Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 31, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212566

RESUMO

The intricate relationship between the central nervous system (CNS) and the immune system plays a crucial role in the pathogenesis of various neurological diseases. Understanding the interactions among the immunopathological processes at the brain borders is essential for advancing our knowledge of disease mechanisms and developing novel diagnostic and therapeutic approaches. In this review, we explore the emerging role of neuroimaging in providing valuable insights into brain barrier inflammation and brain fluid drainage in human neurological diseases. Neuroimaging techniques have enabled us not only to visualize and assess brain structures, but also to study the dynamics of the CNS in health and disease in vivo. By analyzing imaging findings, we can gain a deeper understanding of the immunopathology observed at the brain-immune interface barriers, which serve as critical gatekeepers that regulate immune cell trafficking, cytokine release, and clearance of waste products from the brain. This review explores the integration of neuroimaging data with immunopathological findings, providing valuable insights into brain barrier integrity and immune responses in neurological diseases. Such integration may lead to the development of novel diagnostic markers and targeted therapeutic approaches that can benefit patients with neurological disorders.


Assuntos
Sistema Glinfático , Doenças do Sistema Nervoso , Humanos , Sistema Glinfático/patologia , Encéfalo/patologia , Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/terapia , Doenças do Sistema Nervoso/patologia , Inflamação/diagnóstico por imagem , Inflamação/patologia , Barreira Hematoencefálica/diagnóstico por imagem
2.
J Med Genet ; 61(6): 566-577, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38296634

RESUMO

BACKGROUND: Sex-specific predilection in neurological diseases caused by mutations in autosomal genes is a phenomenon whose molecular basis is poorly understood. We studied females of consanguineous Bedouin kindred presenting with severe global developmental delay and epilepsy. METHODS: Linkage analysis, whole exome sequencing, generation of CRISPR/cas9 knock-in mice, mouse behaviour and molecular studies RESULTS: Linkage analysis and whole exome sequencing studies of the affected kindred delineated a ~5 Mbp disease-associated chromosome 2q35 locus, containing a novel homozygous frameshift truncating mutation in ZNF142, in line with recent studies depicting similar ZNF142 putative loss-of-function human phenotypes with female preponderance. We generated knock-in mice with a truncating mutation adjacent to the human mutation in the mouse ortholog. Behaviour studies of homozygous Zfp142R1508* mice showed significant phenotype only in mutant females, with learning and memory deficits, hyperactivity and aberrant loss of fear of open spaces. Bone marrow and spleen of homozygous Zfp142R1508* mice showed depletion of lymphoid and haematopoietic cells, mostly in females. RT-PCR showed lower expression of Zpf142 in brain compartments of female versus male wild-type mice. RNA-seq studies of hippocampus, hypothalamus, cortex and cerebellum of female wild-type versus homozygous Zfp142R1508* mice demonstrated differentially expressed genes. Notably, expression of Taok1 in the cortex and of Mllt6 in the hippocampus was downregulated in homozygous Zfp142R1508* mice. Taok1 mutations have been associated with aberrant neurodevelopment and behaviour. Mllt6 expression is regulated by sex hormones and Mllt6 null-mutant mice present with haematopoietic, immune system and female-specific behaviour phenotypes. CONCLUSION: ZNF142 mutation downregulates Mllt6 and Taok1, causing a neurodevelopmental phenotype in humans and mice with female preponderance.


Assuntos
Mutação , Animais , Feminino , Camundongos , Masculino , Humanos , Linhagem , Proteínas de Ligação a DNA/genética , Fenótipo , Fatores de Transcrição/genética , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Sequenciamento do Exoma , Ligação Genética , Epilepsia/genética , Epilepsia/patologia
3.
Apoptosis ; 29(7-8): 981-1006, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824478

RESUMO

Copper is a trace element required by the organism, but once the level of copper exceeds the threshold, it becomes toxic and even causes death. The underlying mechanisms of copper-induced death are inconclusive, with different studies showing different opinions on the mechanism of copper-induced death. Multiple investigations have shown that copper induces oxidative stress, endoplasmic reticulum stress, nucleolar stress, and proteasome inhibition, all of which can result in cell death. The latest research elucidates a copper-dependent death and denominates it as cuproptosis. Cuproptosis takes place through the combination of copper and lipoylated proteins of the tricarboxylic acid cycle, triggering agglomeration of lipoylated proteins and loss of iron-sulfur cluster proteins, leading to proteotoxic stress and ultimately death. Given the toxicity and necessity of copper, abnormal levels of copper lead to diseases such as neurological diseases and cancer. The development of cancer has a high demand for copper, neurological diseases involve the change of copper contents and the binding of copper to proteins. There is a close relationship between these two kinds of diseases and copper. Here, we summarize the mechanisms of copper-related death, and the association between copper and diseases, to better figure out the influence of copper in cell death and diseases, thus advancing the clinical remedy of these diseases.


Assuntos
Cobre , Neoplasias , Humanos , Cobre/metabolismo , Animais , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Oxidativo , Estresse do Retículo Endoplasmático , Morte Celular , Apoptose , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia
4.
Curr Opin Neurol ; 37(4): 361-368, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38884636

RESUMO

PURPOSE OF REVIEW: The brainstem's complex anatomy and relatively small size means that structural and functional assessment of this structure is done less frequently compared to other brain areas. However, recent years have seen substantial progress in brainstem imaging, enabling more detailed investigations into its structure and function, as well as its role in neuropathology. RECENT FINDINGS: Advancements in ultrahigh field MRI technology have allowed for unprecedented spatial resolution in brainstem imaging, facilitating the new creation of detailed brainstem-specific atlases. Methodological improvements have significantly enhanced the accuracy of physiological (cardiac and respiratory) noise correction within brainstem imaging studies. These technological and methodological advancements have allowed for in-depth analyses of the brainstem's anatomy, including quantitative assessments and examinations of structural connectivity within both gray and white matter. Furthermore, functional studies, including assessments of activation patterns and functional connectivity, have revealed the brainstem's roles in both specialized functions and broader neural integration. Notably, these investigations have identified alterations in brainstem structure and function associated with various neurological disorders. SUMMARY: The aforementioned developments have allowed for a greater appreciation of the importance of the brainstem in the wider context of neuroscience and clinical neurology.


Assuntos
Tronco Encefálico , Imageamento por Ressonância Magnética , Humanos , Tronco Encefálico/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/patologia
5.
Expert Rev Mol Med ; 26: e11, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682637

RESUMO

Long non-coding RNAs (lncRNAs) are progressively being perceived as prominent molecular agents controlling multiple aspects of neuronal (patho)physiology. Amongst these is the HOX transcript antisense intergenic RNA, often abbreviated as HOTAIR. HOTAIR epigenetically regulates its target genes via its interaction with two different chromatin-modifying agents; histone methyltransferase polycomb-repressive complex 2 and histone demethylase lysine-specific demethylase 1. Parenthetically, HOTAIR elicits trans-acting sponging function against multiple micro-RNA species. Oncological research studies have confirmed the pathogenic functions of HOTAIR in multiple cancer types, such as gliomas and proposed it as a pro-oncological lncRNA. In fact, its expression has been suggested to be a predictor of the severity/grade of gliomas, and as a prognostic biomarker. Moreover, a propound influence of HOTAIR in other aspects of brain heath and disease states is just beginning to be unravelled. The objective of this review is to recapitulate all the relevant data pertaining to the regulatory roles of HOTAIR in neuronal (patho)physiology. To this end, we discuss the pathogenic mechanisms of HOTAIR in multiple neuronal diseases, such as neurodegeneration, traumatic brain injury and neuropsychiatric disorders. Finally, we also summarize the results from the studies incriminating HOTAIR in the pathogeneses of gliomas and other brain cancers. Implications of HOTAIR serving as a suitable therapeutic target in neuropathologies are also discussed.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Animais , Prognóstico , Epigênese Genética , Biomarcadores , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/terapia , Doenças do Sistema Nervoso/patologia , Glioma/genética , Glioma/patologia , Glioma/terapia , Glioma/metabolismo
6.
Genet Med ; 26(8): 101169, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38785164

RESUMO

PURPOSE: Pathogenic variants in kinesin family member 1A (KIF1A) are associated with KIF1A-associated neurological disorder. We report the clinical phenotypes and correlate genotypes of individuals with KIF1A-associated neurological disorder. METHODS: Medical history and adaptive function were assessed longitudinally. In-person evaluations included neurological, motor, ophthalmologic, and cognitive assessments. RESULTS: We collected online data on 177 individuals. Fifty-seven individuals were also assessed in-person. Most individuals had de novo heterozygous missense likely pathogenic/pathogenic KIF1A variants. The most common characteristics were hypotonia, spasticity, ataxia, seizures, optic nerve atrophy, cerebellar atrophy, and cognitive impairment. Mean Vineland adaptive behavior composite score (VABS-ABC) was low (M = 62.9, SD = 19.1). The mean change in VABS-ABC over time was -3.1 (SD = 7.3). The decline in VABS-ABC was associated with the age at first assessment and abnormal electroencephalogram/seizure. There was a positive correlation between evolutionary scale model (ESM) score for the variants and final VABS-ABC (P = .003). Abnormal electroencephalogram/seizure, neuroimaging result, and ESM explain 34% of the variance in final VABS-ABC (P < .001). CONCLUSION: In-person assessment confirmed caregiver report and identified additional visual deficits. Adaptive function declined over time consistent with both the neurodevelopmental and neurodegenerative nature of the condition. Using ESM score assists in predicting phenotype across a wide range of unique variants.


Assuntos
Genótipo , Cinesinas , Mutação de Sentido Incorreto , Fenótipo , Humanos , Cinesinas/genética , Masculino , Feminino , Mutação de Sentido Incorreto/genética , Criança , Adolescente , Adulto , Pré-Escolar , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/fisiopatologia , Adulto Jovem , Pessoa de Meia-Idade , Estudos Longitudinais , Lactente , Convulsões/genética , Convulsões/fisiopatologia , Eletroencefalografia
7.
Pharmacol Res ; 203: 107149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518830

RESUMO

Neuronal health is closely linked to the homeostasis of intracellular organelles, and organelle dysfunction affects the pathological progression of neurological diseases. In contrast to isolated cellular compartments, a growing number of studies have found that organelles are largely interdependent structures capable of communicating through membrane contact sites (MCSs). MCSs have been identified as key pathways mediating inter-organelle communication crosstalk in neurons, and their alterations have been linked to neurological disease pathology. The endoplasmic reticulum (ER) is a membrane-bound organelle capable of forming an extensive network of pools and tubules with important physiological functions within neurons. There are multiple MCSs between the ER and other organelles and the plasma membrane (PM), which regulate a variety of cellular processes. In this review, we focus on ER-organelle MCSs and their role in a variety of neurological diseases. We compared the biological effects between different tethering proteins and the effects of their respective disease counterparts. We also discuss how altered ER-organelle contacts may affect disease pathogenesis. Therefore, understanding the molecular mechanisms of ER-organelle MCSs in neuronal homeostasis will lay the foundation for the development of new therapies targeting ER-organelle contacts.


Assuntos
Retículo Endoplasmático , Doenças do Sistema Nervoso , Transdução de Sinais , Humanos , Retículo Endoplasmático/metabolismo , Animais , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Neurônios/metabolismo , Organelas/metabolismo
10.
Adv Drug Deliv Rev ; 210: 115344, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38810702

RESUMO

Brain organoids hold great potential for modeling human brain development and pathogenesis. They recapitulate certain aspects of the transcriptional trajectory, cellular diversity, tissue architecture and functions of the developing brain. In this review, we explore the engineering strategies to control the molecular-, cellular- and tissue-level inputs to achieve high-fidelity brain organoids. We review the application of brain organoids in neural disorder modeling and emerging bioengineering methods to improve data collection and feature extraction at multiscale. The integration of multiscale engineering strategies and analytical methods has significant potential to advance insight into neurological disorders and accelerate drug development.


Assuntos
Encéfalo , Organoides , Humanos , Encéfalo/metabolismo , Encéfalo/citologia , Animais , Modelos Biológicos , Doenças do Sistema Nervoso/patologia , Engenharia Tecidual/métodos , Bioengenharia/métodos
11.
Cell Genom ; 4(7): 100585, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38942022

RESUMO

Sexual dimorphism, differences between males and females of the same species, is widespread in mammals. However, good animal models to study human sexually dimorphic phenotypes are currently lacking. In this issue, DeCasien et al.1 explore the potential of rhesus macaque as a model for investigating sexually dimorphic traits in the human brain.


Assuntos
Modelos Animais de Doenças , Macaca mulatta , Doenças do Sistema Nervoso , Caracteres Sexuais , Animais , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/fisiopatologia , Humanos , Feminino , Masculino
12.
Brain Res ; 1832: 148817, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395249

RESUMO

Alzheimer's disease (AD) is a leading cause of dementia, characterized by two defining neuropathological hallmarks: amyloid plaques composed of Aß aggregates and neurofibrillary pathology. Recent research suggests that microglia have both beneficial and detrimental effects in the development of AD. A new theory proposes that microglia play a beneficial role in the early stages of the disease but become harmful in later stages. Further investigations are needed to gain a comprehensive understanding of this shift in microglia's function. This transition is likely influenced by specific conditions, including spatial, temporal, and transcriptional factors, which ultimately lead to the deterioration of microglial functionality. Additionally, recent studies have also highlighted the potential influence of microglia diversity on the various manifestations of AD. By deciphering the multiple states of microglia and the phenotypic heterogeneity in AD, significant progress can be made towards personalized medicine and better treatment outcomes for individuals affected by AD.


Assuntos
Doença de Alzheimer , Doenças do Sistema Nervoso , Humanos , Doença de Alzheimer/patologia , Microglia/patologia , Doenças do Sistema Nervoso/patologia , Neuropatologia , Peptídeos beta-Amiloides
13.
Curr Opin Cell Biol ; 89: 102382, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38905918

RESUMO

Lysosomes are central to the maintenance of protein and organelle homeostasis in cells. Optimal lysosome function is particularly critical for neurons which are long-lived, non-dividing and highly polarized with specialized compartments such as axons and dendrites with distinct architecture, cargo, and turnover requirements. In recent years, there has been a growing appreciation for the role played by axonal lysosome transport in regulating neuronal development, its maintenance and functioning. Perturbations to optimal axonal lysosome abundance leading to either strong accumulations or dearth of lysosomes are both linked to altered neuronal health and functioning. In this review we highlight how two critical regulators of axonal lysosome transport and abundance, the small GTPase Arl8 and the adaptor protein JIP3, aid in maintaining axonal lysosome homeostasis and how alterations to their levels and activity could contribute to neurodevelopmental and neurodegenerative diseases.


Assuntos
Transporte Axonal , Lisossomos , Humanos , Lisossomos/metabolismo , Animais , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Axônios/metabolismo
14.
Semin Nucl Med ; 54(2): 237-246, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365546

RESUMO

Sex differences in brain physiology and the mechanisms of drug action have been extensively reported. These biological variances, from structure to hormonal and genetic aspects, can profoundly influence healthy functioning and disease mechanisms and might have implications for treatment and drug development. Molecular neuroimaging techniques may help to disclose sex's impact on brain functioning, as well as the neuropathological changes underpinning several diseases. This narrative review summarizes recent lines of evidence based on PET and SPECT imaging, highlighting sex differences in normal conditions and various neurological disorders.


Assuntos
Doenças do Sistema Nervoso , Neuroimagem , Feminino , Humanos , Masculino , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/patologia , Saúde da Mulher , Tomografia Computadorizada de Emissão de Fóton Único
15.
Nat Commun ; 15(1): 1667, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396116

RESUMO

Microglia nodules (HLA-DR+ cell clusters) are associated with brain pathology. In this post-mortem study, we investigated whether they represent the first stage of multiple sclerosis (MS) lesion formation. We show that microglia nodules are associated with more severe MS pathology. Compared to microglia nodules in stroke, those in MS show enhanced expression of genes previously found upregulated in MS lesions. Furthermore, genes associated with lipid metabolism, presence of T and B cells, production of immunoglobulins and cytokines, activation of the complement cascade, and metabolic stress are upregulated in microglia nodules in MS. Compared to stroke, they more frequently phagocytose oxidized phospholipids and possess a more tubular mitochondrial network. Strikingly, in MS, some microglia nodules encapsulate partially demyelinated axons. Taken together, we propose that activation of microglia nodules in MS by cytokines and immunoglobulins, together with phagocytosis of oxidized phospholipids, may lead to a microglia phenotype prone to MS lesion formation.


Assuntos
Esclerose Múltipla , Doenças do Sistema Nervoso , Acidente Vascular Cerebral , Humanos , Esclerose Múltipla/patologia , Microglia/metabolismo , Doenças do Sistema Nervoso/patologia , Acidente Vascular Cerebral/patologia , Citocinas/metabolismo , Imunoglobulinas/metabolismo
16.
Rev Neurosci ; 35(5): 489-502, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38440811

RESUMO

Since Cajal introduced dendritic spines in the 19th century, they have attained considerable attention, especially in neuropsychiatric and neurologic disorders. Multiple roles of dendritic spine malfunction and pathology in the progression of various diseases have been reported. Thus, it is inevitable to consider these structures as new therapeutic targets for treating neuropsychiatric and neurologic disorders such as autism spectrum disorders, schizophrenia, dementia, Down syndrome, etc. Therefore, we attempted to prepare a narrative review of the literature regarding the role of dendritic spines in the pathogenesis of aforementioned diseases and to shed new light on their pathophysiology.


Assuntos
Espinhas Dendríticas , Doenças do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Humanos , Espinhas Dendríticas/patologia , Doenças do Sistema Nervoso/fisiopatologia , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/etiologia , Animais , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/fisiopatologia
17.
Neurology ; 102(3): e208060, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38175995

RESUMO

BACKGROUND AND OBJECTIVES: The aim of this study was to compare 2 large clinicopathologic cohorts of participants aged 90+ and to determine whether the association between neuropathologic burden and dementia in these older groups differs substantially from those seen in younger-old adults. METHODS: Autopsied participants from The 90+ Study and Adult Changes in Thought (ACT) Study community-based cohort studies were evaluated for dementia-associated neuropathologic changes. Associations between neuropathologic variables and dementia were assessed using logistic or linear regression, and the weighted population attributable fraction (PAF) per type of neuropathologic change was estimated. RESULTS: The 90+ Study participants (n = 414) were older (mean age at death = 97.7 years) and had higher amyloid/tau burden than ACT <90 (n = 418) (mean age at death = 83.5 years) and ACT 90+ (n = 401) (mean age at death = 94.2 years) participants. The ACT 90+ cohort had significantly higher rates of limbic-predominant age-related TDP-43 encephalopathy (LATE-NC), microvascular brain injury (µVBI), and total neuropathologic burden. Independent associations between individual neuropathologic lesions and odds of dementia were similar between all 3 groups, with the exception of µVBI, which was associated with increased dementia risk in the ACT <90 group only (odds ratio 1.5, 95% CI 1.2-1.8, p < 0.001). Weighted PAF scores indicated that eliminating µVBI, although more prevalent in ACT 90+ participants, would have little effect on dementia. Conversely, eliminating µVBI in ACT <90 could theoretically reduce dementia at a similar rate to that of AD neuropathologic change (weighted PAF = 6.1%, 95% CI 3.8-8.4, p = 0.001). Furthermore, reducing LATE-NC in The 90+ Study could potentially reduce dementia to a greater degree (weighted PAF = 5.1%, 95% CI 3.0-7.3, p = 0.001) than either ACT cohort (weighted PAFs = 1.69, 95% CI 0.4-2.7). DISCUSSION: Our results suggest that specific neuropathologic features may differ in their effect on dementia among nonagenarians and centenarians from cohorts with different selection criteria and study design. Furthermore, microvascular lesions seem to have a more significant effect on dementia in younger compared with older participants. The results from this study demonstrate that different populations may require distinct dementia interventions, underscoring the need for disease-specific biomarkers.


Assuntos
Doença de Alzheimer , Demência , Doenças do Sistema Nervoso , Idoso de 80 Anos ou mais , Humanos , Doença de Alzheimer/patologia , Encéfalo/patologia , Centenários , Nonagenários , Demência/epidemiologia , Demência/patologia , Doenças do Sistema Nervoso/patologia
18.
Cells ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38667285

RESUMO

Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), stroke, and aneurysms, are characterized by the abnormal accumulation and aggregation of disease-causing proteins in the brain and spinal cord. Recent research suggests that proteins linked to these conditions can be secreted and transferred among cells using exosomes. The transmission of abnormal protein buildup and the gradual degeneration in the brains of impacted individuals might be supported by these exosomes. Furthermore, it has been reported that neuroprotective functions can also be attributed to exosomes in neurodegenerative diseases. The potential neuroprotective functions may play a role in preventing the formation of aggregates and abnormal accumulation of proteins associated with the disease. The present review summarizes the roles of exosomes in neurodegenerative diseases as well as elucidating their therapeutic potential in AD, PD, ALS, HD, stroke, and aneurysms. By elucidating these two aspects of exosomes, valuable insights into potential therapeutic targets for treating neurodegenerative diseases may be provided.


Assuntos
Exossomos , Exossomos/metabolismo , Humanos , Animais , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia
19.
Cells ; 13(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891034

RESUMO

Astrocytes, the most abundant glial cell type in the brain, play crucial roles in maintaining homeostasis within the central nervous system (CNS). Impairment or abnormalities of typical astrocyte functions in the CNS serve as a causative or contributing factor in numerous neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Currently, disease-modeling and drug-screening approaches, primarily focused on human astrocytes, rely on human pluripotent stem cell (hPSC)-derived astrocytes. However, it is important to acknowledge that these hPSC-derived astrocytes exhibit notable differences across studies and when compared to their in vivo counterparts. These differences may potentially compromise translational outcomes if not carefully accounted for. This review aims to explore state-of-the-art in vitro models of human astrocyte development, focusing on the developmental processes, functional maturity, and technical aspects of various hPSC-derived astrocyte differentiation protocols. Additionally, it summarizes their successful application in modeling neurological disorders. The discussion extends to recent advancements in the large-scale production of human astrocytes and their application in developing high-throughput assays conducive to therapeutic drug discovery.


Assuntos
Astrócitos , Diferenciação Celular , Doenças do Sistema Nervoso , Células-Tronco Pluripotentes , Humanos , Astrócitos/metabolismo , Astrócitos/citologia , Doenças do Sistema Nervoso/patologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Pesquisa Translacional Biomédica , Animais
20.
Cell Death Dis ; 15(4): 269, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627369

RESUMO

Most of the patients affected by neuronopathic forms of Mucopolysaccharidosis type II (MPS II), a rare lysosomal storage disorder caused by defects in iduronate-2-sulfatase (IDS) activity, exhibit early neurological defects associated with white matter lesions and progressive behavioural abnormalities. While neuronal degeneration has been largely described in experimental models and human patients, more subtle neuronal pathogenic defects remain still underexplored. In this work, we discovered that the axon guidance receptor Deleted in Colorectal Cancer (Dcc) is significantly dysregulated in the brain of ids mutant zebrafish since embryonic stages. In addition, thanks to the establishment of neuronal-enriched primary cell cultures, we identified defective proteasomal degradation as one of the main pathways underlying Dcc upregulation in ids mutant conditions. Furthermore, ids mutant fish-derived primary neurons displayed higher levels of polyubiquitinated proteins and P62, suggesting a wider defect in protein degradation. Finally, we show that ids mutant larvae display an atypical response to anxiety-inducing stimuli, hence mimicking one of the characteristic features of MPS II patients. Our study provides an additional relevant frame to MPS II pathogenesis, supporting the concept that multiple developmental defects concur with early childhood behavioural abnormalities.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Doenças do Sistema Nervoso , Animais , Orientação de Axônios , Encéfalo/metabolismo , Iduronato Sulfatase/metabolismo , Mucopolissacaridose II/metabolismo , Doenças do Sistema Nervoso/patologia , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA