Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 501(7465): 58-62, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23995680

RESUMO

Topoisomerases are expressed throughout the developing and adult brain and are mutated in some individuals with autism spectrum disorder (ASD). However, how topoisomerases are mechanistically connected to ASD is unknown. Here we find that topotecan, a topoisomerase 1 (TOP1) inhibitor, dose-dependently reduces the expression of extremely long genes in mouse and human neurons, including nearly all genes that are longer than 200 kilobases. Expression of long genes is also reduced after knockdown of Top1 or Top2b in neurons, highlighting that both enzymes are required for full expression of long genes. By mapping RNA polymerase II density genome-wide in neurons, we found that this length-dependent effect on gene expression was due to impaired transcription elongation. Interestingly, many high-confidence ASD candidate genes are exceptionally long and were reduced in expression after TOP1 inhibition. Our findings suggest that chemicals and genetic mutations that impair topoisomerases could commonly contribute to ASD and other neurodevelopmental disorders.


Assuntos
Transtorno Autístico/genética , DNA Topoisomerases Tipo I/metabolismo , Elongação da Transcrição Genética , Animais , DNA Topoisomerases Tipo I/deficiência , DNA Topoisomerases Tipo II/deficiência , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Técnicas de Silenciamento de Genes , Impressão Genômica/genética , Humanos , Camundongos , Mutação/genética , Proteínas de Ligação a Poli-ADP-Ribose , RNA Polimerase II/metabolismo , Sinapses/metabolismo , Inibidores da Topoisomerase/farmacologia , Topotecan/farmacologia , Elongação da Transcrição Genética/efeitos dos fármacos
2.
Nucleic Acids Res ; 45(10): 5850-5862, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28369605

RESUMO

G-quadruplex or G4 DNA is a non-B secondary DNA structure consisting of a stacked array of guanine-quartets that can disrupt critical cellular functions such as replication and transcription. When sequences that can adopt Non-B structures including G4 DNA are located within actively transcribed genes, the reshaping of DNA topology necessary for transcription process stimulates secondary structure-formation thereby amplifying the potential for genome instability. Using a reporter assay designed to study G4-induced recombination in the context of an actively transcribed locus in Saccharomyces cerevisiae, we tested whether co-transcriptional activator Sub1, recently identified as a G4-binding factor, contributes to genome maintenance at G4-forming sequences. Our data indicate that, upon Sub1-disruption, genome instability linked to co-transcriptionally formed G4 DNA in Top1-deficient cells is significantly augmented and that its highly conserved DNA binding domain or the human homolog PC4 is sufficient to suppress G4-associated genome instability. We also show that Sub1 interacts specifically with co-transcriptionally formed G4 DNA in vivo and that yeast cells become highly sensitivity to G4-stabilizing chemical ligands by the loss of Sub1. Finally, we demonstrate the physical and genetic interaction of Sub1 with the G4-resolving helicase Pif1, suggesting a possible mechanism by which Sub1 suppresses instability at G4 DNA.


Assuntos
DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Genoma , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Sítios de Ligação , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/deficiência , DNA Topoisomerases Tipo I/genética , DNA Fúngico/química , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Quadruplex G , Instabilidade Genômica , Humanos , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
BMC Microbiol ; 12: 26, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22373098

RESUMO

BACKGROUND: Manipulations of the DNA double helix during replication, transcription and other nucleic acid processing cause a change of DNA topology, which results in torsional stress. This stress is relaxed by DNA topoisomerases, a class of enzymes present in all domains of life. Negatively supercoiled DNA is relaxed by type IA topoisomerases that are widespread in bacteria, archaea and eukaryotes. In Escherichia coli there is conflicting data about viability of ΔtopA cells lacking topoisomerase I. RESULTS: In this study we sought to clarify whether E. coli cells lacking topoisomerase I are viable by using a plasmid-based lethality assay that allowed us to investigate the phenotype of ΔtopA cells without the presence of any compensatory mutations. Our results show that cells lacking topoisomerase I show an extreme growth defect and cannot be cultured without the accumulation of compensatory mutations. This growth defect can be partially suppressed by overexpression of topoisomerase III, the other type IA topoisomerase in E. coli, suggesting that the accumulation of torsional stress is, at least partially, responsible for the lethality of ΔtopA cells. The absence of RNase HI strongly exacerbates the phenotype of cells lacking topoisomerase I, which supports the idea that the processing of RNA:DNA hybrids is vitally important in ΔtopA cells. However, we did not observe suppression of the ΔtopA phenotype by increasing the level of R-loop processing enzymes, such as RNase HI or RecG. CONCLUSIONS: Our data show unambiguously that E. coli cells are not viable in the absence of DNA topoisomerase I without the presence of compensatory mutations. Furthermore, our data suggest that the accumulation of R-loops is not the primary reason for the severe growth defect of cells lacking topoisomerase I, which is in contrast to the current literature. Potential reasons for this discrepancy are discussed.


Assuntos
DNA Topoisomerases Tipo I/deficiência , Escherichia coli/enzimologia , Escherichia coli/fisiologia , Deleção de Genes , Viabilidade Microbiana , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Expressão Gênica , Ribonuclease H/genética , Ribonuclease H/metabolismo , Supressão Genética
4.
J Antimicrob Chemother ; 66(7): 1518-24, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21486853

RESUMO

OBJECTIVES: To explore the role of topoisomerase I in gene activation and increased RecA levels during the bacterial SOS response, as well as the effect of antibiotic treatment and stress challenge on cell killing initiated by trapped topoisomerase I cleavage complex. METHODS: A mutant Escherichia coli strain with a ΔtopA mutation was used to investigate the role of topoisomerase I function in the SOS response to trimethoprim and mitomycin C. Induction of the recA and dinD1 promoters was measured using luciferase reporters of these promoters fused to luxCDABE. An increase in the RecA level following trimethoprim treatment was quantified directly by western blotting. The effect of stress challenge from trimethoprim and acidified nitrite treatments on cell killing by topoisomerase I cleavage complex accumulation was measured by the decrease in viability following induction of recombinant mutant topoisomerase I that forms a stabilized cleavage complex. RESULTS: Topoisomerase I function was found to be required for efficient transcriptional activation of the recA and dinD1 promoters during the E. coli SOS response to trimethoprim and mitomycin C. The role of topoisomerase I in the SOS response was confirmed with quantitative western blot analysis of RecA following trimethoprim treatment. The bactericidal effect from topoisomerase I cleavage complex accumulation was shown to be enhanced by stress challenge from trimethoprim and acidified nitrite. CONCLUSIONS: Bacterial topoisomerase I function is actively involved in the SOS response to antibiotics and stress challenge. Cell killing initiated by the topoisomerase I cleavage complex would be enhanced by antibiotics and the host response. These findings provide further support for bacterial topoisomerase I as a therapeutic target.


Assuntos
Antibacterianos/farmacologia , DNA Topoisomerases Tipo I/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Fusão Gênica Artificial , Western Blotting , DNA Topoisomerases Tipo I/deficiência , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Deleção de Genes , Genes Reporter , Luciferases/genética , Luciferases/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Mitomicina/farmacologia , Nitritos/farmacologia , Recombinases Rec A/biossíntese , Recombinases Rec A/genética , Trimetoprima/farmacologia
6.
Proc Natl Acad Sci U S A ; 105(13): 5063-8, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18367668

RESUMO

The type IA topoisomerases have been implicated in the repair of dsDNA breaks by homologous recombination and in the resolution of stalled or damaged DNA replication forks; thus, these proteins play important roles in the maintenance of genomic stability. We studied the functions of one of the two mammalian type IA enzymes, Top3beta, using murine embryonic fibroblasts (MEFs) derived from top3beta(-/-) embryos. top3beta(-/-) MEFs proliferated more slowly than TOP3beta(+/+) control MEFs, demonstrated increased sensitivity to DNA-damaging agents such as ionizing and UV radiation, and had increased DNA double-strand breaks as manifested by increased gamma-H2-AX phosphorylation. However, incomplete enforcement of the G(1)-S cell cycle checkpoint was observed in top3beta(-/-) MEFs. Notably, ataxia-telangiectasia, mutated (ATM)/ATM and Rad3-related (ATR)-dependent substrate phosphorylation after UV-B and ionizing radiation was impaired in top3beta(-/-) versus TOP3beta(+/+) control MEFs, and impaired up-regulation of total and Ser-18-phosphorylated p53 was observed in top3beta(-/-) cells. Taken together, these results suggest an unanticipated role for Top3beta beyond DNA repair in the activation of cellular responses to DNA damage.


Assuntos
Dano ao DNA , DNA Topoisomerases Tipo I/deficiência , DNA Topoisomerases Tipo I/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo I/genética , Histonas/metabolismo , Camundongos , Camundongos Knockout , Mutagênicos/farmacologia , Fosforilação , Proteína Supressora de Tumor p53/genética
7.
Mutat Res ; 822: 111740, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33740684

RESUMO

Cells possess two major DNA damage tolerance pathways that allow them to duplicate their genomes despite the presence of replication blocking lesions: translesion synthesis (TLS) and daughter strand gap repair (DSGR). The TLS pathway involves specialized DNA polymerases that are able to synthesize past DNA lesions while DSGR relies on Recombinational Repair (RR). At least two mechanisms are associated with RR: Homologous Recombination (HR) and RecA Mediated Excision Repair (RAMER). While HR and RAMER both depend on RecFOR and RecA, only the HR mechanism should involve Holliday Junctions (HJs) resolvase reactions. In this study we investigated the role of HJ resolvases, RuvC, TopIII and RusA on the balance between RAMER and HR in E. coli MG1655 derivatives. Using UV survival measurements, we first clearly establish that, in this genetic background, topB and ruvC define two distinct pathways of HJ resolution. We observed that a recA mutant is much more sensitive to UV than the ruvC topB double mutant which is deficient in HR because of its failure to resolve HJs. This difference is independent of RAMER, the SOS system, RusA, and the three TLS DNA polymerases, and may be accounted for by Double Strand Break repair mechanisms such as Synthesis Dependent Strand Annealing, Single Strand Annealing, or Break Induced Replication, which are independent of HJ resolvases. We then used a plasmid-based assay, in which RR is triggered by a single blocking lesion present on a plasmid molecule, to establish that while HR requires topB, ruvC or rusA, RAMER is independent of these genes and, as expected, requires a functional UvrABC excinuclease. Surprisingly, analysis of the RR events in a strain devoid of HJ resolvases reveals that the UvrABC dependent repair of the single lesion present on the plasmid molecule can generate an excision track potentially extending to dozens of nucleotides.


Assuntos
DNA Topoisomerases Tipo I/deficiência , DNA Bacteriano , Endodesoxirribonucleases/deficiência , Escherichia coli , Resolvases de Junção Holliday/deficiência , Reparo de DNA por Recombinação , DNA Topoisomerases Tipo I/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Endodesoxirribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Resolvases de Junção Holliday/metabolismo
8.
Cell Rep ; 37(2): 109802, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644582

RESUMO

Tissue-clearing methods allow every cell in the mouse brain to be imaged without physical sectioning. However, the computational tools currently available for cell quantification in cleared tissue images have been limited to counting sparse cell populations in stereotypical mice. Here, we introduce NuMorph, a group of analysis tools to quantify all nuclei and nuclear markers within the mouse cortex after clearing and imaging by light-sheet microscopy. We apply NuMorph to investigate two distinct mouse models: a Topoisomerase 1 (Top1) model with severe neurodegenerative deficits and a Neurofibromin 1 (Nf1) model with a more subtle brain overgrowth phenotype. In each case, we identify differential effects of gene deletion on individual cell-type counts and distribution across cortical regions that manifest as alterations of gross brain morphology. These results underline the value of whole-brain imaging approaches, and the tools are widely applicable for studying brain structure phenotypes at cellular resolution.


Assuntos
Núcleo Celular/patologia , Córtex Cerebral/patologia , Técnicas de Preparação Histocitológica , Degeneração Neural , Neuroglia/patologia , Neuroimagem , Neurônios/patologia , Animais , Núcleo Celular/metabolismo , Córtex Cerebral/metabolismo , DNA Topoisomerases Tipo I/deficiência , DNA Topoisomerases Tipo I/genética , Deleção de Genes , Genes da Neurofibromatose 1 , Processamento de Imagem Assistida por Computador , Camundongos Knockout , Neuroglia/metabolismo , Neurônios/metabolismo , Fenótipo , Máquina de Vetores de Suporte
9.
J Exp Bot ; 61(2): 575-85, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19917599

RESUMO

In animal cells, recent studies have emphasized the role played by DNA topoisomerase I (topo I) both as a cofactor of DNA repair complexes and/or as a damage sensor. All these functions are still unexplored in plant cells, where information concerning the relationships between DNA damage, PCD induction, and topo I are also limited. The main goal of this study was to investigate the possible responses activated in topo I-depleted plant cells under oxidative stress conditions which induce DNA damage. The carrot (Daucus carota L.) AT1-beta/22 cell line analysed in this study (characterized by an antisense-mediated reduction of top1beta gene expression of approximately 46% in association with a low ascorbate content) was more sensitive to UV-C radiation than the control line, showing consistent cell death and high levels of 8-oxo-dG accumulation. The topo I-depleted cells were also highly susceptible to the cross-linking agent mitomycin C. The death response was associated with a lack of oxidative burst and there were no changes in ascorbate metabolism in response to UV-C treatment. Electron and fluorescence microscopy suggested the presence of three forms of cell death in the UV-C-treated AT1-beta/22 population: necrosis, apoptotic-like PCD, and autophagy. Taken together, the data reported here support a reduced DNA repair capability in carrot topo I-deficient cells while the putative relationship between topo I-depletion and ascorbate impairment is also discussed.


Assuntos
Ácido Ascórbico/metabolismo , DNA Topoisomerases Tipo I/deficiência , Daucus carota/metabolismo , Daucus carota/efeitos da radiação , Proteínas de Plantas/metabolismo , Células Cultivadas , Dano ao DNA , DNA Topoisomerases Tipo I/genética , Daucus carota/enzimologia , Daucus carota/genética , Proteínas de Plantas/genética , Raios Ultravioleta
10.
Nat Commun ; 11(1): 1962, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327659

RESUMO

Topoisomerase 1 (TOP1) relieves torsional stress in DNA during transcription and facilitates the expression of long (>100 kb) genes, many of which are important for neuronal functions. To evaluate how loss of Top1 affected neurons in vivo, we conditionally deleted (cKO) Top1 in postmitotic excitatory neurons in the mouse cerebral cortex and hippocampus. Top1 cKO neurons develop properly, but then show biased transcriptional downregulation of long genes, signs of DNA damage, neuroinflammation, increased poly(ADP-ribose) polymerase-1 (PARP1) activity, single-cell somatic mutations, and ultimately degeneration. Supplementation of nicotinamide adenine dinucleotide (NAD+) with nicotinamide riboside partially blocked neurodegeneration, and increased the lifespan of Top1 cKO mice by 30%. A reduction of p53 also partially rescued cortical neuron loss. While neurodegeneration was partially rescued, behavioral decline was not prevented. These data indicate that reducing neuronal loss is not sufficient to limit behavioral decline when TOP1 function is disrupted.


Assuntos
DNA Topoisomerases Tipo I/deficiência , Instabilidade Genômica , Doenças Neurodegenerativas/enzimologia , Neurônios/enzimologia , Animais , Apoptose/efeitos dos fármacos , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Dano ao DNA , DNA Topoisomerases Tipo I/genética , Hipocampo/enzimologia , Hipocampo/patologia , Inflamação , Camundongos , Camundongos Knockout , Mortalidade Prematura , Atividade Motora , Mutação , NAD/administração & dosagem , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Niacinamida/administração & dosagem , Niacinamida/análogos & derivados , Poli(ADP-Ribose) Polimerase-1/metabolismo , Compostos de Piridínio
11.
Mol Cell Biol ; 26(16): 6299-307, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16880537

RESUMO

Bloom's syndrome (BS) is an autosomal disorder characterized by predisposition to a wide variety of cancers. The gene product whose mutation leads to BS is the RecQ family helicase BLM, which forms a complex with DNA topoisomerase IIIalpha (Top3alpha). However, the physiological relevance of the interaction between BLM and Top3alpha within the cell remains unclear. We show here that Top3alpha depletion causes accumulation of cells in G2 phase, enlargement of nuclei, and chromosome gaps and breaks that occur at the same position in sister chromatids. The transition from metaphase to anaphase is also inhibited. All of these phenomena except cell lethality are suppressed by BLM gene disruption. Taken together with the biochemical properties of BLM and Top3alpha, these data indicate that BLM and Top3alpha execute the dissolution of sister chromatids.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromátides/enzimologia , Cromátides/genética , DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/metabolismo , 2-Aminopurina/farmacologia , Anáfase/efeitos dos fármacos , Animais , Apoptose , Galinhas , Cromátides/efeitos dos fármacos , Aberrações Cromossômicas , DNA Topoisomerases Tipo I/deficiência , Fase G2/efeitos dos fármacos , Marcação de Genes , Humanos , Isoenzimas/metabolismo , Metáfase/efeitos dos fármacos , Camundongos , Modelos Genéticos , Mutação/genética , Fenótipo , RecQ Helicases
12.
Open Biol ; 9(12): 190222, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31795919

RESUMO

Topoisomerase III beta (TOP3B) is one of the least understood members of the topoisomerase family of proteins and remains enigmatic. Our recent data shed light on the function and relevance of TOP3B to disease. A homozygous deletion for the TOP3B gene was identified in a patient with bilateral renal cancer. Analyses in both patient and modelled human cells show the disruption of TOP3B causes genome instability with a rise in DNA damage and chromosome bridging (mis-segregation). The primary molecular defect underlying this pathology is a significant increase in R-loop formation. Our data show that TOP3B is necessary to prevent the accumulation of excessive R-loops and identify TOP3B as a putative cancer gene, and support recent data showing that R-loops are involved in cancer aetiology.


Assuntos
DNA Topoisomerases Tipo I/deficiência , Instabilidade Genômica , Estruturas R-Loop , Linhagem Celular Tumoral , Dano ao DNA , Homozigoto , Humanos , Deleção de Sequência
13.
Cancer Res ; 66(13): 6540-5, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16818625

RESUMO

RecQ helicase BLM-deficient cells are characteristically hypersensitive to 4-nitroquinoline-1-oxide (4NQO). We recently reported that isogenic BLM-deficient cells (PNSG13) are more sensitive than BLM-complemented cells (PNSF5) to camptothecin, which specifically traps topoisomerase I cleavage complexes (Top1cc). We now report that PNSG13 are also 3.5-fold more sensitive to 4NQO compared with PNSF5 and that 4NQO induces higher levels of Top1cc and reduced histone gamma-H2AX in PSNG13 than in PNSF5. Similarly, 4NQO induces more Top1cc in primary fibroblasts from a patient with Bloom syndrome than in normal human fibroblasts. 4NQO also induces Top1cc in colon cancer HCT116 and HT29 cells in a time- and concentration-dependent fashion. Of note, distinct from camptothecin, the Top1cc produced by 4NQO accumulate progressively after 4NQO addition and persist following 4NQO removal. The Top1cc induced by 4NQO are detectable by alkaline elution. To examine the functional relevance of the Top1cc induced by 4NQO, we used two stable topoisomerase I small interfering RNA (siRNA) cell lines derived from HCT116 and MCF7 cells. Both topoisomerase I siRNA cell lines are resistant to 4NQO, indicating that Top1cc contribute to the cellular activity of 4NQO. Collectively, these data show that 4NQO is an effective inducer of cellular Top1cc. Because 4NQO does not directly trap Top1cc in biochemical assays, we propose that active metabolites of 4NQO trap Top1cc by forming DNA adducts. Induction of Top1cc and histone gamma-H2AX by 4NQO may contribute to the cellular effects of 4NQO, including its selective activity toward RecQ helicase BLM-deficient cells.


Assuntos
4-Nitroquinolina-1-Óxido/farmacologia , Carcinógenos/farmacologia , DNA Topoisomerases Tipo I/metabolismo , DNA de Neoplasias/metabolismo , Adenosina Trifosfatases/deficiência , Adenosina Trifosfatases/metabolismo , Dano ao DNA , DNA Helicases/deficiência , DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/deficiência , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Células HCT116 , Células HT29 , Histonas/metabolismo , Humanos , RNA Interferente Pequeno/genética , RecQ Helicases , Inibidores da Topoisomerase I , Inibidores da Topoisomerase II
14.
Cancer Res ; 63(23): 8203-11, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14678976

RESUMO

DNA topoisomerase I (Topo I) specifically phosphorylates arginine-serine-rich (SR proteins) splicing factors and is potentially involved in pre-mRNA-splicing regulation. Using a Topo I-deficient murine B lymphoma-derived subclone (P388-45/C) selected for its resistance to high dosage of the antitumor drug camptothecin, we show that Topo I depletion results in the hypophosphorylation of SR proteins and impairs exonic splicing enhancer (ESE)-dependent but not constitutive splicing. The Affymetrix GeneChip system analysis revealed that several alternatively spliced genes, characterized by small exons and large introns, are down-regulated in Topo I-deficient cells. Given that ectopic expression of green fluorescent protein-Topo I fusion in Topo I-deficient cells restores both wild-type phosphorylation of SR proteins and ESE-dependent splicing, we conclude that Topo I-mediated phosphorylation plays a specific role in ESE-regulated splicing.


Assuntos
DNA Topoisomerases Tipo I/deficiência , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Splicing de RNA/fisiologia , Processamento Alternativo , Animais , Antineoplásicos/farmacologia , Camptotecina/farmacologia , DNA Topoisomerases Tipo I/genética , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Éxons/fisiologia , Regulação Leucêmica da Expressão Gênica , Proteínas de Fluorescência Verde , Leucemia P388/enzimologia , Leucemia P388/genética , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Camundongos , Fosforilação , Proteínas de Ligação a RNA , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Processamento de Serina-Arginina , Ativação Transcricional
15.
PLoS One ; 11(5): e0156439, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27231886

RESUMO

Topoisomerase 1 (TOP1) inhibitors, including camptothecin and topotecan, covalently trap TOP1 on DNA, creating cleavage complexes (cc's) that must be resolved before gene transcription and DNA replication can proceed. We previously found that topotecan reduces the expression of long (>100 kb) genes and unsilences the paternal allele of Ube3a in neurons. Here, we sought to evaluate overlap between TOP1cc-dependent and -independent gene regulation in neurons. To do this, we utilized Top1 conditional knockout mice, Top1 knockdown, the CRISPR-Cas9 system to delete Top1, TOP1 catalytic inhibitors that do not generate TOP1cc's, and a TOP1 mutation (T718A) that stabilizes TOP1cc's. We found that topotecan treatment significantly alters the expression of many more genes, including long neuronal genes, immediate early genes, and paternal Ube3a, when compared to Top1 deletion. Our data show that topotecan has a stronger effect on neuronal transcription than Top1 deletion, and identifies TOP1cc-dependent and -independent contributions to gene expression.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica , Neurônios/metabolismo , Animais , DNA Topoisomerases Tipo I/deficiência , DNA Topoisomerases Tipo I/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Topotecan/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
16.
DNA Repair (Amst) ; 40: 1-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26947024

RESUMO

R-loop formation occurs when the nascent RNA hybridizes with the template DNA strand behind the RNA polymerase. R-loops affect a wide range of cellular processes and their use as origins of replication was the first function attributed to them. In Escherichia coli, R-loop formation is promoted by the ATP-dependent negative supercoiling activity of gyrase (gyrA and gyrB) and is inhibited by topoisomerase (topo) I (topA) relaxing transcription-induced negative supercoiling. RNase HI (rnhA) degrades the RNA moiety of R-loops. The depletion of RNase HI activity in topA null mutants was previously shown to lead to extensive DNA relaxation, due to DNA gyrase inhibition, and to severe growth and chromosome segregation defects that were partially corrected by overproducing topo III (topB). Here, DNA gyrase assays in crude cell extracts showed that the ATP-dependent activity (supercoiling) of gyrase but not its ATP-independent activity (relaxation) was inhibited in topA null cells lacking RNase HI. To characterize the cellular event(s) triggered by the absence of RNase HI, we performed a genetic screen for suppressors of the growth defect of topA rnhA null cells. Suppressors affecting genes in replication (holC2::aph and dnaT18::aph) nucleotide metabolism (dcd49::aph), RNA degradation (rne59::aph) and fimbriae synthesis (fimD22::aph) were found to reduce replication from R-loops and to restore supercoiling, thus pointing to a correlation between R-loop-dependent replication in topA rnhA mutants and the inhibition of gyrase activity and growth. Interestingly, the position of fimD on the E. coli chromosome corresponds to the site of one of the five main putative origins of replication from R-loops in rnhA null cells recently identified by next-generation sequencing, thus suggesting that the fimD22::aph mutation inactivated one of these origins. Furthermore, we show that topo III overproduction is unable to complement the growth defect of topA rnhA null mutants at low temperatures that stabilizes hyper-negatively supercoiled DNA.


Assuntos
Cromossomos Bacterianos/genética , Replicação do DNA/genética , DNA Super-Helicoidal/genética , Mutação , Proliferação de Células/genética , DNA Girase/genética , DNA Girase/metabolismo , DNA Topoisomerases Tipo I/deficiência , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Ribonuclease H/deficiência , Ribonuclease H/genética
17.
DNA Repair (Amst) ; 1(6): 463-82, 2002 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-12509234

RESUMO

The Saccharomyces cerevisiae TOP3 gene encodes the type IA topoisomerase (Top3p) that is highly conserved in evolution. Deletion of TOP3 leads to a reduction in cell viability, hyper-recombination between repetitive DNA sequences, and abnormalities in both cell cycle progression and responses to DNA damaging agents. Deletion of SGS1, encoding the sole RecQ family helicase in S. cerevisiae, strongly suppresses the phenotypic effects of loss of TOP3 function. Here, we show that many of the adverse phenotypic effects of TOP3 deletion can also be partially alleviated by disruption of homologous recombination (HR) functions. This genetic interaction is seen both in strains deleted for TOP3 and in wild-type strains over-expressing a dominant-negative Top3p mutant form that confers a top3-like phenotype. Moreover, we show that this genetic interaction is conserved in the distantly-related fission yeast, Schizosaccharomyces pombe. Our results implicate topoisomerase III enzymes in recombination repair events required for cellular protection against DNA damaging agents and DNA replication inhibitors.


Assuntos
Proteínas de Ciclo Celular , DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Recombinação Genética/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Schizosaccharomyces/enzimologia , Western Blotting , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Sobrevivência Celular , Quinase do Ponto de Checagem 2 , Dano ao DNA , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , Reparo do DNA , DNA Topoisomerases Tipo I/deficiência , DNA Topoisomerases Tipo I/genética , Epistasia Genética , Regulação Fúngica da Expressão Gênica , Genes Dominantes/genética , Humanos , Metanossulfonato de Metila/farmacologia , Mutagênese , Mutagênicos/farmacologia , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , RecQ Helicases , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética , Deleção de Sequência , Raios Ultravioleta
18.
J Mol Biol ; 309(5): 1219-31, 2001 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-11399091

RESUMO

The B subunit of DNA gyrase (GyrB) consists of a 43 kDa N-terminal domain, containing the site of ATP binding and hydrolysis, and a 47 kDa C-terminal domain that is thought to play a role in interactions with GyrA and DNA. In cells containing a deletion of topA (the gene encoding DNA topoisomerase I) a compensatory mutation is found in gyrB. This mutation (gyrB-225) results in a two amino acid insertion in the N-terminal domain of GyrB. We found that cells containing this mutation are more sensitive than wild-type cells to quinolone drugs with respect to bacteriostatic and lethal action. We have characterised the mutant GyrB protein in vitro and found it to have reduced DNA supercoiling, relaxation, ATPase, and cleavage activities. The mutant enzyme is up to threefold more sensitive to quinolones than wild-type. The mutation also increases the affinity of GyrB for GyrA and DNA, while the affinity of quinolone for the enzyme-DNA complex is unaffected. We propose that the loss in activity is due to misfolding of the GyrB-225 protein, providing an example in which misfolding of one protein, DNA gyrase, suppresses a deficiency of another, topoisomerase I. The increased quinolone sensitivity is proposed to be a consequence of an altered conformation of the protein that renders quinolones better able to disrupt, rather than generate, gyrase-drug-DNA complexes.


Assuntos
Anti-Infecciosos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo I/deficiência , Escherichia coli/enzimologia , Supressão Genética/genética , Inibidores da Topoisomerase II , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Alelos , Substituição de Aminoácidos/genética , Anti-Infecciosos/metabolismo , Ciprofloxacina/metabolismo , Ciprofloxacina/farmacologia , DNA Girase , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/genética , DNA Super-Helicoidal/química , DNA Super-Helicoidal/genética , DNA Super-Helicoidal/metabolismo , Tolerância a Medicamentos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Teste de Complementação Genética , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Ácido Oxolínico/metabolismo , Ácido Oxolínico/farmacologia , Plasmídeos/química , Plasmídeos/genética , Plasmídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Dobramento de Proteína , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície , Termodinâmica
19.
Nat Neurosci ; 17(6): 813-21, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24793032

RESUMO

DNA damage is considered to be a prime factor in several spinocerebellar neurodegenerative diseases; however, the DNA lesions underpinning disease etiology are unknown. We observed the endogenous accumulation of pathogenic topoisomerase-1 (Top1)-DNA cleavage complexes (Top1ccs) in murine models of ataxia telangiectasia and spinocerebellar ataxia with axonal neuropathy 1. We found that the defective DNA damage response factors in these two diseases cooperatively modulated Top1cc turnover in a non-epistatic and ATM kinase-independent manner. Furthermore, coincident neural inactivation of ATM and DNA single-strand break repair factors, including tyrosyl-DNA phosphodiesterase-1 or XRCC1, resulted in increased Top1cc formation and excessive DNA damage and neurodevelopmental defects. Notably, direct Top1 poisoning to elevate Top1cc levels phenocopied the neuropathology of the mouse models described above. Our results identify a critical endogenous pathogenic lesion associated with neurodegenerative syndromes arising from DNA repair deficiency, indicating that genome integrity is important for preventing disease in the nervous system.


Assuntos
DNA Topoisomerases Tipo I/genética , Instabilidade Genômica/genética , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Animais , Linhagem Celular , Células Cultivadas , Dano ao DNA/genética , DNA Topoisomerases Tipo I/deficiência , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células-Tronco Neurais/enzimologia , Células-Tronco Neurais/patologia , Células-Tronco Neurais/fisiologia , Doenças Neurodegenerativas/patologia , Síndrome
20.
Nat Neurosci ; 16(9): 1238-47, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23912945

RESUMO

Topoisomerases are crucial for solving DNA topological problems, but they have not been linked to RNA metabolism. Here we show that human topoisomerase 3ß (Top3ß) is an RNA topoisomerase that biochemically and genetically interacts with FMRP, a protein that is deficient in fragile X syndrome and is known to regulate the translation of mRNAs that are important for neuronal function, abnormalities of which are linked to autism. Notably, the FMRP-Top3ß interaction is abolished by a disease-associated mutation of FMRP, suggesting that Top3ß may contribute to the pathogenesis of mental disorders. Top3ß binds multiple mRNAs encoded by genes with neuronal functions linked to schizophrenia and autism. Expression of one such gene, that encoding protein tyrosine kinase 2 (ptk2, also known as focal adhesion kinase or FAK), is reduced in the neuromuscular junctions of Top3ß mutant flies. Synapse formation is defective in Top3ß mutant flies and mice, as well as in FMRP mutant flies and mice. Our findings suggest that Top3ß acts as an RNA topoisomerase and works with FMRP to promote the expression of mRNAs that are crucial for neurodevelopment and mental health.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Junção Neuromuscular/genética , Animais , Animais Geneticamente Modificados , Células Cultivadas , Galinhas , DNA Topoisomerases Tipo I/deficiência , DNA Topoisomerases Tipo I/genética , Drosophila , Proteínas de Drosophila/genética , Embrião de Mamíferos , Olho/citologia , Olho/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Neurônios/fisiologia , Proteínas de Ligação a RNA/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA