Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(4): 103059, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841479

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of adipocyte differentiation, glucolipid metabolism, and inflammation. Thiazolidinediones are PPARγ full agonists with potent insulin-sensitizing effects, whereas their oral usage is restricted because of unwanted side effects, including obesity and cardiovascular risks. Here, via virtual screening, microscale thermophoresis analysis, and molecular confirmation, we demonstrate that diosmin, a natural compound of wide and long-term clinical use, is a selective PPARγ modulator that binds to PPARγ and blocks PPARγ phosphorylation with weak transcriptional activity. Local diosmin administration in subcutaneous fat (inguinal white adipose tissue [iWAT]) improved insulin sensitivity and attenuated obesity via enhancing browning of white fat and energy expenditure. Besides, diosmin ameliorated inflammation in WAT and liver and reduced hepatic steatosis. Of note, we determined that iWAT local administration of diosmin did not exhibit obvious side effects. Taken together, the present study demonstrated that iWAT local delivery of diosmin protected mice from diet-induced insulin resistance, obesity, and fatty liver by blocking PPARγ phosphorylation, without apparent side effects, making it a potential therapeutic agent for the treatment of metabolic diseases.


Assuntos
Tecido Adiposo Marrom , Tecido Adiposo Branco , Diosmina , Fígado Gorduroso , Resistência à Insulina , PPAR gama , Animais , Camundongos , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica , Diosmina/farmacologia , Diosmina/metabolismo , Diosmina/uso terapêutico , Fígado Gorduroso/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , PPAR gama/metabolismo , Tecido Adiposo Marrom/metabolismo
2.
Phytochem Anal ; 35(5): 1017-1035, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38369680

RESUMO

INTRODUCTION: Citri Sarcodactylis Fructus (CSF), a common fruit and traditional Chinese medicine (TCM), has been hindered in its further development and research owing to the lack of comprehensive and specific quality evaluation standards. OBJECTIVE: This study aimed to establish clear TCM quality standards related to the therapeutic mechanisms of CSF and to provide a basis for subsequent research and development. METHODS: Ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap high-resolution mass spectrometry (UPLC-Q-orbitrap HRMS) technology was used to comprehensively identify CSF components and explore their absorbance levels in rat serum. Network pharmacology research methods were employed to investigate the potential mechanisms of action of the identified components in the treatment of major clinical diseases. Subsequently, a combination of HPLC chromatographic fingerprinting for qualitative analysis and multi-index content determination was used to evaluate the detectability of the identified quality markers (Q-markers). RESULTS: Twenty-six prototype components were tentatively characterized in rat serum. Network pharmacology analysis showed six effective components, namely 7-hydroxycoumarin, isoscopoletin, diosmin, hesperidin, 5,7-dimethoxycoumarin, and bergapten, which played important roles in the treatment of chronic gastritis, functional dyspepsia, peptic ulcer, and depression and were preliminarily identified as Q-markers. The results of content determination in 15 batches of CSF indicated significant differences in the content of medicinal materials from different origins. However, compared with the preliminarily determined Q-markers, all six components could be measured and were determined as Q-markers of CSF. CONCLUSION: The chemical Q-markers obtained in this study could be used for effective quality control of CSF.


Assuntos
Medicamentos de Ervas Chinesas , Farmacologia em Rede , Animais , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Farmacologia em Rede/métodos , Ratos , Ratos Sprague-Dawley , Frutas/química , Masculino , Controle de Qualidade , Citrus/química , Biomarcadores/sangue , Medicina Tradicional Chinesa , Diosmina/farmacologia , Diosmina/sangue , Cumarínicos/sangue , Cumarínicos/farmacologia , Espectrometria de Massas/métodos , Flavonoides
3.
Exp Dermatol ; 32(5): 611-619, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36682042

RESUMO

Melasma has a complex pathophysiology with different cell types and signalling pathways involved. Paracrine factors secreted by keratinocytes, fibroblasts and endothelial cells act on melanocytes and stimulate melanogenesis. These paracrine factors are involved in the oxidative stress, inflammatory, vascular and hormonal pathways, among others. Damage of the dermoepidermal barrier also occurs and facilitates melanin deposition in the dermis, also known as dermal or mixed melasma. We used artificial intelligence tools to define the best combination of compounds for skin pigmentation inhibition. Mathematical models suggested the combination of retinol, diosmin and ferulic acid to be the most effective one. In vitro cellular tyrosinase activity assay proved that this combination had a synergistic depigmenting effect. Further assays proved that the combination could inhibit key pathways involved in melasma by downregulating ET-1 and COX-2 gene expression and IBMX-induced dendricity in human melanocytes, and upregulated the gene expression of IL-1b, TIMP3 and several endogenous antioxidant enzymes. The combination also reduced melanin levels in a phototype VI 3D epidermis model. These results indicate that the combination of retinol, diosmin and ferulic acid is an effective synergistic complex for the treatment of melasma by regulating the key molecular pathways involved in skin hyperpigmentation pathophysiology.


Assuntos
Diosmina , Melanose , Humanos , Melaninas/metabolismo , Vitamina A/metabolismo , Inteligência Artificial , Diosmina/metabolismo , Diosmina/farmacologia , Células Endoteliais/metabolismo , Melanócitos/metabolismo , Melanose/metabolismo
4.
FASEB J ; 36(12): e22630, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36315163

RESUMO

The endothelium, a crucial homeostatic organ, regulates vascular permeability and tone. Under physiological conditions, endothelial stimulation induces vasodilator endothelial nitric oxide (eNO) release and prevents adhesion molecule accessibility and leukocyte adhesion and migration into vessel walls. Endothelium dysfunction is a principal event in cardiovascular disorders, including atherosclerosis. Minimal attention is given to an important endothelial cell structure, the endothelial glycocalyx (GCX), a negatively charged heterogeneous polysaccharide that serves as a protective covering for endothelial cells and enables endothelial cells to transduce mechanical stimuli into various biological and chemical activities. Endothelial GCX shedding thus plays a role in endothelial dysfunction, for example by increasing vascular permeability and decreasing vessel tone. Consequently, there is increasing interest in developing therapies that focus on GCX repair to limit downstream endothelium dysfunction and prevent further downstream cardiovascular events. Here, we present diosmin (3',5,7-trihydroxy-4'-methoxyflavone-7-rhamnoglucoside), a flavone glycoside of diosmetin, which downregulates adhesive molecule expression, decreases inflammation and capillary permeability, and upregulates eNO expression. Due to these pleiotropic effects of diosmin on the vasculature, a possible unidentified mechanism of action is through GCX restoration. We hypothesize that diosmin positively affects GCX integrity along with GCX-related endothelial functions. Our hypothesis was tested in a partial ligation left carotid artery (LCA) mouse model, where the right carotid artery was the control for each mouse. Diosmin (50 mg/kg) was administered daily for 7 days, 72 h after ligation. Within the ligated mice LCAs, diosmin treatment elevated the activated eNO synthase level, inhibited inflammatory cell uptake, decreased vessel wall thickness, increased vessel diameter, and increased GCX coverage of the vessel wall. ELISA showed a decrease in hyaluronan concentration in plasma samples of diosmin-treated mice, signifying reduced GCX shedding. In summary, diosmin supported endothelial GCX integrity, to which we attribute diosmin's preservation of endothelial function as indicated by attenuated expression of inflammatory factors and restored vascular tone.


Assuntos
Aterosclerose , Diosmina , Camundongos , Animais , Glicocálix/metabolismo , Diosmina/farmacologia , Diosmina/metabolismo , Células Endoteliais/metabolismo , Aterosclerose/metabolismo , Óxido Nítrico/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Endotélio Vascular/metabolismo
5.
Pestic Biochem Physiol ; 197: 105652, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072527

RESUMO

Arsenic compounds, which are used in different industries like pesticide manufacturing, cause severe toxic effects in almost all organs, including the kidneys. Since the primary route of exposure to arsenic is through drinking water, and millions of people worldwide are exposed to unsafe levels of arsenic that can pose a threat to their health, this research was performed to investigate the nephroprotective effects of Diosmin (Dios), a flavonoid found in citrus fruits, against nephrotoxicity induced by sodium arsenite (SA). To induce nephrotoxicity, SA (10 mg/kg, oral gavage) was administered to mice for 30 days. Dios (25, 50, and 100 mg/kg, oral gavage) was given to mice for 30 days prior to SA administration. After the study was completed, animals were euthanized and blood and kidney samples were taken for biochemical and histopathological assessments. Results showed that SA-treated mice significantly increased the blood urea nitrogen and creatinine levels in the serum. This increase was associated with significant kidney tissue damage in SA-treated mice, which was confirmed by histopathological studies. Furthermore, SA enhanced the amounts of renal thiobarbituric acid reactive substances and decreased total thiol reserves, as well as the activity of antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase. Also, in the SA-exposed group, an increase in the levels of kidney inflammatory biomarkers, including nitric oxide and tumor necrosis factor-alpha was observed. The western blot analysis indicated an elevation in the protein expression of kidney injury molecule-1 and nuclear factor-kappa B in SA-treated mice. However, pretreatment with Dios ameliorated the SA-related renal damage in mice. Our findings suggest that Dios can protect the kidneys against the nephrotoxic effects of SA by its antioxidant and anti-inflammatory characteristics.


Assuntos
Arsênio , Diosmina , Humanos , Ratos , Camundongos , Animais , Antioxidantes/farmacologia , Diosmina/farmacologia , Diosmina/metabolismo , Arsênio/farmacologia , Arsênio/toxicidade , Ratos Wistar , Estresse Oxidativo , Rim , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Glutationa/metabolismo
6.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629098

RESUMO

Chronic venous disease (CVD) is a condition characterized by functional disturbances in the microcirculation of the superficial and deep veins, affecting up to 30% of the global population. Diosmin, a phlebotropic drug, is commonly used in the treatment of CVD, and its beneficial effects have been described in numerous clinical studies. However, the precise molecular mechanism underlying the activity of diosmin is not yet fully understood. Therefore, the objective of our study was to investigate whether diosmin has an impact on oxygen management, as cardiovascular diseases are often associated with hypoxia. In our study, patients were administered a daily dosage of 2 × 600 mg of diosmin for 3 months, and we evaluated several factors associated with oxygen management, angiogenesis, and inflammation using biochemical assays. Our findings indicate that diosmin reduced the levels of fibroblast growth factors (FGF) and vascular endothelial growth factor (VEGF-C), while increasing endostatin and angiostatin levels, suggesting a potential influence on angiogenesis regulation. Furthermore, diosmin exhibited anti-inflammatory properties by suppressing the levels of tumor necrosis factor-alpha (TNF-α), interleukin 1-beta (IL-1ß), and interleukin 6 (IL-6), while promoting the production of interleukin 12 (IL-12). Additionally, diosmin significantly decreased the levels of hypoxia-inducible factor (HIF), anion gap (AG), and lactate, indicating its potential influence on the hypoxia-inducible factor pathway. These findings suggest that diosmin may play a crucial role in modulating oxygen management and inflammation in the context of chronic venous disease.


Assuntos
Doenças Cardiovasculares , Diosmina , Humanos , Diosmina/farmacologia , Diosmina/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Interleucina-12 , Fatores de Crescimento de Fibroblastos , Hipóxia , Inflamação , Interleucina-6 , Ácido Láctico , Homeostase , Oxigênio
7.
Molecules ; 28(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37513462

RESUMO

Diosmin is used to relieve chronic venous disease (CVD) symptoms. This study aimed to investigate the anti-inflammatory and antioxidant effects of diosmetin-3-O-ß-d-glucuronide, the major metabolite of diosmin, using human skin explants. The explants were exposed to substance P (inflammation model) or UVB irradiation (oxidative model) and to five diosmetin-3-O-ß-d-glucuronide concentrations. Inflammation was evaluated through interleukin-8 (IL-8) secretion measurements and capillary dilation observation, and oxidation was evaluated by measuring the hydrogen peroxide levels and observing cyclobutane pyrimidine dimers (CPDs). In substance-P-exposed explants, diosmetin-3-O-ß-d-glucuronide induced a significant decrease in IL-8 secretions, with a maximal effect at 2700 pg/mL (-49.6%), and it reduced the proportion of dilated capillaries and the mean luminal cross-sectional area (p < 0.0001 at all tested concentrations), indicating a vasoconstrictive effect. In UVB-irradiated fragments, diosmetin-3-O-ß-d-glucuronide induced a significant decrease in hydrogen peroxide production and in the number of CPD-positive cells, reaching a maximal effect at the concentration of 2700 pg/mL (-48.6% and -52.0%, respectively). Diosmetin-3-O-ß-d-glucuronide induced anti-inflammatory and antioxidant responses, with the maximal effect being reached at 2700 pg/mL and corresponding to the peak plasma concentration estimated after the oral intake of 600 mg of diosmin, the daily dose usually recommended for the treatment of CVD. These ex vivo findings suggest a protective role of diosmetin-3-O-ß-d-glucuronide against inflammatory and oxidative stress affecting the vascular system in CVD pathophysiology.


Assuntos
Doenças Cardiovasculares , Diosmina , Humanos , Antioxidantes/farmacologia , Glucuronídeos/farmacologia , Diosmina/farmacologia , Peróxido de Hidrogênio , Interleucina-8 , Anti-Inflamatórios/farmacologia , Inflamação
8.
Molecules ; 28(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903535

RESUMO

Diosmin and bromelain are bioactive compounds of plant origin with proven beneficial effects on the human cardiovascular system. We found that diosmin and bromelain slightly reduced total carbonyls levels and had no effect on TBARS levels, as well as slightly increased the total non-enzymatic antioxidant capacity in the RBCs at concentrations of 30 and 60 µg/mL. Diosmin and bromelain induced a significant increase in total thiols and glutathione in the RBCs. Examining the rheological properties of RBCs, we found that both compounds slightly reduce the internal viscosity of the RBCs. Using the MSL (maleimide spin label), we revealed that higher concentrations of bromelain led to a significant decrease in the mobility of this spin label attached to cytosolic thiols in the RBCs, as well as attached to hemoglobin at a higher concentration of diosmin, and for both concentrations of bromelain. Both compounds tended to decrease the cell membrane fluidity in the subsurface area, but not in the deeper regions. An increase in the glutathione concentration and the total level of thiol compounds promotes the protection of the RBCs against oxidative stress, suggesting that both compounds have a stabilizing effect on the cell membrane and improve the rheological properties of the RBCs.


Assuntos
Diosmina , Humanos , Diosmina/farmacologia , Compostos de Sulfidrila/metabolismo , Bromelaínas/farmacologia , Eritrócitos/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Marcadores de Spin
9.
Molecules ; 28(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770968

RESUMO

Cisplatin (CP) is a platinum compound of the alkylating agent class that is used for the treatment of various types of cancer. However, CP treatments in cancer patients are accountable for nephrotoxicity, as it is a major adverse effect. Hence, this research study was proposed to investigate the nephroprotective effect of diosmin, a flavonoid glycoside of hesperidin derivatives against cisplatin-induced kidney damage. Wistar rats received a single intraperitoneal (i.p) injection of CP (7.5 mg/kg, i.p) to induce nephrotoxicity. The administration of CP significantly (p < 0.001) increased the markers of kidney function test (creatinine, blood urea nitrogen, and uric acid) and demonstrated histopathological changes in the kidney of the CP-treated nephrotoxic group. In addition, the CP-treated nephrotoxic group demonstrated a significant (p < 0.001) increase in lipid peroxidation (LPO) levels and depleted activities of reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT).However, diosmin (100 and 200 mg/kg) treatments significantly reduced the elevated levels of kidney function test parameters and restored structural changes in the kidney (p < 0.001). The administration of diosmin (100 and 200 mg/kg) significantly (p < 0.001) reduced LPO levels, increased GSH content and showed improvements in the activities of GPx, GR, SOD and CAT. The markers of inflammatory cytokines such as IL-1ß, IL-6 and TNFα significantly (p < 0.001) increased in the CP-treated nephrotoxic group, whereas diosmin (100 and 200 mg/kg) treatments significantly (p < 0.001) reduced the elevated levels of these cytokines. The findings of this research demonstrate the nephroprotective effect of diosmin against CP-induced kidney damage. Therefore, we conclude that diosmin may be used as a supplement in the management of nephrotoxicity associated with CP treatments in cancer patients.


Assuntos
Diosmina , Nefropatias , Ratos , Animais , Cisplatino/farmacologia , Interleucina-6/metabolismo , Diosmina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Ratos Wistar , Rim , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Nefropatias/prevenção & controle , Estresse Oxidativo , Antioxidantes/farmacologia , Citocinas/metabolismo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo
10.
Microvasc Res ; 139: 104274, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717967

RESUMO

OBJECTIVE: Besides actions including their venotonic, anti-inflammatory, and anti-oxidant effects, venoactive drugs are expected to act on edema via their action on lymphatics. The objective of this study was to evaluate the effect of the combination of Ruscus, hesperidin methyl chalcone and Vitamin C (Ruscus/HMC/Vit C) on intracellular calcium mobilization and contraction of human lymphatic smooth muscle cells (LSMCs) to better characterize the mechanism of its lymphotonic activity. METHODS: Calcium mobilization was evidenced by videomicroscopy analysis of the fluorescence emitted by a specific Ca2+ sensitive dye and measured after injection of Ruscus/HMC/Vit C at 0.1, 0.3, 1.0, and 3.0 mg/mL into LSMCs. RESULTS: Ruscus/HMC/Vit C induced a strong and reproducible concentration-dependent calcium mobilization in LSMCs. On the contrary, another venoactive drug used as comparator, micronized purified flavonoid fraction (MPFF), did not induce calcium mobilization whatever the tested concentration. CONCLUSION: Although alternative mechanisms of action may result in potential lymphotonic effects, the efficacy of lymphotonic products is nonetheless related to their stimulating effect on the contractile activity of the smooth muscle cells surrounding lymphatic vessels. In the light of the results obtained in this study, the direct effect of Ruscus/HMC/Vit C on LSMC contraction may partially explain its clinical efficacy on lymphotonic activity, as has been observed in terms of objective signs of edema as reported in the recent guidelines on chronic venous disease.


Assuntos
Ácido Ascórbico/farmacologia , Chalconas/farmacologia , Hesperidina/análogos & derivados , Vasos Linfáticos/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ruscus , Cálcio/metabolismo , Sinalização do Cálcio , Células Cultivadas , Diosmina/farmacologia , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Regulação da Expressão Gênica , Hesperidina/farmacologia , Humanos , Vasos Linfáticos/metabolismo , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Extratos Vegetais/isolamento & purificação , Ruscus/química , Fatores de Tempo
11.
Methods ; 195: 44-56, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33639316

RESUMO

Novel coronavirus SARS-CoV-2continues tospread rapidly worldwide and causing serious health and economic loss. In the absence of any effective treatment, various in-silico approaches are being explored towards the therapeutic discovery against COVID-19. Targeting multiple key enzymes of SARS-CoV-2 with a single potential drug could be an important in-silico strategy to tackle the therapeutic emergency. A number of Food and Drug Administration (FDA) approved drugs entered into clinical stages were originated from multi-target approaches with an increased rate, 16-21% between 2015 and 2017. In this study, we selected an FDA-approved library (Prestwick Chemical Library of 1520 compounds) and implemented in-silico virtual screening against multiple protein targets of SARS-CoV-2 on the Glide module of Schrödinger software (release 2020-1). Compounds were analyzed for their docking scores and the top-ranked against each targeted protein were further subjected to Molecular Dynamics (MD) simulations to assess the binding stability of ligand-protein complexes. A multi-targeting approach was optimized that enabled the analysis of several compounds' binding efficiency with more than one protein targets. It was demonstrated that Diosmin (6) showed the highest binding affinity towards multiple targets with binding free energy (kcal/mol) values of -63.39 (nsp3); -62.89 (nsp9); -31.23 (nsp12); and -65.58 (nsp15). Therefore, our results suggests that Diosmin (6) possesses multi-targeting capability, a potent inhibitor of various non-structural proteins of SARS-CoV-2, and thus it deserves further validation experiments before using as a therapeutic against COVID-19 disease.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Diosmina/farmacologia , Antivirais/uso terapêutico , COVID-19/virologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Diosmina/uso terapêutico , Descoberta de Drogas , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Ligação a RNA , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo
12.
Molecules ; 27(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35807509

RESUMO

Diosmin is widely used as a venoactive drug in the pharmacological treatment of chronic venous disorders. It exerts a strong protective effect on blood vessels via an increase in the elasticity of vessel walls and reduces the permeability of capillary walls, thereby producing an anti-edematous effect. In this paper, we investigated the effectiveness of diosmin and diosmetin in modulating the level of proinflammatory factors in human skin fibroblasts treated with lipopolysaccharide (LPS). Two variants of the experiments were performed: the flavonoid was added 2 h prior to or 24 h after LPS stimulation. Our study revealed that both flavonoids reduced the levels of IL-6 and Il-1ß as well as COX-2 and PGE2 but had no impact on IL-10. However, the addition of the compounds prior to the LPS addition was more effective. Moreover, diosmetin modulated the proinflammatory factors more strongly than diosmin. Our investigations also showed that both flavonoids were potent inhibitors of elastase and collagenase activity, and no differences between the glycoside and aglycone forms were observed.


Assuntos
Diosmina , Diosmina/farmacologia , Fibroblastos , Flavonoides/farmacologia , Humanos , Mediadores da Inflamação , Lipopolissacarídeos/farmacologia , Metaloproteases
13.
Molecules ; 27(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36500323

RESUMO

Phlebotropic flavonoids, including diosmin and its aglycone diosmetin, are natural polyphenols widely used in the prevention and treatment of chronic venous insufficiency (CVI). As oxidative stress plays an important role in the development of pathophysiology of the cardiovascular system, the study aimed to investigate the protective effects of diosmin and diosmetin on hydrogen peroxide (H2O2)-induced oxidative stress in endothelial cells. The cells were pretreated with different concentrations of the flavonoid prior to the H2O2 exposure. The cell viability, the level of intracellular reactive oxygen species (ROS), the activity of cellular antioxidant enzymes-including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase GPx-and the malondialdehyde (MDA) level were assessed. It was found that the H2O2-induced oxidative stress was ameliorated by diosmin/diosmetin in a concentration-dependent manner. The flavonoids restored the activity of cellular antioxidant enzymes and lowered the MDA level upregulated by the H2O2 exposure. These results indicate that diosmin and diosmetin may prevent oxidative stress in endothelial cells; therefore, they may protect against the development and progression of oxidative-stress-related disorders.


Assuntos
Antioxidantes , Diosmina , Antioxidantes/farmacologia , Diosmina/farmacologia , Peróxido de Hidrogênio/farmacologia , Células Endoteliais , Estresse Oxidativo , Catalase/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Superóxido Dismutase/farmacologia
14.
Exp Parasitol ; 226-227: 108124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34139241

RESUMO

BACKGROUND: There is a necessity to develop or discover an alternative drug to combat the drug resistance by Giardia duodenalis and minimize the multiple doses and frequency of the conventional drug administration. Progressive repositioning or 'repurposing' of drugs has become widespread due to economic circumstances and medical emergency needs. Daflon 500 mg (DFL) is a natural product used safely as a nutrient supplement and an antidiabetic drug in many European countries and the US. OBJECTIVE: This study aimed at investigating the efficiency of DFL, in vivo, in a murine model as a safe alternative or co-drug for giardiasis. MATERIALS AND METHODS: Swiss Albino mice (n = 32) were inoculated with 1X104Giardia cysts and assigned to four groups: One group was the infected non-treated control mice and three experimental groups that were treated differently, either with Metronidazole (MTZ), DFL, or combined therapy of DFL/MTZ. Also, eight normal mice served as a control group. All mice were sacrificed 13 days post-infection for the parasitic, histopathological, and oxidative stress analysis. RESULTS: MTZ, DFL, and the combined therapy significantly reduced the number of trophozoites and cysts compared to their counterparts of the infected mice. The histopathological analysis of the small intestines of the mice treated with the combined therapy retained typical intestinal architecture and normal levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione. CONCLUSION: This study indicated promising actions of Daflon 500 as an anti-giardial drug, and the results demonstrated its potential effect in improving the intestinal epithelial tissue and disturbing the Giardia stages when it was taken collectively with Metronidazole.


Assuntos
Antiprotozoários/uso terapêutico , Diosmina/uso terapêutico , Giardíase/tratamento farmacológico , Metronidazol/uso terapêutico , Animais , Antiprotozoários/farmacologia , Diosmina/farmacologia , Combinação de Medicamentos , Fezes/parasitologia , Humanos , Intestinos/parasitologia , Intestinos/patologia , Metronidazol/farmacologia , Camundongos , Trofozoítos/efeitos dos fármacos
15.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638796

RESUMO

Diosmin, a natural flavone glycoside acquired through dehydrogenation of the analogous flavanone glycoside hesperidin, is plentiful in many citrus fruits. Glioblastoma multiforme (GBM) is the most malignant primary brain tumor; the average survival time of GBM patients is less than 18 months after standard treatment. The present study demonstrated that diosmin, which is able to cross the blood-brain barrier, inhibited GBM cell growth in vitro and in vivo. Diosmin also impeded migration and invasion by GBM8401and LN229 GBM cells by suppressing epithelial-mesenchymal transition, as indicated by increased expression of E-cadherin and decreased expression of Snail and Twist. Diosmin also suppressed autophagic flux, as indicated by increased expression of LC3-II and p62, and induced cell cycle arrest at G1 phase. Importantly, diosmin did not exert serious cytotoxic effects toward control SVG-p12 astrocytes, though it did reduce astrocyte viability at high concentrations. These findings provide potentially helpful support to the development of new therapies for the treatment of GBM.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Diosmina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/fisiopatologia , Linhagem Celular Tumoral , Diosmina/uso terapêutico , Feminino , Glioblastoma/fisiopatologia , Humanos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802633

RESUMO

The current study was designed to investigate the protective role of diosmin against cyclophosphamide-induced premature ovarian insufficiency (POI). Female Swiss albino rats received a single intraperitoneal dose of cyclophosphamide (200 mg/kg) followed by 8 mg/kg/day for the next 15 consecutive days either alone or in combination with oral diosmin at 50 or 100 mg/kg. Histopathological examination of ovarian tissues, hormonal assays for follicle stimulating hormone (FSH), estradiol (E2), and anti-Mullerian hormone (AMH), assessment of the oxidative stress status, as well as measurement of the relative expression of miRNA-145 and its target genes [vascular endothelial growth factor B (VEGF-B) and regulator of cell cycle (RGC32)] were performed. Diosmin treatment ameliorated the levels of E2, AMH, and oxidative stress markers. Additionally, both low and high diosmin doses significantly reduced the histopathological alterations and nearly preserved the normal ovarian reserve. MiRNA-145 expression was upregulated after treatment with diosmin high dose. miRNA-145 target genes were over-expressed after both low and high diosmin administration. Based on our findings, diosmin has a dose-dependent protective effect against cyclophosphamide-induced ovarian toxicity in rats.


Assuntos
Diosmina/uso terapêutico , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/tratamento farmacológico , Animais , Biomarcadores/metabolismo , Peso Corporal/efeitos dos fármacos , Caspase 3/metabolismo , Catalase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Colágeno/metabolismo , Ciclofosfamida , Diosmina/farmacologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônios/sangue , Malondialdeído/sangue , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/patologia , Estresse Oxidativo/efeitos dos fármacos , Insuficiência Ovariana Primária/sangue , Insuficiência Ovariana Primária/patologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Toxicol Appl Pharmacol ; 401: 115101, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32512072

RESUMO

Non-alcoholic steatohepatitis (NASH) is becoming of increasing significance due to its growing global prevalence and risk of progression to end-stage liver disease. This study was carried out to investigate the potential anti-inflammatory, insulin sensitizing, and antifibrotic effects of diosmin in an experimental model of NASH induced in rats using high-fat diet (HFD) and 30 mg/kg streptozotocin (STZ). Diosmin was administered orally at dose of 100 mg/kg for 8 weeks. Stained tissue sections were examined for histopathological signs of NASH, collagen deposition, and alpha smooth muscle actin (α-SMA) expression. In addition, insulin resistance, dyslipidemia, inflammation, and fibrosis markers were assessed. HFD/STZ successfully induced different NASH features such as insulin resistance seen by elevated fasting blood glucose levels and homeostasis model assessment for insulin resistance. Moreover, induced rats demonstrated dyslipidemia, a significant elevation in tumor necrosis factor alpha (TNF-α) and interleukin-6 levels, and an imbalance in the oxidative status of the liver. Those events altogether precipitated initiation of liver fibrosis as confirmed by elevated transforming growth factor beta (TGF-ß) levels. Treatment with diosmin demonstrated multiple beneficial effects as it significantly ameliorated histopathological NASH findings, lowered TNF-α, interleukin-6, and malondialdehyde levels, improved lipid and glucose metabolism, and lowered hepatic TGF-ß, α-SMA, and collagen content compared to untreated rats. The present study represents a drug repositioning scenario as diosmin is widely used for management of blood vessel disorders and is known to be well tolerated. This encourages the extension of our study to the clinical setting to explore diosmin effects in NASH patients.


Assuntos
Diosmina/uso terapêutico , Resistência à Insulina/fisiologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Diosmina/farmacologia , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Cirrose Hepática/etiologia , Masculino , Hepatopatia Gordurosa não Alcoólica/etiologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
18.
Mol Biol Rep ; 47(3): 2217-2230, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32088816

RESUMO

One of the most lethal malignancies worldwide is colorectal cancer (CRC). Alterations in various signalling pathways, including PI3K-mTOR and NF-κB, have been reported in CRC with subsequent dysregulation of proliferation, apoptosis, angiogenesis and, questionably, autophagy processes. BEZ-235 (dactolisib) is a dual PI3K-mTOR inhibitor with potent anti-tumour activity. However, the observed toxicity of BEZ-235 necessitated the termination of its clinical trials. Hence, we aimed to evaluate the potential long-lasting anti-carcinogenic effects of adding diosmin (DIO, a natural NF-κB inhibitor) to BEZ-235 in HCT-116 CRC cells. The median inhibitory concentrations (IC50s) of BEZ-235 and/or DIO were evaluated in the HCT-116 CRC cell line. Caspase-3 activity was assessed colorimetrically, and p-Akt, NF-κB, CD1, VEGF and LC3B levels were assessed by ELISA. Additionally, LC3-II and P62 gene expression were assessed using qRT-PCR. The observed CIs (combination indices) and DRIs (dose reduction indices) confirmed the synergistic effect of DIO and BEZ-235. Co-administration of both drugs either in combination-1 (1 µM for BEZ-235, 250 µM for DIO) or in combination-2 (0.51 µM for BEZ-235 + 101.99 µM for DIO) inhibited the PI3K/Akt/mTOR/NF-κB axis, leading to the induction of apoptosis (via active caspase-3), and the inhibition of proliferation marker (CD1), angiogenesis marker (VEGF), autophagy protein (LC3B) and altered effects on LC3-IIandP62 gene expression. Our results reveal the synergistic chemotherapeutic effects of DIO combined with BEZ-235 in the HCT-116 CRC cell line and encourage future preclinical and clinical studies of this combination with reduced BEZ-235 concentrations to avoid its reported toxicity.


Assuntos
Diosmina/farmacologia , Imidazóis/farmacologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Células HCT116 , Humanos , Fosforilação
19.
Regul Toxicol Pharmacol ; 113: 104622, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32087353

RESUMO

The benchmark of this study is to evaluate the radio protective efficiency of diosmin, a natural citrus flavone of hesperidin derivative on radiation-induced damage in wistar albino rats. Rats orally administered two diosmin doses (100 and 200 mg/kg body wt.) for a month (every other day) prior to exposure to high gamma radiation single dose (8Gy) or cumulative dose (10Gy). To evaluate the radio protective efficiency of diosmin various biochemical estimations, histopathological alterations as well as comet assay and caspase-3 activity for assessment of apoptosis were performed. Results indicated that radiation-induced decline in the levels of antioxidant parameters (SOD and GSH), increased lipid peroxidation, DNA damage and apoptosis were improved by pre-administration of diosmin. Diosmin dose (200 mg/kg body wt.) restored the antioxidant status to near normal and reduced lipid peroxidation, DNA and tissue damage. These results were confirmed by histopathological examinations, which showed that pre-administration of diosmin protected the liver and kidney of albino rats against gamma-irradiation induced damage. Hence, it has been illustrated that diosmin might be an effective radio protector against radiation-induced damage in rats. Moreover, diosmin alone pretreated group did not show any biochemical alterations or DNA damage indicating the protective nature of the drug.


Assuntos
Diosmina/farmacologia , Raios gama , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Dano ao DNA , Diosmina/administração & dosagem , Diosmina/química , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/química , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
20.
Environ Toxicol ; 35(7): 747-757, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32061149

RESUMO

Diosmin, a naturally occurring flavonoid commonly present in citrus fruit, is known to exhibit anti-inflammatory, antimutagenic, antioxidant, and free radical scavenging as well as blood lipid lowering activities among others. Diosmin has also been used for the treatment of various diseases including diabetes mellitus and Alzheimer's disease. Our study explores the role of Diosmin in pulmonary toxicity (lung injury) induced by environmental contaminant benzo(a)pyrene [B(a)P]. Swiss Albino Mice (SAM) were administered with either Diosmin 100 or 200 mg/kg body weight daily for 14 days and then challenged with a single dose of B(a)P. On the 15th day, animals were sacrificed; lung tissues and blood were collected for molecular analysis. B(a)P administration in mice induced the thickening of lung epithelium, damaged alveolar architecture, and promoted inflammatory cell infiltration in the lung tissues. Also, B[a]P significantly increased the expression of NF-kB, COX-2, IL-6, Bax, cleaved caspase 3, and cleaved PARP proteins and decreased antioxidant enzyme levels. Diosmin-100 and Diosmin-200 significantly attenuated the damage to lung epithelium, alveolar architecture, and reduced inflammatory cell infiltration in the lung tissues of mice. Diosmin significantly (P < .05) attenuated the levels of oxidative stress markers: lactate dehydrogenase and xanthine oxidase. A decrease in expression of NF-kB, COX-2, IL-6, Bax, cleaved caspase 3, and cleaved PARP proteins in mice was challenged with B[a]P. Diosmin thus could be a promising therapeutic adjuvant against B[a]P-induced oxidative stress and lung damage.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Benzo(a)pireno/toxicidade , Diosmina/farmacologia , Poluentes Ambientais/toxicidade , Lesão Pulmonar/prevenção & controle , Animais , Caspase 3/metabolismo , Ciclo-Oxigenase 2/metabolismo , Pulmão/efeitos dos fármacos , Lesão Pulmonar/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA