Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 241: 109832, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369232

RESUMO

Fuchs endothelial corneal dystrophy (FECD) is the leading cause of endothelial keratoplasty without efficacious drug treatment. Recent studies have emphasized the involvement of epigenetic regulation in FECD development. Long non-coding RNAs (lncRNAs) are recognized as crucial epigenetic regulators in diverse cellular processes and ocular diseases. In this study, we revealed the expression patterns of lncRNAs using high-throughput sequencing technology in FECD mouse model, and identified 979 significantly dysregulated lncRNAs. By comparing the data from FECD human cell model, we obtained a series of homologous lncRNAs with similar expression patterns, and revealed that these homologous lncRNAs were enriched in FECD related biological functions, with apoptosis (mmu04210) showing the highest enrichment score. In addition, we investigated the role of lncRNA zinc finger antisense 1 (ZFAS1) in apoptotic process. This study would broaden our understanding of epigenetic regulation in FECD development, and provide potential anti-apoptotic targets for FECD therapy.


Assuntos
Distrofia Endotelial de Fuchs , RNA Longo não Codificante , Animais , Humanos , Camundongos , Endotélio Corneano/metabolismo , Epigênese Genética , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/metabolismo , RNA Longo não Codificante/genética , Zinco/metabolismo
2.
Cell Mol Life Sci ; 80(3): 62, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36773096

RESUMO

Late-onset Fuchs endothelial corneal dystrophy (FECD) is a disease affecting the corneal endothelium (CE), associated with a cytosine-thymine-guanine repeat expansion at the CTG18.1 locus in the transcription factor 4 (TCF4) gene. It is unknown whether CTG18.1 expansions affect global methylation including TCF4 gene in CE or whether global CE methylation changes at advanced age. Using genome-wide DNA methylation array, we investigated methylation in CE from FECD patients with CTG18.1 expansions and studied the methylation in healthy CE at different ages. The most revealing DNA methylation findings were analyzed by gene expression and protein analysis. 3488 CpGs had significantly altered methylation pattern in FECD though no substantial changes were found in TCF4. The most hypermethylated site was in a predicted promoter of aquaporin 1 (AQP1) gene, and the most hypomethylated site was in a predicted promoter of coagulation factor V (F5 for gene, FV for protein). In FECD, AQP1 mRNA expression was variable, while F5 gene expression showed a ~ 23-fold increase. FV protein was present in both healthy and affected CE. Further gene expression analysis of coagulation factors interacting with FV revealed a ~ 34-fold increase of thrombomodulin (THBD). THBD protein was detected only in CE from FECD patients. Additionally, we observed an age-dependent hypomethylation in elderly healthy CE.Thus, tissue-specific genome-wide and gene-specific methylation changes associated with altered gene expression were discovered in FECD. TCF4 pathological methylation in FECD because of CTG18.1 expansion was ruled out.


Assuntos
Distrofia Endotelial de Fuchs , Humanos , Idoso , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/metabolismo , Distrofia Endotelial de Fuchs/patologia , Fator V/genética , Fator V/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Trombomodulina/genética , Trombomodulina/metabolismo , Metilação de DNA/genética , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Expansão das Repetições de Trinucleotídeos
3.
Clin Exp Pharmacol Physiol ; 51(10): e13921, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39223829

RESUMO

Fuchs endothelial corneal dystrophy (FECD) is a leading cause of corneal endothelial degeneration resulting in impaired visual acuity. Excessive deposition of extracellular matrix (guttae) on Descemet's membrane (DM) is the hallmark of FECD. We sought to detect the guttae area rapidly using aniline blue (AB) staining in FECD mouse model. FECD mouse model was established via ultraviolet A (UVA) exposure. Masson's trichrome staining was utilized to stain the corneal sections. AB staining was utilized to stain both whole cornea tissues and stripped Descemet's membrane-endothelium complex (DMEC) flat mounts, while immunofluorescence staining of collagen I was employed to stain guttae areas. In Masson's trichrome staining, corneal collagen fibrils were stained blue with AB. The DMEC flat mounts were stained into relative dark blue areas and relative light blue areas using 2% AB staining. The areas of dark blue could almost overlap with collagen I-positive areas, and have an acellular centre and a moderately distinct boundary line with the surrounding corneal endothelial cells. In conclusion, AB staining is a rapid and effective method for the evaluation of the guttae areas in the FECD mouse model.


Assuntos
Compostos de Anilina , Modelos Animais de Doenças , Distrofia Endotelial de Fuchs , Animais , Camundongos , Distrofia Endotelial de Fuchs/patologia , Distrofia Endotelial de Fuchs/metabolismo , Coloração e Rotulagem/métodos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Lâmina Limitante Posterior/patologia , Lâmina Limitante Posterior/metabolismo , Camundongos Endogâmicos C57BL , Endotélio Corneano/patologia , Endotélio Corneano/metabolismo , Corantes
4.
Clin Immunol ; 254: 109701, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482117

RESUMO

Fuchs endothelial corneal dystrophy (FECD) is the leading indication for corneal transplantation worldwide. Our aim was to investigate the role of transient receptor potential vanilloid subtype 1 (TRPV1) and the associated immune regulation contributing to this pathological condition. Significant upregulation of TRPV1 was detected in the H2O2-induced in vitro FECD model. Based on gene expression microarray dataset GSE142538 and in vitro results, a comprehensive immune landscape was studied and a negative correlation was found between TRPV1 with different immune cells, especially regulatory T cells (Tregs). Functional analyses of the 313 TRPV1-related differentially expressed genes (DEGs) revealed the involvement of TRP-regulated calcium transport, as well as inflammatory and immune pathways. Four TRPV1-related core genes (MAPK14, GNB1, GNAQ, and ARRB2) were screened, validated by microarray dataset GSE112039 and the combined validation dataset E-GEAD-399 & 564, and verified by in vitro experiments. Our study suggested a potential crosstalk between TRPV1 and immune regulation contributing to FECD pathogenesis. The identified pivotal biomarkers and immune-related pathways provide a novel framework for future mechanistic and therapeutic studies of FECD.


Assuntos
Distrofia Endotelial de Fuchs , Humanos , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/metabolismo , Distrofia Endotelial de Fuchs/patologia , Endotélio Corneano/metabolismo , Endotélio Corneano/patologia , Peróxido de Hidrogênio/metabolismo , Regulação para Cima , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
5.
Exp Eye Res ; 226: 109303, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343671

RESUMO

PURPOSE: Fuchs endothelial corneal dystrophy (FECD) is a progressive corneal disease that impacts the structure and stiffness of the Descemet's membrane (DM), the substratum for corneal endothelial cells (CECs). These structural alterations of the DM could contribute to the loss of the CECs resulting in corneal edema and blindness. Oxidative stress and transforming growth factor-ß (TGF-ß) pathways have been implicated in endothelial cell loss and endothelial to mesenchymal transition of CECs in FECD. Ascorbic acid (AA) is found at high concentrations in FECD and its impact on CEC survival has been investigated. However, how TGF-ß and AA effect the composition and rigidity of the CEC's matrix remains unknown. METHODS: In this study, we investigated the effect of AA, TGF-ß1 and TGF-ß3 on the deposition, ultrastructure, stiffness, and composition of the extracellular matrix (ECM) secreted by primary bovine corneal endothelial cells (BCECs). RESULTS: Immunofluorescence and electron microscopy post-decellularization demonstrated a robust deposition and distinct structure of ECM in response to treatments. AFM measurements showed that the modulus of the matrix in BCECs treated with TGF-ß1 and TGF-ß3 was significantly lower than the controls. There was no difference in the stiffness of the matrix between the AA-treated cell and controls. Gene Ontology analysis of the proteomics results revealed that AA modulates the oxidative stress pathway in the matrix while TGF-ß induces the expression of matrix proteins collagen IV, laminin, and lysyl oxidase homolog 1. CONCLUSIONS: Molecular pathways identified in this study demonstrate the differential role of soluble factors in the pathogenesis of FECD.


Assuntos
Distrofia Endotelial de Fuchs , Fator de Crescimento Transformador beta1 , Animais , Bovinos , Fator de Crescimento Transformador beta1/metabolismo , Células Endoteliais/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Distrofia Endotelial de Fuchs/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Endotélio Corneano/metabolismo
6.
Exp Eye Res ; 231: 109499, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37169279

RESUMO

Fuchs Endothelial Corneal Dystrophy (FECD), a late-onset oxidative stress disorder, is the most common cause of corneal endothelial degeneration and is genetically associated with CTG repeat expansion in Transcription Factor 4 (TCF4). We previously reported accumulation of nuclear (nDNA) and mitochondrial (mtDNA) damage in FECD. Specifically, mtDNA damage was a prominent finding in development of disease in the ultraviolet-A (UVA) induced FECD mouse model. We hypothesize that an aberrant DNA repair may contribute to the increased DNA damage seen in FECD. We analyzed differential expression profiles of 84 DNA repair genes by real-time PCR arrays using Human DNA Repair RT-Profiler plates using cDNA extracted from Descemet's membrane-corneal endothelium (DM-CE) obtained from FECD patients with expanded (>40) or non-expanded (<40) intronic CTG repeats in TCF4 gene and from age-matched normal donors. Change in mRNA expression of <0.5- or >2.0-fold in FECD relative to normal was set as cutoff for down- or upregulation. Downregulated mitochondrial genes were further validated using the UVA-based mouse model of FECD. FECD specimens exhibited downregulation of 9 genes and upregulation of 8 genes belonging to the four major DNA repair pathways, namely, base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), and double strand break (DSB) repair, compared to normal donors. MMR gene MSH2 and BER gene POLB were preferentially upregulated in expanded FECD. BER genes LIG3 and NEIL2, DSB repair genes PARP3 and TOP3A, NER gene XPC, and unclassified pathway gene TREX1, were downregulated in both expanded and non-expanded FECD. MtDNA repair genes, Lig3, Neil2, and Top3a, were also downregulated in the UVA-based mouse model of FECD. Our findings identify impaired DNA repair pathways that may play an important role in DNA damage due to oxidative stress as well as genetic predisposition noted in FECD.


Assuntos
DNA Glicosilases , Distrofia Endotelial de Fuchs , Animais , Camundongos , Humanos , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/metabolismo , Endotélio Corneano/metabolismo , Predisposição Genética para Doença , Reparo do DNA/genética , DNA Mitocondrial/genética , DNA Glicosilases/genética , DNA Glicosilases/metabolismo
7.
FASEB J ; 36(7): e22397, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35661268

RESUMO

Corneal endothelial cell (CEC) dysfunction causes corneal edema and severe visual impairment that require transplantation to restore vision. To address the unmet need of organ shortage, descemetorhexis without endothelial keratoplasty has been specifically employed to treat early stage Fuchs endothelial corneal dystrophy, which is pathophysiologically related to oxidative stress and exhibits centrally located corneal guttae. After stripping off central Descemet's membrane, rho-associated protein kinase (ROCK) inhibitor has been found to facilitate CEC migration, an energy-demanding task, thereby achieving wound closure. However, the correlation between ROCK inhibition and the change in bioenergetic status of CECs remained to be elucidated. Through transcriptomic profiling, we found that the inhibition of ROCK activity by the selective inhibitor, ripasudil or Y27632, promoted enrichment of oxidative phosphorylation (OXPHOS) gene set in bovine CECs (BCECs). Functional analysis revealed that ripasudil, a clinically approved anti-glaucoma agent, enhanced mitochondrial respiration, increased spare respiratory capacity, and induced overexpression of electron transport chain components through upregulation of AMP-activated protein kinase (AMPK) pathway. Accelerated BCEC migration and in vitro wound healing by ripasudil were diminished by OXPHOS and AMPK inhibition, but not by glycolysis inhibition. Correspondingly, lamellipodial protrusion and actin assembly that were augmented by ripasudil became reduced with additional OXPHOS or AMPK inhibition. These results indicate that ROCK inhibition induces metabolic reprogramming toward OXPHOS to support migration of CECs.


Assuntos
Endotélio Corneano , Distrofia Endotelial de Fuchs , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Bovinos , Células Endoteliais/metabolismo , Endotélio Corneano/metabolismo , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/metabolismo , Distrofia Endotelial de Fuchs/cirurgia , Fosforilação Oxidativa , Quinases Associadas a rho/metabolismo
8.
Clin Exp Ophthalmol ; 50(9): 1065-1081, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35849327

RESUMO

BACKGROUND: To investigate and compare the metabolic profiles in the aqueous humour of Han Chinese patients with Fuchs' syndrome and presumed viral-induced anterior uveitis (PVIAU). METHODS: The metabolites in the aqueous humour of 20 Fuchs' syndrome patients, 20 PVIAU patients and 20 senile cataract control patients were detected by liquid chromatography with mass spectrometry. Differential metabolites were analysed by Student's t test, multivariate analysis, cluster analysis and correlation analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was applied to explore the potential disrupted metabolic pathways in Fuchs' syndrome and PVIAU. RESULTS: Comparisons of metabolic profiles identified 29 differential metabolites between Fuchs' syndrome patients and controls, 36 differential metabolites between PVIAU patients and controls, and 30 differential metabolites between Fuchs' syndrome patients and PVIAU patients. DL-serine was markedly elevated in Fuchs' syndrome, and 1-palmitoyl-sn-glycero-3-phosphocholine in PVIAU. KEGG pathway analysis suggested that the differential metabolites in Fuchs' syndrome compared with control were mostly enriched in central carbon metabolism in cancer, adenosine triphosphate-binding cassette (ABC) transporters and mineral absorption, while those in PVIAU compared with control were mostly enriched in protein digestion and absorption, biosynthesis of unsaturated fatty acids, and ABC transporters. The metabolic pathways differentially affected in Fuchs' syndrome compared to PVIAU included central carbon metabolism in cancer, protein digestion and absorption and ascorbate and aldarate metabolism. CONCLUSIONS: In Fuchs' syndrome and PVIAU patients, the aqueous humour exhibited specific metabolic profiles and enriched metabolic pathways, which provides a better understanding of the pathogenesis of Fuchs' syndrome and PVIAU in Han Chinese patients.


Assuntos
Catarata , Distrofia Endotelial de Fuchs , Uveíte Anterior , Uveíte , Humanos , Humor Aquoso/metabolismo , Uveíte Anterior/complicações , Catarata/etiologia , Síndrome , Metaboloma , Carbono/metabolismo , Distrofia Endotelial de Fuchs/metabolismo , Uveíte/complicações
9.
Mol Vis ; 27: 26-36, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633437

RESUMO

Purpose: The purpose of this study is to examine the expression of tenascin-C and matrilin-2 in three different disorders, which frequently require corneal transplantation. These pathological conditions include bullous keratopathy (BK), Fuchs' endothelial corneal dystrophy (FECD), and corneal scarring in herpetic keratitis. Methods: Histological sections of corneal buttons removed during keratoplasty were analyzed in BK (n = 20), FECD (n = 9), herpetic keratitis (n = 12), and cadaveric control (n = 10) groups with light microscopy following chromogenic immunohistochemistry. The sections were evaluated by three investigators, and semiquantitative scoring (0 to 3+) was applied according to standardized methods at 400X magnification. Each layer of the cornea was investigated; moreover, the stroma was subdivided into subepithelial, middle, and pre-Descemet's membrane areas for more detailed analysis. Results: Excessive epithelial and stromal expression of tenascin-C was identified in all investigated conditions; the results were most pronounced in the pre-Descemet's membrane. Regarding matrilin-2, when examined in BK, there was increased labeling intensity in the epithelium (p<0.001) and stromal layers (p<0.05), and a decrease in the endothelium (p<0.001). In the other investigated conditions, only a low degree of stromal localization (p<0.05) of matrilin-2 was detected. Conclusions: The expression of tenascin-C and matrilin-2 differs when examined in various corneal pathologies resulting in opacification. Both molecules seem to be involved in regeneration and wound healing of the corneal matrix in these diseases.


Assuntos
Vesícula/metabolismo , Opacidade da Córnea/metabolismo , Matriz Extracelular/metabolismo , Distrofia Endotelial de Fuchs/metabolismo , Ceratite Herpética/metabolismo , Tenascina/metabolismo , Idoso , Vesícula/complicações , Vesícula/cirurgia , Opacidade da Córnea/etiologia , Opacidade da Córnea/cirurgia , Feminino , Distrofia Endotelial de Fuchs/complicações , Distrofia Endotelial de Fuchs/cirurgia , Humanos , Imuno-Histoquímica , Ceratite Herpética/complicações , Ceratite Herpética/cirurgia , Ceratoplastia Penetrante , Masculino , Proteínas Matrilinas/metabolismo , Pessoa de Meia-Idade , Estudos Retrospectivos , Acuidade Visual
10.
Exp Eye Res ; 205: 108500, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33617849

RESUMO

Fuchs endothelial corneal dystrophy (FECD) is characterized by a progressive loss of corneal endothelial cells (CECs) and an abnormal accumulation of extracellular matrix in Descemet's membrane leading to increased thickness and formation of excrescences called guttae. Extracellular matrix homeostasis is modulated by an equilibrium between matrix metalloproteinases (MMPs) and their endogenous tissue inhibitors (TIMPs). This study aimed to investigate MMPs and TIMPs profile in FECD, taking into account cell morphology. Populations of FECD and healthy CECs were cultured and their conditioned media collected for analysis. The presence of proteases in the conditioned media was studied using a semi-quantitative proteome profiler array, and MMPs levels were assessed using quantitative assays (ELISA and quantitative antibody array). MMP activity was determined by zymography and fluorometry. The expression pattern of the membrane type 1-MMP (MT1-MMP, also known as MMP-14) was examined by immunofluorescence on ex vivo FECD and healthy explants of CECs attached to Descemet's membrane. Finally, MMPs and TIMPs protein expression was compared to gene expression obtained from previously collected data. FECD and healthy CEC populations generated cultures of endothelial, intermediate, and fibroblastic-like morphology. Various MMPs (MMP-1, -2, -3, -7, -8, -9, -10, and -12) and TIMPs (TIMP-1 to -4) were detected in both FECD and healthy CECs culture supernatants. Quantitative assays revealed a decrease in MMP-2 and MMP-10 among FECD samples. Both these MMPs can degrade the main extracellular matrix components forming guttae (fibronectin, laminin, collagen IV). Moreover, MMPs/TIMPs ratio was also decreased among FECD cell populations. Activity assays showed greater MMPs/Pro-MMPs proportions for MMP-2 and MMP-10 in FECD cell populations, although overall activities were similar. Moreover, the analysis according to cell morphology revealed among healthy CECs, both increased (MMP-3 and -13) and decreased (MMP-1, -9, -10, and -12) MMPs proteins along with increased MMPs activity (MMP-2, -3, -9, and -10) in the fibroblastic-like subgroup when compared to the endothelial subgroup. However, FECD CECs did not show similar behaviors between the different morphology subgroups. Immunostaining of MT1-MMP on ex vivo FECD and healthy explants revealed a redistribution of MT1-MMP around guttae in FECD explants. At the transcriptional level, no statistically significant differences were detected, but cultured FECD cells had a 12.2-fold increase in MMP1 and a 4.7-fold increase in TIMP3. These results collectively indicate different, and perhaps pathological, MMPs and TIMPs profile in FECD CECs compared to healthy CECs. This is an important finding suggesting the implication of MMPs and TIMPs in FECD pathophysiology.


Assuntos
Distrofia Endotelial de Fuchs/metabolismo , Inibidores de Metaloproteinases de Matriz/metabolismo , Metaloproteinases da Matriz/metabolismo , Idoso , Idoso de 80 Anos ou mais , Contagem de Células , Células Cultivadas , Endotélio Corneano/metabolismo , Endotélio Corneano/fisiopatologia , Ensaio de Imunoadsorção Enzimática , Fluorometria , Distrofia Endotelial de Fuchs/fisiopatologia , Regulação da Expressão Gênica/fisiologia , Humanos , Pessoa de Meia-Idade , Proteoma/metabolismo
11.
Hum Mol Genet ; 27(6): 1015-1026, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29325021

RESUMO

Fuchs' endothelial corneal dystrophy (FECD) is the most common repeat expansion disorder. FECD impacts 4% of U.S. population and is the leading indication for corneal transplantation. Most cases are caused by an expanded intronic CUG tract in the TCF4 gene that forms nuclear foci, sequesters splicing factors and impairs splicing. We investigated the sense and antisense RNA landscape at the FECD gene and find that the sense-expanded repeat transcript is the predominant species in patient corneas. In patient tissue, sense foci number were negatively correlated with age and showed no correlation with sex. Each endothelial cell has ∼2 sense foci and each foci is single RNA molecule. We designed antisense oligonucleotides (ASOs) to target the mutant-repetitive RNA and demonstrated potent inhibition of foci in patient-derived cells. Ex vivo treatment of FECD human corneas effectively inhibits foci and reverses pathological changes in splicing. FECD has the potential to be a model for treating many trinucleotide repeat diseases and targeting the TCF4 expansion with ASOs represents a promising therapeutic strategy to prevent and treat FECD.


Assuntos
Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/metabolismo , Fator de Transcrição 4/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , Endotélio Corneano/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Oligorribonucleotídeos Antissenso/genética , Oligorribonucleotídeos Antissenso/uso terapêutico , RNA/metabolismo , Splicing de RNA , Fator de Transcrição 4/metabolismo , Fatores de Transcrição/genética , Expansão das Repetições de Trinucleotídeos
12.
Am J Pathol ; 189(10): 2061-2076, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31361992

RESUMO

Corneal endothelium (CE) is a monolayer of mitochondria-rich cells, critical for maintaining corneal transparency compatible with clear vision. Fuchs endothelial corneal dystrophy (FECD) is a heterogeneous, genetically complex disorder, where oxidative stress plays a key role in the rosette formation during the degenerative loss of CE. Increased mitochondrial fragmentation along with excessive mitophagy activation has been detected in FECD; however, the mechanism of aberrant mitochondrial dynamics in CE cell loss is poorly understood. Here, the role of oxidative stress in mitophagy activation in FECD is investigated. Immunoblotting of FECD ex vivo specimens revealed an accumulation of PINK1 and phospho-Parkin (Ser65) along with loss of total Parkin and total Drp1. Similarly, modeling of rosette formation with menadione (MN), led to phospho-Parkin accumulation in fragmented mitochondria resulting in mitophagy-induced mitochondrial clearance, albeit possibly in a PINK1-independent manner. Loss of PINK1, phospho-Drp1, and total Drp1 was prominent after MN-induced oxidative stress, but not after mitochondrial depolarization by carbonyl cyanide m-chlorophenyl hydrazone. Moreover, MN-induced mitophagy led to degradation of Parkin along with sequestration of Drp1 and PINK1 that was rescued by mitophagy inhibition. This study shows that in FECD, intracellular oxidative stress induces Parkin-mediated mitochondrial fragmentation where endogenous Drp1 and PINK1 are sequestered and degraded by mitophagy during degenerative loss of post-mitotic cells of ocular tissue.


Assuntos
Endotélio Corneano/patologia , Distrofia Endotelial de Fuchs/patologia , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Mitofagia , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Antifibrinolíticos/farmacologia , Endotélio Corneano/efeitos dos fármacos , Endotélio Corneano/metabolismo , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Estresse Oxidativo , Proteínas Quinases/genética , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Vitamina K 3/farmacologia
13.
Am J Pathol ; 188(7): 1703-1712, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29698634

RESUMO

Fuchs endothelial corneal dystrophy (FECD) is a corneal pathology that affects the endothelial cell's ability to maintain deturgescence, resulting in a progressive loss of corneal transparency. In this study, we investigated the expression of function-related proteins in corneal endothelial cells using FECD or healthy corneal endothelial cells, either in a cell culture two-dimensional model or in an engineered corneal endothelium three-dimensional tissue model. No statistically significant difference in gene regulation was observed for the function-related families ATP1, SLC4, SLC16, AQP, TJP, and CDH between the FECD and the healthy cell models. Similarly, no difference in barrier integrity (transendothelial electrical resistance measurements and permeability assays) was observed in vitro between FECD and healthy cultured cells. Protein expression of the key function-related families was decreased for Na+/K+-ATPase α1 subunit, monocarboxylate transporters 1 and 4 in native ex vivo end-stage FECD specimens, whereas it returned to levels comparable to that of healthy tissues in the engineered FECD model. These results indicate that cell expansion and tissue engineering culture conditions can generate a corneal endothelium from pathologic FECD cells, with levels of function-related proteins similar to that of healthy tissues. Overall, these results explain why it is possible to reform a functional endothelium using corneal endothelial cells isolated from nonfunctional FECD pathologic specimens.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Antiporters/metabolismo , Biomarcadores/metabolismo , Endotélio Corneano/metabolismo , Distrofia Endotelial de Fuchs/metabolismo , Engenharia Tecidual , Idoso , Idoso de 80 Anos ou mais , Proteínas de Transporte de Ânions/genética , Antiporters/genética , Estudos de Casos e Controles , Células Cultivadas , Endotélio Corneano/citologia , Feminino , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/patologia , Humanos , Transporte de Íons , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células
14.
Exp Eye Res ; 180: 18-22, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30471280

RESUMO

Early-onset Fuchs endothelial corneal dystrophy (FECD) has been associated with nonsynonymous mutations in collagen VIII α2 (COL8A2), a key extracellular matrix (ECM) protein in Descemet's membrane (DM). Two knock-in strains of mice have been generated to each express a mutant COL8A2 protein (Col8a2L450W/L450W and Col8a2Q455K/Q455K) that recapitulate the clinical phenotype of early-onset FECD including endothelial cell loss, cellular polymegathism and pleomorphism, and guttae. Due to abnormalities in ECM protein composition and structure in FECD, the stiffness of DM in Col8a2 knock-in mice and wildtype (WT) controls was measured using atomic force microscopy at 5 and 10 months of age, coinciding with the onset of FECD phenotypic abnormalities. At 5 months, only sporadic guttae were identified via in vivo confocal microscopy (IVCM) in Col8a2Q455K/Q455K mice, otherwise both strains of Col8a2 transgenic mice were indistinguishable from WT controls in terms of endothelial cell density and size. By 10 months of age, Col8a2L450W/L450W and Col8a2Q455K/Q455K mice developed reduced corneal endothelial density, increased endothelial cell area and guttae, with the Col8a2Q455K/Q455K strain exhibiting a more severe phenotype. However, at 5 months of age, prior to the development endothelial cell abnormalities, Col8a2L450W/L450W and Col8a2Q455K/Q455K mice knock-in mice had reduced tissue stiffness of DM that was statistically significant in the Col8a2Q455K/Q455K mice when compared with wildtype controls. These data indicate that alterations in the tissue compliance of DM precede phenotypic changes in endothelial cell count and morphology, and may play a role in onset and progression of FECD.


Assuntos
Perda de Células Endoteliais da Córnea/fisiopatologia , Lâmina Limitante Posterior/fisiologia , Modelos Animais de Doenças , Módulo de Elasticidade/fisiologia , Distrofia Endotelial de Fuchs/fisiopatologia , Animais , Fenômenos Biomecânicos , Contagem de Células , Colágeno Tipo VIII/genética , Colágeno Tipo VIII/fisiologia , Perda de Células Endoteliais da Córnea/metabolismo , Endotélio Corneano/patologia , Feminino , Distrofia Endotelial de Fuchs/metabolismo , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Força Atômica , Microscopia Confocal
15.
Exp Eye Res ; 179: 188-192, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30445046

RESUMO

We provide the evidence for G protein-coupled receptor 35 (GPR35) presence and distribution in the human cornea. The initial data on GPR35 gene expression were retrieved from microarray repositories and were further confirmed by western blotting and immunohistochemical analysis. Immunoblotting suggested that GPR35 exists predominantly as a dimer in corneal tissue. Moreover, corneal tissues were significantly richer in GPR35 compared to the adjacent sclera. Immunoreactivity for GPR35 was detected in normal corneas, keratoconus and Fuchs' dystrophy, mainly in the corneal epithelium and endothelium. In corneas with Fuchs' dystrophy, less intensive immunoreactivity for GPR35 in endothelium was revealed. The physiological relevance of this phenomenon requires further investigation.


Assuntos
Córnea/metabolismo , Distrofia Endotelial de Fuchs/metabolismo , Regulação da Expressão Gênica/fisiologia , Ceratocone/metabolismo , Receptores Acoplados a Proteínas G/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Endotélio Corneano/metabolismo , Epitélio Corneano/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Receptores Acoplados a Proteínas G/metabolismo , Esclera/metabolismo
16.
Clin Exp Ophthalmol ; 47(8): 1028-1042, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31206232

RESUMO

BACKGROUND: Fuchs endothelial corneal dystrophy (FECD) is a progressive and potentially a sight threatening disease, and a common indication for corneal grafting in the elderly. Aberrant thickening of Descemet's membrane, formation of microscopic excrescences (guttae) and gradual loss of corneal endothelial cells are the hallmarks of the disease. The aim of this study was to identify differentially abundant proteins between FECD-affected and unaffected Descemet's membrane. METHODS: Label-free quantitative proteomics using nanoscale ultra-performance liquid chromatography-mass spectrometry (nUPLC-MSE ) was employed on affected and unaffected Descemet's membrane extracts, and interesting findings were further investigated using quantitative reverse transcription-polymerase chain reaction and immunohistochemical techniques. RESULTS: Quantitative proteomics revealed significantly lower abundance of apolipoprotein E (APOE) and immunoglobulin heavy constant gamma 1 protein (IGHG1) in affected Descemet's membrane. The difference in the distribution of APOE between affected and unaffected Descemet's membrane and of IGHG1 detected by immunohistochemistry support their down-regulation in the disease. Comparative gene expression analysis showed significantly lower APOE mRNA levels in FECD-affected than unaffected corneal endothelium. IGHG1 gene is expressed at extremely low levels in the corneal endothelium, precluding relative expression analysis. CONCLUSIONS: This is the first study to report comparative proteomics of Descemet's membrane tissue, and implicates dysregulation of APOE and IGHG1 proteins in the pathogenesis of Fuchs endothelial corneal dystrophy.


Assuntos
Apolipoproteínas E/genética , Proteínas de Transporte/genética , Distrofia Endotelial de Fuchs/genética , Regulação da Expressão Gênica/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Apolipoproteínas E/metabolismo , Proteínas de Transporte/metabolismo , Cromatografia Líquida de Alta Pressão , Feminino , Distrofia Endotelial de Fuchs/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Proteômica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
17.
Am J Pathol ; 186(10): 2736-50, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27639969

RESUMO

Human corneal endothelial cells are derived from neural crest and because of postmitotic arrest lack competence to repair cell loss from trauma, aging, and degenerative disorders such as Fuchs endothelial corneal dystrophy (FECD). Herein, we identified a rapidly proliferating subpopulation of cells from the corneal endothelium of adult normal and FECD donors that exhibited features of neural crest-derived progenitor (NCDP) cells by showing absence of senescence with passaging, propensity to form spheres, and increased colony forming efficacy compared with the primary cells. The collective expression of stem cell-related genes SOX2, OCT4, LGR5, TP63 (p63), as well as neural crest marker genes PSIP1 (p75(NTR)), PAX3, SOX9, AP2B1 (AP-2ß), and NES, generated a phenotypic footprint of endothelial NCDPs. NCDPs displayed multipotency by differentiating into microtubule-associated protein 2, ß-III tubulin, and glial fibrillary acidic protein positive neurons and into p75(NTR)-positive human corneal endothelial cells that exhibited transendothelial resistance of functional endothelium. In conclusion, we found that mitotically incompetent ocular tissue cells contain adult NCDPs that exhibit a profile of transcription factors regulating multipotency and neural crest progenitor characteristics. Identification of normal NCDPs in FECD-affected endothelium holds promise for potential autologous cell therapies.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Endotélio Corneano/patologia , Distrofia Endotelial de Fuchs/patologia , Adulto , Idoso , Biomarcadores/metabolismo , Células Progenitoras Endoteliais/patologia , Endotélio Corneano/metabolismo , Feminino , Distrofia Endotelial de Fuchs/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Crista Neural/metabolismo , Crista Neural/patologia , Fenótipo , Tubulina (Proteína)
18.
Lab Invest ; 95(11): 1291-304, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26302187

RESUMO

Fuchs endothelial corneal dystrophy (FECD) due to corneal endothelial cell degeneration is a major cause of corneal transplantation. It is characterized by abnormal deposition of extracellular matrix (ECM), such as corneal guttae, accompanied by a loss of endothelial cells. Although recent studies have revealed several genomic factors, the molecular pathophysiology of FECD has not yet been revealed. In this study, we establish a cellular in vitro model by using immortalized corneal endothelial cells obtained from late-onset FECD and control patients and examined the involvement of epithelial mesenchymal transition (EMT) on excessive ECM production. We demonstrate that the EMT-inducing genes ZEB1 and SNAI1 were highly expressed in corneal endothelial cells in FECD and were involved in excessive production of ECM proteins, such as type I collagen and fibronectin through the transforming growth factor (TGF)-ß signaling pathway. Furthermore, we found that SB431542, a specific inhibitor of TGF-ß type I ALK receptors, suppressed the expression of ZEB1 and Snail1 followed by reduced production of ECM. These findings suggest that increased expression levels of ZEB1 and Snail1 in FECD cells were responsible for an increased responsiveness to TGF-ß present in the aqueous humor and excessive production of ECM. In addition, these results suggest that the regulation of EMT-related genes by blocking the TGF-ß signaling pathway may be a feasible therapeutic strategy for FECD.


Assuntos
Matriz Extracelular/metabolismo , Distrofia Endotelial de Fuchs/metabolismo , Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição/fisiologia , Linhagem Celular Transformada , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Humanos , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/fisiologia , Regulação para Cima , Homeobox 1 de Ligação a E-box em Dedo de Zinco
19.
Nat Genet ; 38(7): 755-7, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16767101

RESUMO

Congenital hereditary endothelial dystrophy (CHED) is a heritable, bilateral corneal dystrophy characterized by corneal opacification and nystagmus. We describe seven different mutations in the SLC4A11 gene in ten families with autosomal recessive CHED. Mutations in SLC4A11, which encodes a membrane-bound sodium-borate cotransporter, cause loss of function of the protein either by blocking its membrane targeting or nonsense-mediated decay.


Assuntos
Proteínas de Transporte de Ânions/genética , Antiporters/genética , Distrofias Hereditárias da Córnea/genética , Mutação Puntual , Substituição de Aminoácidos , Proteínas de Transporte de Ânions/metabolismo , Antiporters/metabolismo , Boratos/metabolismo , Distrofias Hereditárias da Córnea/metabolismo , Feminino , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/metabolismo , Genes Recessivos , Humanos , Masculino
20.
Hum Mutat ; 35(9): 1082-91, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24916015

RESUMO

SLC4A11 mutations cause some cases of the corneal endothelial dystrophies, congenital hereditary endothelial corneal dystrophy type 2 (CHED2), Harboyan syndrome (HS), and Fuchs endothelial corneal dystrophy (FECD). SLC4A11 protein was recently identified as facilitating water flux across membranes. SLC4A11 point mutations usually cause SLC4A11 misfolding and retention in the endoplasmic reticulum (ER). We set about to test the feasibility of rescuing misfolded SLC4A11 protein to the plasma membrane as a therapeutic approach. Using a transfected HEK293 cell model, we measured functional activity present in cells expressing SLC4A11 variants in combinations representing the state found in CHED2 carriers, affected CHED2, FECD individuals, and unaffected individuals. These cells manifest respectively about 60%, 5%, and 25% of the water flux activity, relative to the unaffected (WT alone). ER-retained CHED2 mutant SLC4A11 protein could be rescued to the plasma membrane, where it conferred 25%-30% of WT water flux level. Further, some ER-retained CHED2 mutants expressed at 30°C supported increased water flux compared with 37°C cultures. Caspase activation and cell vitality assays revealed that expression of SLC4A11 mutants in HEK293 cells does not induce cell death. We conclude that therapeutics able to increase cell surface localization of ER-retained SLC4A11 mutants hold promise to treat CHED2 and FECD patients.


Assuntos
Distrofias Hereditárias da Córnea/genética , Mutação , Proteínas SLC4A/genética , Apoptose/genética , Caspase 3/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Distrofias Hereditárias da Córnea/metabolismo , Retículo Endoplasmático/metabolismo , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Dobramento de Proteína , Multimerização Proteica , Transporte Proteico , Deficiências na Proteostase/genética , Proteínas SLC4A/química , Proteínas SLC4A/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA