Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 770
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 35: 441-468, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28226226

RESUMO

Microglia are resident cells of the brain that regulate brain development, maintenance of neuronal networks, and injury repair. Microglia serve as brain macrophages but are distinct from other tissue macrophages owing to their unique homeostatic phenotype and tight regulation by the central nervous system (CNS) microenvironment. They are responsible for the elimination of microbes, dead cells, redundant synapses, protein aggregates, and other particulate and soluble antigens that may endanger the CNS. Furthermore, as the primary source of proinflammatory cytokines, microglia are pivotal mediators of neuroinflammation and can induce or modulate a broad spectrum of cellular responses. Alterations in microglia functionality are implicated in brain development and aging, as well as in neurodegeneration. Recent observations about microglia ontogeny combined with extensive gene expression profiling and novel tools to study microglia biology have allowed us to characterize the spectrum of microglial phenotypes during development, homeostasis, and disease. In this article, we review recent advances in our understanding of the biology of microglia, their contribution to homeostasis, and their involvement in neurodegeneration. Moreover, we highlight the complexity of targeting microglia for therapeutic intervention in neurodegenerative diseases.


Assuntos
Terapia Biológica/métodos , Encéfalo/fisiologia , Sistema Nervoso Central , Microglia/fisiologia , Doenças Neurodegenerativas/imunologia , Inflamação Neurogênica , Animais , Citocinas/metabolismo , Homeostase , Humanos , Microglia/transplante
2.
Nat Immunol ; 22(9): 1083-1092, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34429552

RESUMO

For decades, it was commonly accepted that the brain is secluded from peripheral immune activity and is self-sufficient for its maintenance and repair. This simplistic perception was based on the presence of resident immune cells, the microglia, and barrier systems within the brain, and the assumption that the central nervous system (CNS) lacks lymphatic drainage. This view was revised with the discoveries that higher functions of the CNS, homeostasis and repair are supported by peripheral innate and adaptive immune cells. The findings of bone marrow-derived immune cells in specialized niches, and the renewed observation that a lymphatic drainage system exists within the brain, further contributed to this revised model. In this Review, we describe the immune niches within the brain, the contribution of professional immune cells to brain functions, the bidirectional relationships between the CNS and the immune system and the relevance of immune components to brain aging and neurodegenerative diseases.


Assuntos
Encéfalo/imunologia , Imunidade/fisiologia , Microglia/imunologia , Doenças Neurodegenerativas/imunologia , Envelhecimento/imunologia , Barreira Hematoencefálica/imunologia , Células da Medula Óssea/imunologia , Líquido Cefalorraquidiano/citologia , Líquido Cefalorraquidiano/imunologia , Humanos , Subpopulações de Linfócitos/imunologia , Macrófagos/imunologia
3.
Cell ; 173(5): 1073-1081, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29775591

RESUMO

A major challenge in the field of neurodegenerative diseases and brain aging is to identify the body's intrinsic mechanism that could sense the central nervous system (CNS) damage early and protect the brain from neurodegeneration. Accumulating evidence suggests that disease-associated microglia (DAM), a recently identified subset of CNS resident macrophages found at sites of neurodegeneration, might play such a protective role. Here, we propose that microglia are endowed with a dedicated sensory mechanism, which includes the Trem2 signaling pathway, to detect damage within the CNS in the form of neurodegeneration-associated molecular patterns (NAMPs). Combining data from transcriptional analysis of DAM at single-cell level and from human genome-wide association studies (GWASs), we discuss potential function of different DAM pathways in the diseased brain and outline how manipulating DAM may create new therapeutic opportunities.


Assuntos
Microglia/metabolismo , Doenças Neurodegenerativas/patologia , Animais , Sistema Nervoso Central/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais
4.
Cell ; 169(7): 1276-1290.e17, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28602351

RESUMO

Alzheimer's disease (AD) is a detrimental neurodegenerative disease with no effective treatments. Due to cellular heterogeneity, defining the roles of immune cell subsets in AD onset and progression has been challenging. Using transcriptional single-cell sorting, we comprehensively map all immune populations in wild-type and AD-transgenic (Tg-AD) mouse brains. We describe a novel microglia type associated with neurodegenerative diseases (DAM) and identify markers, spatial localization, and pathways associated with these cells. Immunohistochemical staining of mice and human brain slices shows DAM with intracellular/phagocytic Aß particles. Single-cell analysis of DAM in Tg-AD and triggering receptor expressed on myeloid cells 2 (Trem2)-/- Tg-AD reveals that the DAM program is activated in a two-step process. Activation is initiated in a Trem2-independent manner that involves downregulation of microglia checkpoints, followed by activation of a Trem2-dependent program. This unique microglia-type has the potential to restrict neurodegeneration, which may have important implications for future treatment of AD and other neurodegenerative diseases. VIDEO ABSTRACT.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Microglia/patologia , Fagócitos/patologia , Doença de Alzheimer/genética , Animais , Humanos , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Fagócitos/metabolismo , Receptores Imunológicos/metabolismo , Análise de Sequência de RNA , Análise de Célula Única
5.
Nat Immunol ; 19(11): 1212-1223, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30323343

RESUMO

Activation of innate immunity and deposition of blood-derived fibrin in the central nervous system (CNS) occur in autoimmune and neurodegenerative diseases, including multiple sclerosis (MS) and Alzheimer's disease (AD). However, the mechanisms that link disruption of the blood-brain barrier (BBB) to neurodegeneration are poorly understood, and exploration of fibrin as a therapeutic target has been limited by its beneficial clotting functions. Here we report the generation of monoclonal antibody 5B8, targeted against the cryptic fibrin epitope γ377-395, to selectively inhibit fibrin-induced inflammation and oxidative stress without interfering with clotting. 5B8 suppressed fibrin-induced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and the expression of proinflammatory genes. In animal models of MS and AD, 5B8 entered the CNS and bound to parenchymal fibrin, and its therapeutic administration reduced the activation of innate immunity and neurodegeneration. Thus, fibrin-targeting immunotherapy inhibited autoimmunity- and amyloid-driven neurotoxicity and might have clinical benefit without globally suppressing innate immunity or interfering with coagulation in diverse neurological diseases.


Assuntos
Anticorpos Monoclonais/imunologia , Fibrinogênio/antagonistas & inibidores , Doenças Neurodegenerativas/imunologia , Animais , Epitopos , Humanos , Inflamação/imunologia , Camundongos , Ratos
6.
Nature ; 625(7994): 321-328, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200296

RESUMO

Multiple sclerosis (MS) is a neuro-inflammatory and neurodegenerative disease that is most prevalent in Northern Europe. Although it is known that inherited risk for MS is located within or in close proximity to immune-related genes, it is unknown when, where and how this genetic risk originated1. Here, by using a large ancient genome dataset from the Mesolithic period to the Bronze Age2, along with new Medieval and post-Medieval genomes, we show that the genetic risk for MS rose among pastoralists from the Pontic steppe and was brought into Europe by the Yamnaya-related migration approximately 5,000 years ago. We further show that these MS-associated immunogenetic variants underwent positive selection both within the steppe population and later in Europe, probably driven by pathogenic challenges coinciding with changes in diet, lifestyle and population density. This study highlights the critical importance of the Neolithic period and Bronze Age as determinants of modern immune responses and their subsequent effect on the risk of developing MS in a changing environment.


Assuntos
Predisposição Genética para Doença , Genoma Humano , Pradaria , Esclerose Múltipla , Humanos , Conjuntos de Dados como Assunto , Dieta/etnologia , Dieta/história , Europa (Continente)/etnologia , Predisposição Genética para Doença/história , Genética Médica , História do Século XV , História Antiga , História Medieval , Migração Humana/história , Estilo de Vida/etnologia , Estilo de Vida/história , Esclerose Múltipla/genética , Esclerose Múltipla/história , Esclerose Múltipla/imunologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/história , Doenças Neurodegenerativas/imunologia , Densidade Demográfica
7.
Nat Immunol ; 18(8): 851-860, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28722709

RESUMO

The study of the intestinal microbiota has begun to shift from cataloging individual members of the commensal community to understanding their contributions to the physiology of the host organism in health and disease. Here, we review the effects of the microbiome on innate and adaptive immunological players from epithelial cells and antigen-presenting cells to innate lymphoid cells and regulatory T cells. We discuss recent studies that have identified diverse microbiota-derived bioactive molecules and their effects on inflammation within the intestine and distally at sites as anatomically remote as the brain. Finally, we highlight new insights into how the microbiome influences the host response to infection, vaccination and cancer, as well as susceptibility to autoimmune and neurodegenerative disorders.


Assuntos
Microbioma Gastrointestinal/imunologia , Infecções/imunologia , Inflamação/imunologia , Neoplasias/imunologia , Imunidade Adaptativa/imunologia , Células Apresentadoras de Antígenos/imunologia , Doenças Autoimunes/imunologia , Humanos , Imunidade Inata/imunologia , Imunidade nas Mucosas/imunologia , Linfócitos/imunologia , Doenças Neurodegenerativas/imunologia , Simbiose , Linfócitos T Reguladores/imunologia , Vacinação
8.
Immunity ; 50(4): 778-795, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995499

RESUMO

Forty years after its naming, interleukin-1 (IL-1) is experiencing a renaissance brought on by the growing understanding of its context-dependent roles and advances in the clinic. Recent studies have identified important roles for members of the IL-1 family-IL-18, IL-33, IL-36, IL-37, and IL-38-in inflammation and immunity. Here, we review the complex functions of IL-1 family members in the orchestration of innate and adaptive immune responses and their diversity and plasticity. We discuss the varied roles of IL-1 family members in immune homeostasis and their contribution to pathologies, including autoimmunity and auto-inflammation, dysmetabolism, cardiovascular disorders, and cancer. The trans-disease therapeutic activity of anti-IL-1 strategies argues for immunity and inflammation as a metanarrative of modern medicine.


Assuntos
Imunidade Adaptativa/imunologia , Citocinas/fisiologia , Imunidade Inata/imunologia , Inflamação/imunologia , Interleucina-1/fisiologia , Animais , Doenças Cardiovasculares/imunologia , Citocinas/genética , Citocinas/imunologia , Gastroenteropatias/imunologia , Hematopoese/imunologia , Humanos , Interleucina-1/imunologia , Linfócitos/imunologia , Camundongos , Camundongos Knockout , Família Multigênica , Neoplasias/imunologia , Doenças Neurodegenerativas/imunologia , Receptores de Citocinas/genética , Receptores de Citocinas/imunologia
9.
Immunity ; 50(4): 955-974, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995509

RESUMO

Neurodegenerative diseases of the central nervous system progressively rob patients of their memory, motor function, and ability to perform daily tasks. Advances in genetics and animal models are beginning to unearth an unexpected role of the immune system in disease onset and pathogenesis; however, the role of cytokines, growth factors, and other immune signaling pathways in disease pathogenesis is still being examined. Here we review recent genetic risk and genome-wide association studies and emerging mechanisms for three key immune pathways implicated in disease, the growth factor TGF-ß, the complement cascade, and the extracellular receptor TREM2. These immune signaling pathways are important under both healthy and neurodegenerative conditions, and recent work has highlighted new functional aspects of their signaling. Finally, we assess future directions for immune-related research in neurodegeneration and potential avenues for immune-related therapies.


Assuntos
Doenças Neurodegenerativas/imunologia , Transdução de Sinais/imunologia , Envelhecimento/imunologia , Animais , Ativação do Complemento , Progressão da Doença , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Gliose/imunologia , Gliose/patologia , Humanos , Imunidade Inata , Inflamação/imunologia , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microglia/imunologia , Modelos Imunológicos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Agregação Patológica de Proteínas/imunologia , Receptores Imunológicos/imunologia , Fator de Crescimento Transformador beta/imunologia
10.
Trends Immunol ; 45(5): 329-337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600001

RESUMO

Neurodegenerative disorders present major challenges to global health, exacerbated by an aging population and the absence of therapies. Despite diverse pathological manifestations, they share a common hallmark, loosely termed 'neuroinflammation'. The prevailing dogma is that the immune system is an active contributor to neurodegeneration; however, recent evidence challenges this. By analogy with road construction, which causes temporary closures and disruptions, the immune system's actions in the central nervous system (CNS) might initially appear destructive, and might even cause harm, while aiming to combat neurodegeneration. We propose that the application of cellular immunotherapies to coordinate the immune response towards remodeling might pave the way for new modes of tackling the roadblocks of neurodegenerative diseases.


Assuntos
Imunoterapia , Doenças Neurodegenerativas , Animais , Humanos , Sistema Nervoso Central/imunologia , Imunoterapia/métodos , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/imunologia
11.
Trends Immunol ; 45(5): 338-345, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38616144

RESUMO

After decades of being overlooked, a recent wave of studies have explored the roles of microglia in brain health and disease. Microglia perform important physiological functions to set up and maintain proper neural network functions, as well as orchestrate responses to toxic stimuli to limit harm. Many microglial transcriptional programs, extracellular sensing molecules, and functional outputs are seen throughout life. A stark example is the similarity of microglial responses to stressors during neurodevelopment and neurodegeneration. The same themes often match that of other tissue-resident macrophages, presenting an opportunity to apply known concepts as therapeutics develop. We argue that microglial signaling during development and neurologic disease overlap with one another and with other tissue-resident macrophage pathways, in part due to similar sensed stimuli and a conserved sensome of receptors and signaling molecules, akin to a toolkit.


Assuntos
Microglia , Transdução de Sinais , Microglia/imunologia , Humanos , Animais , Encéfalo/imunologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/terapia , Macrófagos/imunologia
12.
Immunity ; 48(2): 380-395.e6, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29426702

RESUMO

Individual reports suggest that the central nervous system (CNS) contains multiple immune cell types with diverse roles in tissue homeostasis, immune defense, and neurological diseases. It has been challenging to map leukocytes across the entire brain, and in particular in pathology, where phenotypic changes and influx of blood-derived cells prevent a clear distinction between reactive leukocyte populations. Here, we applied high-dimensional single-cell mass and fluorescence cytometry, in parallel with genetic fate mapping systems, to identify, locate, and characterize multiple distinct immune populations within the mammalian CNS. Using this approach, we revealed that microglia, several subsets of border-associated macrophages and dendritic cells coexist in the CNS at steady state and exhibit disease-specific transformations in the immune microenvironment during aging and in models of Alzheimer's disease and multiple sclerosis. Together, these data and the described framework provide a resource for the study of disease mechanisms, potential biomarkers, and therapeutic targets in CNS disease.


Assuntos
Envelhecimento/imunologia , Sistema Nervoso Central/imunologia , Leucócitos/imunologia , Macrófagos/imunologia , Animais , Células Dendríticas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/imunologia , Análise de Célula Única
13.
Immunity ; 46(6): 957-967, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636962

RESUMO

Astrocytes constitute approximately 30% of the cells in the mammalian central nervous system (CNS). They are integral to brain and spinal-cord physiology and perform many functions important for normal neuronal development, synapse formation, and proper propagation of action potentials. We still know very little, however, about how these functions change in response to immune attack, chronic neurodegenerative disease, or acute trauma. In this review, we summarize recent studies that demonstrate that different initiating CNS injuries can elicit at least two types of "reactive" astrocytes with strikingly different properties, one type being helpful and the other harmful. We will also discuss new methods for purifying and investigating reactive-astrocyte functions and provide an overview of new markers for delineating these different states of reactive astrocytes. The discovery that astrocytes have different types of reactive states has important implications for the development of new therapies for CNS injury and diseases.


Assuntos
Astrócitos/fisiologia , Terapia Biológica/tendências , Encéfalo/imunologia , Sistema Nervoso Central/imunologia , Doenças Neurodegenerativas/imunologia , Animais , Humanos , Doenças Neurodegenerativas/terapia , Neurônios/fisiologia
14.
Immunity ; 46(6): 943-956, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636961

RESUMO

The central nervous system (CNS) and its meningeal coverings accommodate a diverse myeloid compartment that includes parenchymal microglia and perivascular macrophages, as well as choroid plexus and meningeal macrophages, dendritic cells, and granulocytes. These myeloid populations enjoy an intimate relationship with the CNS, where they play an essential role in both health and disease. Although the importance of these cells is clearly recognized, their exact function in the CNS continues to be explored. Here, we review the subsets of myeloid cells that inhabit the parenchyma, meninges, and choroid plexus and discuss their roles in CNS homeostasis. We also discuss the role of these cells in various neurological pathologies, such as autoimmunity, mechanical injury, neurodegeneration, and infection. We highlight the neuroprotective nature of certain myeloid cells by emphasizing their therapeutic potential for the treatment of neurological conditions.


Assuntos
Doenças Autoimunes/imunologia , Plexo Corióideo/imunologia , Infecções/imunologia , Células Mieloides/fisiologia , Doenças Neurodegenerativas/imunologia , Neuroimunomodulação , Ferimentos e Lesões/imunologia , Animais , Sistema Nervoso Central , Humanos , Meninges/imunologia , Neuroproteção
15.
Immunity ; 47(3): 566-581.e9, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930663

RESUMO

Microglia play a pivotal role in the maintenance of brain homeostasis but lose homeostatic function during neurodegenerative disorders. We identified a specific apolipoprotein E (APOE)-dependent molecular signature in microglia from models of amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Alzheimer's disease (AD) and in microglia surrounding neuritic ß-amyloid (Aß)-plaques in the brains of people with AD. The APOE pathway mediated a switch from a homeostatic to a neurodegenerative microglia phenotype after phagocytosis of apoptotic neurons. TREM2 (triggering receptor expressed on myeloid cells 2) induced APOE signaling, and targeting the TREM2-APOE pathway restored the homeostatic signature of microglia in ALS and AD mouse models and prevented neuronal loss in an acute model of neurodegeneration. APOE-mediated neurodegenerative microglia had lost their tolerogenic function. Our work identifies the TREM2-APOE pathway as a major regulator of microglial functional phenotype in neurodegenerative diseases and serves as a novel target that could aid in the restoration of homeostatic microglia.


Assuntos
Apolipoproteínas E/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Transcriptoma , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apoptose/genética , Apoptose/imunologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Análise por Conglomerados , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Marcação de Genes , Humanos , Tolerância Imunológica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microglia/imunologia , Monócitos/imunologia , Monócitos/metabolismo , Doenças Neurodegenerativas/imunologia , Neurônios/metabolismo , Fagocitose/genética , Fagocitose/imunologia , Fenótipo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Fator de Crescimento Transformador beta/metabolismo
16.
Ann Neurol ; 95(6): 1093-1098, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38516846

RESUMO

Eomesodermin-expressing (Eomes+) T-helper (Th) cells show cytotoxic characteristics in secondary progressive multiple sclerosis. We found that Eomes+ Th cell frequency was increased in the peripheral blood of amyotrophic lateral sclerosis and Alzheimer's disease patients. Furthermore, granzyme B production by Th cells from such patients was high compared with controls. A high frequency of Eomes+ Th cells was observed in the initial (acutely progressive) stage of amyotrophic lateral sclerosis, and a positive correlation between Eomes+ Th cell frequency and cognitive decline was observed in Alzheimer's disease patients. Therefore, Eomes+ Th cells may be involved in the pathology of amyotrophic lateral sclerosis and Alzheimer's disease. ANN NEUROL 2024;95:1093-1098.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas com Domínio T , Linfócitos T Auxiliares-Indutores , Humanos , Masculino , Idoso , Feminino , Linfócitos T Auxiliares-Indutores/imunologia , Pessoa de Meia-Idade , Esclerose Lateral Amiotrófica/imunologia , Proteínas com Domínio T/metabolismo , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Granzimas/metabolismo , Doenças Neurodegenerativas/imunologia , Idoso de 80 Anos ou mais
17.
Nat Rev Neurosci ; 21(2): 93-102, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31913356

RESUMO

A rapidly ageing population and a limited therapeutic toolbox urgently necessitate new approaches to treat neurodegenerative diseases. Brain ageing, the key risk factor for neurodegeneration, involves complex cellular and molecular processes that eventually result in cognitive decline. Although cell-intrinsic defects in neurons and glia may partially explain this decline, cell-extrinsic changes in the systemic environment, mediated by blood, have recently been shown to contribute to brain dysfunction with age. Here, we review the current understanding of how systemic factors mediate brain ageing, how these factors are regulated and how we can translate these findings into therapies for neurodegenerative diseases.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Homeostase , Doenças Neurodegenerativas/fisiopatologia , Envelhecimento/imunologia , Animais , Encéfalo/imunologia , Células Endoteliais/imunologia , Células Endoteliais/fisiologia , Exercício Físico/fisiologia , Humanos , Microbiota/imunologia , Microbiota/fisiologia , Doenças Neurodegenerativas/imunologia , Neuroglia/imunologia , Neuroglia/fisiologia , Neurônios/imunologia , Neurônios/fisiologia
18.
Cell ; 140(6): 918-34, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20303880

RESUMO

Inflammation is associated with many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. In this Review, we discuss inducers, sensors, transducers, and effectors of neuroinflammation that contribute to neuronal dysfunction and death. Although inducers of inflammation may be generated in a disease-specific manner, there is evidence for a remarkable convergence in the mechanisms responsible for the sensing, transduction, and amplification of inflammatory processes that result in the production of neurotoxic mediators. A major unanswered question is whether pharmacological inhibition of inflammation pathways will be able to safely reverse or slow the course of disease.


Assuntos
Inflamação/imunologia , Doenças Neurodegenerativas/imunologia , Animais , Encéfalo/patologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/fisiopatologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia
19.
Nature ; 566(7745): 503-508, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30787438

RESUMO

The grey matter is a central target of pathological processes in neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. The grey matter is often also affected in multiple sclerosis, an autoimmune disease of the central nervous system. The mechanisms that underlie grey matter inflammation and degeneration in multiple sclerosis are not well understood. Here we show that, in Lewis rats, T cells directed against the neuronal protein ß-synuclein specifically invade the grey matter and that this is accompanied by the presentation of multifaceted clinical disease. The expression pattern of ß-synuclein induces the local activation of these T cells and, therefore, determined inflammatory priming of the tissue and targeted recruitment of immune cells. The resulting inflammation led to significant changes in the grey matter, which ranged from gliosis and neuronal destruction to brain atrophy. In humans, ß-synuclein-specific T cells were enriched in patients with chronic-progressive multiple sclerosis. These findings reveal a previously unrecognized role of ß-synuclein in provoking T-cell-mediated pathology of the central nervous system.


Assuntos
Substância Cinzenta/imunologia , Substância Cinzenta/patologia , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Crônica Progressiva/patologia , Linfócitos T/imunologia , beta-Sinucleína/imunologia , Animais , Encéfalo/patologia , Movimento Celular/imunologia , Feminino , Regulação da Expressão Gênica , Gliose/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Ativação Linfocitária , Contagem de Linfócitos , Masculino , Esclerose Múltipla Crônica Progressiva/sangue , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Ratos , Ratos Endogâmicos Lew , Linfócitos T/metabolismo , Linfócitos T/patologia , beta-Sinucleína/análise , beta-Sinucleína/genética , beta-Sinucleína/metabolismo
20.
Nat Rev Neurosci ; 20(9): 547-562, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31358892

RESUMO

The segregation and limited regenerative capacity of the CNS necessitate a specialized and tightly regulated resident immune system that continuously guards the CNS against invading pathogens and injury. Immunity in the CNS has generally been attributed to neuron-associated microglia in the parenchyma, whose origin and functions have recently been elucidated. However, there are several other specialized macrophage populations at the CNS borders, including dural, leptomeningeal, perivascular and choroid plexus macrophages (collectively known as CNS-associated macrophages (CAMs)), whose origins and roles in health and disease have remained largely uncharted. CAMs are thought to be involved in regulating the fine balance between the proper segregation of the CNS, on the one hand, and the essential exchange between the CNS parenchyma and the periphery, on the other. Recent studies that have been empowered by major technological advances have shed new light on these cells and suggest central roles for CAMs in CNS physiology and in the pathogenesis of diseases.


Assuntos
Sistema Nervoso Central/imunologia , Mediadores da Inflamação/imunologia , Macrófagos/imunologia , Doenças Neurodegenerativas/imunologia , Neurônios/imunologia , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Neurônios/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA