplexes to provide additional support for the proposed model. This study identifies key differences between A- and B-form duplex unzipping that will be important in the design of future probe-based methods for detecting DNA or RNA.


Assuntos
Toxinas Bacterianas/química , Pareamento de Bases , DNA Forma A/química , DNA de Forma B/química , Proteínas Hemolisinas/química , Nanoporos , RNA/química , Sequência de Aminoácidos , Toxinas Bacterianas/metabolismo , Sequência de Bases , DNA Forma A/metabolismo , DNA de Forma B/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas Hemolisinas/metabolismo , Dados de Sequência Molecular , Ligação Proteica , RNA/metabolismo
11.
J Struct Funct Genomics ; 17(1): 17-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26984848

RESUMO

Premeltons are examples of emergent-structures (i.e., structural-solitons) that arise spontaneously in DNA due to the presence of nonlinear-excitations in its structure. They are of two kinds: B-B (or A-A) premeltons form at specific DNA-regions to nucleate site-specific DNA melting. These are stationary and, being globally-nontopological, undergo breather-motions that allow drugs and dyes to intercalate into DNA. B-A (or A-B) premeltons, on the other hand, are mobile, and being globally-topological, act as phase-boundaries transforming B- into A-DNA during the structural phase-transition. They are not expected to undergo breather motions. A key feature of both types of premeltons is the presence of an intermediate structural-form in their central regions (proposed as being a transition-state intermediate in DNA-melting and in the B- to A-transition), which differs from either A- or B-DNA. Called beta-DNA, this is both metastable and hyperflexible--and contains an alternating sugar-puckering pattern along the polymer backbone combined with the partial unstacking (in its lower energy-forms) of every-other base-pair. Beta-DNA is connected to either B- or to A-DNA on either side by boundaries possessing a gradation of nonlinear structural-change, these being called the kink and the antikink regions. The presence of premeltons in DNA leads to a unifying theory to understand much of DNA physical chemistry and molecular biology. In particular, premeltons are predicted to define the 5' and 3' ends of genes in naked-DNA and DNA in active-chromatin, this having important implications for understanding physical aspects of the initiation, elongation and termination of RNA-synthesis during transcription. For these and other reasons, the model will be of broader interest to the general-audience working in these areas. The model explains a wide variety of data, and carries with it a number of experimental predictions--all readily testable--as will be described in this review.


Assuntos
DNA/química , Substâncias Intercalantes/química , Modelos Moleculares , Conformação de Ácido Nucleico , Sítios de Ligação , Fenômenos Químicos , DNA/genética , DNA/metabolismo , DNA Forma A/química , DNA Forma A/genética , DNA Forma A/metabolismo , DNA de Forma B/química , DNA de Forma B/genética , DNA de Forma B/metabolismo , Substâncias Intercalantes/metabolismo , Biologia Molecular/métodos , Desnaturação de Ácido Nucleico
12.
Chemphyschem ; 17(1): 147-54, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26538133

RESUMO

Protein-DNA interactions induce conformational changes in DNA such as B- to A-form transitions at a local level. Such transitions are associated with a junction free energy cost at the boundary of two different conformations in a DNA molecule. In this study, we performed umbrella sampling simulations to find the free energy values of the B-A transition at the dinucleotide and trinucleotide level of DNA. Using a combination of dinucleotide and trinucleotide free energy costs obtained from simulations, we calculated the B/A junction free energy. Our study shows that the B/A junction free energy is 0.52 kcal mol(-1) for the A-philic GG step and 1.59 kcal mol(-1) for the B-philic AA step. This observation is in agreement with experimentally derived values. After excluding junction effects, we obtained an absolute free energy cost for the B- to A-form conversion for all the dinucleotide steps. These absolute free energies may be used for predicting the propensity of structural transitions in DNA.


Assuntos
DNA Forma A/química , DNA de Forma B/química , Sequência de Bases , Transferência de Energia , Modelos Químicos , Água/química
13.
Eur Biophys J ; 45(5): 413-21, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26872482

RESUMO

Because of repeated claims that A-DNA cannot exist without aggregation or condensation, the state of DNA restriction fragments with 84-859 bp has been analyzed in aqueous solutions upon reduction of the water activity. Rotational diffusion times τ (d) measured by electric dichroism at different water activities with a wide variation of viscosities are normalized to values τ (c) at the viscosity of water, which indicate DNA structures at a high sensitivity. For short helices (chain lengths [Formula: see text] ≤ persistence length p), cooperative formation of A-DNA is reflected by the expected reduction of the hydrodynamic length; the transition to the A-form is without aggregation or condensation upon addition of ethanol at monovalent salt ≤1 mM. The aggregation boundary, indicated by a strong increase of τ (c), is shifted to higher monovalent salt (≥4 mM) when ethanol is replaced by trifluoroethanol. The BA transition is not indicated anymore by a cooperative change of τ (c) for [Formula: see text] ¼ p; τ (c) values for these long chains decrease upon reduction of the water activity continuously over the full range, including the BA transition interval. This suggests a non-cooperative BC transition, which induces DNA curvature. The resulting wide distribution of global structures hides changes of local length during the BA transition. Free A-DNA without aggregation/condensation is found at low-salt concentrations where aggregation is inhibited and/or very slow. In an intermediate range of solvent conditions, where the A-form starts to aggregate, a time window remains that can be used for analysis of free A-DNA in a quasi-equilibrium state.


Assuntos
DNA Forma A/química , Água/química , Pareamento de Bases , Difusão , Cinética , Rotação , Soluções
14.
Nucleic Acids Res ; 42(22): 13981-96, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25428372

RESUMO

The ion atmosphere around nucleic acids is an integral part of their solvated structure. However, detailed aspects of the ionic distribution are difficult to probe experimentally, and comparative studies for different structures of the same sequence are almost non-existent. Here, we have used large-scale molecular dynamics simulations to perform a comparative study of the ion distribution around (5'-CGCGCGCGCGCG-3')2 dodecamers in solution in B-DNA, A-RNA, Z-DNA and Z-RNA forms. The CG sequence is very sensitive to ionic strength and it allows the comparison with the rare but important left-handed forms. The ions investigated include Na(+), K(+) and Mg(2 +), with various concentrations of their chloride salts. Our results quantitatively describe the characteristics of the ionic distributions for different structures at varying ionic strengths, tracing these differences to nucleic acid structure and ion type. Several binding pockets with rather long ion residence times are described, both for the monovalent ions and for the hexahydrated Mg[(H2O)6](2+) ion. The conformations of these binding pockets include direct binding through desolvated ion bridges in the GpC steps in B-DNA and A-RNA; direct binding to backbone oxygens; binding of Mg[(H2O)6](2+) to distant phosphates, resulting in acute bending of A-RNA; tight 'ion traps' in Z-RNA between C-O2 and the C-O2' atoms in GpC steps; and others.


Assuntos
Cátions/química , DNA Forma A/química , DNA de Forma B/química , DNA Forma Z/química , RNA de Cadeia Dupla/química , Cátions Bivalentes/química , Cátions Monovalentes/química , Cloretos/química , Magnésio/química , Simulação de Dinâmica Molecular , Concentração Osmolar , Potássio/química , Sódio/química
15.
Nucleic Acids Res ; 42(2): 1326-40, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24121681

RESUMO

Metal ion homeostasis in bacteria relies on metalloregulatory proteins to upregulate metal resistance genes and enable the organism to preclude metal toxicity. The copper sensitive operon repressor (CsoR) family is widely distributed in bacteria and controls the expression of copper efflux systems. CsoR operator sites consist of G-tract containing pseudopalindromes of which the mechanism of operator binding is poorly understood. Here, we use a structurally characterized CsoR from Streptomyces lividans (CsoR(Sl)) together with three specific operator targets to reveal the salient features pertaining to the mechanism of DNA binding. We reveal that CsoR(Sl) binds to its operator site through a 2-fold axis of symmetry centred on a conserved 5'-TAC/GTA-3' inverted repeat. Operator recognition is stringently dependent not only on electropositive residues but also on a conserved polar glutamine residue. Thermodynamic and circular dichroic signatures of the CsoR(Sl)-DNA interaction suggest selectivity towards the A-DNA-like topology of the G-tracts at the operator site. Such properties are enhanced on protein binding thus enabling the symmetrical binding of two CsoR(Sl) tetramers. Finally, differential binding modes may exist in operator sites having more than one 5'-TAC/GTA-3' inverted repeat with implications in vivo for a mechanism of modular control.


Assuntos
Proteínas de Bactérias/química , DNA Bacteriano/química , Regiões Operadoras Genéticas , Proteínas Repressoras/química , Streptomyces lividans/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sequência Consenso , Cobre/metabolismo , DNA Forma A/química , Sequências Repetidas Invertidas , Conformação de Ácido Nucleico , Óperon , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Repressoras/metabolismo , Termodinâmica
16.
Biophys J ; 108(9): 2291-9, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25954886

RESUMO

Capillary electrophoresis has been used to characterize the interaction of monovalent cations with 26-basepair DNA oligomers containing A-tracts embedded in flanking sequences with different basepair compositions. A 26-basepair random-sequence oligomer was used as the reference; lithium and tetrabutylammonium (TBA(+)) ions were used as the probe ions. The free solution mobilities of the A-tract and random-sequence oligomers were identical in solutions containing <∼ 100 mM cation. At higher cation concentrations, the A-tract oligomers migrated faster than the reference oligomer in TBA(+) and slower than the reference in Li(+). Hence, cations of different sizes can interact very differently with DNA A-tracts. The increased mobilities observed in TBA(+) suggest that the large hydrophobic TBA(+) ions are preferentially excluded from the vicinity of the A-tract minor groove, increasing the effective net charge of the A-tract oligomers and increasing the mobility. By contrast, Li(+) ions decrease the mobility of A-tract oligomers because of the preferential localization of Li(+) ions in the narrow A-tract minor groove. Embedding the A-tracts in AT-rich flanking sequences markedly alters preferential interactions of monovalent cations with the B(∗) conformation. Hence, A-tracts embedded in genomic DNA may or may not interact preferentially with monovalent cations, depending on the relative number of A · T basepairs in the flanking sequences.


Assuntos
Pareamento de Bases , DNA Forma A/química , DNA de Forma B/química , Lítio/química , Compostos de Amônio Quaternário/química
17.
Arch Biochem Biophys ; 587: 1-11, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26348651

RESUMO

The objective of this study is to evaluate the structure and protein recognition properties of hybrid four-way junctions (4WJs) composed of DNA and peptide nucleic acid (PNA) strands. We compare a classic immobile DNA junction, J1, vs. six PNA-DNA junctions, including a number with blunt DNA ends and multiple PNA strands. Circular dichroism (CD) analysis reveals that hybrid 4WJs are composed of helices that possess structures intermediate between A- and B-form DNA, the apparent level of A-form structure correlates with the PNA content. The structure of hybrids that contain one PNA strand is sensitive to Mg(+2). For these constructs, the apparent B-form structure and conformational stability (Tm) increase in high Mg(+2). The blunt-ended junction, b4WJ-PNA3, possesses the highest B-form CD signals and Tm (40.1 °C) values vs. all hybrids and J1. Protein recognition studies are carried out using the recombinant DNA-binding protein, HMGB1b. HMGB1b binds the blunt ended single-PNA hybrids, b4WJ-PNA1 and b4WJ-PNA3, with high affinity. HMGB1b binds the multi-PNA hybrids, 4WJ-PNA1,3 and b4WJ-PNA1,3, but does not form stable protein-nucleic acid complexes. Protein interactions with hybrid 4WJs are influenced by the ratio of A- to B-form helices: hybrids with helices composed of higher levels of B-form structure preferentially associate with HMGB1b.


Assuntos
DNA Forma A/química , DNA Forma A/metabolismo , DNA de Forma B/química , DNA de Forma B/metabolismo , Proteína HMGB1/metabolismo , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/metabolismo , Animais , Sequência de Bases , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Ratos
18.
Eur Phys J E Soft Matter ; 37(9): 39, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25260324

RESUMO

Double-helix DNA molecules can be found under different conformational structures driven by ionic and hydration surroundings. Usually, only the B-form of DNA, which is the only form stable in aqueous solution, can be studied by dielectric measurements. Here, the dielectric responses of DNA molecules in the A- and B-form, oriented co-linearly within fibres assembled in a film have been analyzed. The dielectric dispersion, permittivity and dissipation factor, have been measured as a function of frequency, strength voltage, time, temperature and nature of the counter-ions. Besides a high electrode polarization component, two relaxation peaks have been observed and fitted by two Cole-Cole relaxation terms. In the frequency range that we investigated (0.1 Hz to 5 ·10(6) Hz) the dielectric properties are dominated by the mobility and diffusivity of the counter-ions and their interactions with the DNA molecules, which can therefore be characterized for the A- and B-forms of DNA.


Assuntos
DNA/química , Animais , DNA Forma A/química , DNA de Forma B/química , Espectroscopia Dielétrica , Impedância Elétrica , Íons , Lítio , Substâncias Macromoleculares/química , Sódio , Temperatura
19.
Nucleic Acids Res ; 40(16): 8111-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22641848

RESUMO

Natural RNAs, especially tRNAs, are extensively modified to tailor structure and function diversities. Uracil is the most modified nucleobase among all natural nucleobases. Interestingly, >76% of uracil modifications are located on its 5-position. We have investigated the natural 5-methoxy (5-O-CH(3)) modification of uracil in the context of A-form oligonucleotide duplex. Our X-ray crystal structure indicates first a H-bond formation between the uracil 5-O-CH(3) and its 5'-phosphate. This novel H-bond is not observed when the oxygen of 5-O-CH(3) is replaced with a larger atom (selenium or sulfur). The 5-O-CH(3) modification does not cause significant structure and stability alterations. Moreover, our computational study is consistent with the experimental observation. The investigation on the uracil 5-position demonstrates the importance of this RNA modification at the atomic level. Our finding suggests a general interaction between the nucleobase and backbone and reveals a plausible function of the tRNA 5-O-CH(3) modification, which might potentially rigidify the local conformation and facilitates translation.


Assuntos
Uridina/análogos & derivados , Cristalografia por Raios X , DNA Forma A/química , Ligação de Hidrogênio , Modelos Moleculares , Oligodesoxirribonucleotídeos/síntese química , Oligodesoxirribonucleotídeos/química , Fosfatos/química , Selênio/química , Enxofre/química , Uracila/química , Uridina/química
20.
J Phys Chem A ; 117(7): 1560-8, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23343365

RESUMO

Base stacking is known to make an important contribution to the stability of DNA and RNA, and accordingly, significant efforts are ongoing to calculate stacking energies using ab initio quantum mechanical methods. To date, impressive improvements have been made in the model chemistries used to perform stacking energy calculations, including extensions that include robust treatments of electron correlation with extended basis sets, as required to treat interactions where dispersion makes a significant contribution. However, those efforts typically use rigid monomer geometries when calculating the interaction energies. To overcome this, in the present work, we describe a novel internal coordinate definition that allows the relative, intermolecular orientation of stacked base monomers to be constrained during geometry optimizations while allowing full optimization of the intramolecular degrees of freedom. Use of the novel reference frame to calculate the impact of full geometry optimization versus constraining the bases to be planar on base monomer stacking energies, combined with density-fitted, spin-component scaling MP2 treatment of electron correlation, shows that full optimization makes the average stacking energy more favorable by -3.4 and -1.5 kcal/mol for the canonical A and B conformations of the 16 5' to 3' base stacked monomers. Thus, treatment of geometry optimization impacts the stacking energies to an extent similar to or greater than the impact of current state of the art increases in the rigor of the model chemistry itself used to treat base stacking. Results also indicate that stacking favors the B-form of DNA, though the average difference versus the A-form decreases from -2.6 to -0.6 kcal/mol when the intramolecular geometry is allowed to fully relax. However, stacking involving cytosine is shown to favor the A-form of DNA, with that contribution generally larger in the fully optimized bases. The present results show the importance of allowing geometry optimization, as well as properly treating the appropriate model chemistry, in studies of nucleic acid base stacking.


Assuntos
DNA Forma A/química , DNA de Forma B/química , Modelos Moleculares , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA