Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Biol ; 22(5): e3002606, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38814944

RESUMO

Zebrafish are popular research organisms selected for laboratory use due in part to widespread availability from the pet trade. Many contemporary colonies of laboratory zebrafish are maintained in aquaculture facilities that monitor and aim to curb infections that can negatively affect colony health and confound experiments. The impact of laboratory control on the microbial constituents associated with zebrafish in research environments compared to the pet trade are unclear. Diseases of unknown causes are common in both environments. We conducted a metatranscriptomic survey to broadly compare the zebrafish-associated microbes in pet trade and laboratory environments. We detected many microbes in animals from the pet trade that were not found in laboratory animals. Cohousing experiments revealed several transmissible microbes including a newly described non-enveloped, double-stranded RNA virus in the Birnaviridae family we name Rocky Mountain birnavirus (RMBV). Infections were detected in asymptomatic animals from the pet trade, but when transmitted to laboratory animals RMBV was associated with pronounced antiviral responses and hemorrhagic disease. These experiments highlight the pet trade as a distinct source of diverse microbes that associate with zebrafish and establish a paradigm for the discovery of newly described pathogenic viruses and other infectious microbes that can be developed for study in the laboratory.


Assuntos
Peixe-Zebra , Animais , Peixe-Zebra/virologia , Peixe-Zebra/microbiologia , Doenças dos Peixes/virologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/transmissão , Animais de Estimação/virologia , Animais de Estimação/microbiologia , Animais de Laboratório/virologia , Animais de Laboratório/microbiologia , Aquicultura
2.
J Bacteriol ; 206(4): e0006824, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38517170

RESUMO

Flavobacterium columnare causes columnaris disease in fish. Columnaris disease is incompletely understood, and adequate control measures are lacking. The type IX secretion system (T9SS) is required for F. columnare gliding motility and virulence. The T9SS and gliding motility machineries share some, but not all, components. GldN (required for gliding and for secretion) and PorV (involved in secretion but not required for gliding) are both needed for virulence, implicating T9SS-mediated secretion in virulence. The role of motility in virulence is uncertain. We constructed and analyzed sprB, sprF, and gldJ mutants that were defective for motility but that maintained T9SS function to understand the role of motility in virulence. Wild-type cells moved rapidly and formed spreading colonies. In contrast, sprB and sprF deletion mutants were partially defective in gliding and formed nonspreading colonies. Both mutants exhibited reduced virulence in rainbow trout fry. A gldJ deletion mutant was nonmotile, secretion deficient, and avirulent in rainbow trout fry. To separate the roles of GldJ in secretion and in motility, we generated gldJ truncation mutants that produce nearly full-length GldJ. Mutant gldJ563, which produces GldJ truncated at amino acid 563, was defective for gliding but was competent for secretion as measured by extracellular proteolytic activity. This mutant displayed reduced virulence in rainbow trout fry, suggesting that motility contributes to virulence. Fish that survived exposure to the sprB deletion mutant or the gldJ563 mutant exhibited partial resistance to later challenge with wild-type cells. The results aid our understanding of columnaris disease and may suggest control strategies.IMPORTANCEFlavobacterium columnare causes columnaris disease in many species of freshwater fish in the wild and in aquaculture systems. Fish mortalities resulting from columnaris disease are a major problem for aquaculture. F. columnare virulence is incompletely understood, and control measures are inadequate. Gliding motility and protein secretion have been suggested to contribute to columnaris disease, but evidence directly linking motility to disease was lacking. We isolated and analyzed mutants that were competent for secretion but defective for motility. Some of these mutants exhibited decreased virulence. Fish that had been exposed to these mutants were partially protected from later exposure to the wild type. The results contribute to our understanding of columnaris disease and may aid development of control strategies.


Assuntos
Proteínas de Bactérias , Doenças dos Peixes , Animais , Proteínas de Bactérias/metabolismo , Virulência , Proteínas Motores Moleculares/metabolismo , Flavobacterium , Doenças dos Peixes/microbiologia
3.
J Proteome Res ; 23(7): 2576-2586, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38860290

RESUMO

The relationship between antibiotic resistance and bacterial virulence has not yet been fully explored. Here, we use Edwardsiella tarda as the research model to investigate the proteomic change upon oxytetracycline resistance (LTB4-ROTC). Compared to oxytetracycline-sensitive E. tarda (LTB4-S), LTB4-ROTC has 234 differentially expressed proteins, of which the abundance of 84 proteins is downregulated and 15 proteins are enriched to the Type III secretion system, Type VI secretion system, and flagellum pathways. Functional analysis confirms virulent phenotypes, including autoaggregation, biofilm formation, hemolysis, swimming, and swarming, are impaired in LTB4-ROTC. Furthermore, the in vivo bacterial challenge in both tilapia and zebrafish infection models suggests that the virulence of LTB4-ROTC is attenuated. Analysis of immune gene expression shows that LTB4-ROTC induces a stronger immune response in the spleen but a weaker response in the head kidney than that induced by LTB4-S, suggesting it's a potential vaccine candidate. Zebrafish and tilapia were challenged with a sublethal dose of LTB4-ROTC as a live vaccine followed by LTB4-S challenge. The relative percentage of survival of zebrafish is 60% and that of tilapia is 75% after vaccination. Thus, our study suggests that bacteria that acquire antibiotic resistance may attenuate virulence, which can be explored as a potential live vaccine to tackle bacterial infection in aquaculture.


Assuntos
Farmacorresistência Bacteriana , Edwardsiella tarda , Infecções por Enterobacteriaceae , Oxitetraciclina , Tilápia , Peixe-Zebra , Edwardsiella tarda/patogenicidade , Edwardsiella tarda/efeitos dos fármacos , Edwardsiella tarda/genética , Animais , Oxitetraciclina/farmacologia , Virulência/efeitos dos fármacos , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Tilápia/microbiologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/imunologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteômica/métodos , Vacinas Bacterianas/imunologia
4.
Infect Immun ; 92(8): e0001124, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38920386

RESUMO

Cold shock proteins (Csp) are pivotal nucleic acid binding proteins known for their crucial roles in the physiology and virulence of various bacterial pathogens affecting plant, insect, and mammalian hosts. However, their significance in bacterial pathogens of teleost fish remains unexplored. Aeromonas salmonicida subsp. salmonicida (hereafter A. salmonicida) is a psychrotrophic pathogen and the causative agent of furunculosis in marine and freshwater fish. Four csp genes (cspB, cspD, cspA, and cspC) have been identified in the genome of A. salmonicida J223 (wild type). Here, we evaluated the role of DNA binding proteins, CspB and CspD, in A. salmonicida physiology and virulence in lumpfish (Cyclopterus lumpus). A. salmonicida ΔcspB, ΔcspD, and the double ΔcspBΔcspD mutants were constructed and characterized. A. salmonicida ΔcspB and ΔcspBΔcspD mutants showed a faster growth at 28°C, and reduced virulence in lumpfish. A. salmonicida ΔcspD showed a slower growth at 28°C, biofilm formation, lower survival in low temperatures and freezing conditions (-20°C, 0°C, and 4°C), deficient in lipopolysaccharide synthesis, and low virulence in lumpfish. Additionally, ΔcspBΔcspD mutants showed less survival in the presence of bile compared to the wild type. Transcriptome analysis revealed that 200, 37, and 921 genes were differentially expressed in ΔcspB, ΔcspD, and ΔcspBΔcspD, respectively. In ΔcspB and ΔcspBΔcspD virulence genes in the chromosome and virulence plasmid were downregulated. Our analysis indicates that CspB and CspD mostly act as a transcriptional activator, influencing cell division (e.g., treB), virulence factors (e.g., aexT), and ultimately virulence.


Assuntos
Aeromonas salmonicida , Proteínas de Bactérias , Doenças dos Peixes , Animais , Aeromonas salmonicida/patogenicidade , Aeromonas salmonicida/genética , Aeromonas salmonicida/metabolismo , Virulência , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Doenças dos Peixes/microbiologia , Proteínas e Peptídeos de Choque Frio/genética , Proteínas e Peptídeos de Choque Frio/metabolismo , Regulação Bacteriana da Expressão Gênica , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Perciformes/microbiologia , Furunculose/microbiologia
5.
Emerg Infect Dis ; 30(6): 1125-1132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781928

RESUMO

During October 2022, enteric redmouth disease (ERM) affected Chinese sturgeons at a farm in Hubei, China, causing mass mortality. Affected fish exhibited characteristic red mouth and intestinal inflammation. Investigation led to isolation of a prominent bacterial strain, zhx1, from the internal organs and intestines of affected fish. Artificial infection experiments confirmed the role of zhx1 as the pathogen responsible for the deaths. The primary pathologic manifestations consisted of degeneration, necrosis, and inflammatory reactions, resulting in multiple organ dysfunction and death. Whole-genome sequencing of the bacteria identified zhx1 as Yersinia ruckeri, which possesses 135 drug-resistance genes and 443 virulence factor-related genes. Drug-susceptibility testing of zhx1 demonstrated high sensitivity to chloramphenicol and florfenicol but varying degrees of resistance to 18 other antimicrobial drugs. Identifying the pathogenic bacteria associated with ERM in Chinese sturgeons establishes a theoretical foundation for the effective prevention and control of this disease.


Assuntos
Doenças dos Peixes , Peixes , Yersiniose , Yersinia ruckeri , Yersiniose/veterinária , Yersiniose/microbiologia , Yersiniose/epidemiologia , Animais , China/epidemiologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/epidemiologia , Yersinia ruckeri/genética , Peixes/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Sequenciamento Completo do Genoma , Farmacorresistência Bacteriana
6.
Environ Microbiol ; 26(2): e16581, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38195078

RESUMO

Flavobacterium psychrophilum, the causative agent of bacterial coldwater disease, causes substantial economic losses in salmonid farms and hatcheries. Some multilocus sequence types (ST) of F. psychrophilum are more likely to be associated with fish farms and hatcheries, but it is unclear if these patterns of association represent genetic lineages that are more adapted to aquaculture environments. Towards elucidating the disease ecology of F. psychrophilum, the culturability of 10 distinct F. psychrophilum STs was evaluated for 13 weeks in three microcosms including sterilized well water, sterilized well water with commercial trout feed, or sterilized well water with raceway detritus. All STs remained culturable in each of the microcosms for at least 8 weeks, with bacterial concentrations often highest in the presence of raceway detritus. In addition, most (e.g., 90%) STs remained culturable for at least 13-weeks. Significant differences in log10 cfus were observed among STs, both within and between microcosms, suggesting potential variability in environmental persistence capacity among specific variants. Collectively, results highlight the ability of F. psychrophilum to not only persist for weeks under nutrient-limited conditions but also thrive in the presence of organic substrates common in fish farms and hatchery-rearing units.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Oncorhynchus mykiss , Animais , Pesqueiros , Oncorhynchus mykiss/microbiologia , Infecções por Flavobacteriaceae/veterinária , Infecções por Flavobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia , Flavobacterium/genética , Água
7.
Appl Environ Microbiol ; 90(3): e0143923, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38349149

RESUMO

Aquaculture provides a rich resource of high-quality protein; however, the production is challenged by emerging pathogens such as Vibrio crassostreae. While probiotic bacteria have been proposed as a sustainable solution to reduce pathogen load in aquaculture, their application requires a comprehensive assessment across the aquaculture food chain. The purpose of this study was to determine the antagonistic effect of the potential probiotic bacterium Phaeobacter piscinae against the emerging fish pathogen V. crassostreae in aquaculture feed algae that can be an entry point for pathogens in fish and shellfish aquaculture. P. piscinae strain S26 produces the antibacterial compound tropodithietic acid (TDA). In a plate-based assay, P. piscinae S26 was equally to more effective than the well-studied Phaeobacter inhibens DSM17395 in its inhibition of the fish pathogens Vibrio anguillarum 90-11-286 and V. crassostreae DMC-1. When co-cultured with the microalgae Tetraselmis suecica and Isochrysis galbana, P. piscinae S26 reduced the maximum cell density of V. crassostreae DMC-1 by 2 log and 3-4 log fold, respectively. A TDA-deficient mutant of P. piscinae S26 inhibited V. crassostreae DMC-1 to a lesser extent than the wild type, suggesting that the antagonistic effect involves TDA and other factors. TDA is the prime antagonistic agent of the inhibition of V. anguillarum 90-11-286. Comparative genomics of V. anguillarum 90-11-286 and V. crassostreae DMC-1 revealed that V. crassostreae DMC-1 carries a greater arsenal of antibiotic resistance genes potentially contributing to the reduced effect of TDA. In conclusion, P. piscinae S26 is a promising new candidate for inhibition of emerging pathogens such as V. crassostreae DMC-1 in algal feed systems and could contribute to a more sustainable aquaculture industry.IMPORTANCEThe globally important production of fish and shellfish in aquaculture is challenged by disease outbreaks caused by pathogens such as Vibrio crassostreae. These outbreaks not only lead to substantial economic loss and environmental damage, but treatment with antibiotics can also lead to antibiotic resistance affecting human health. Here, we evaluated the potential of probiotic bacteria, specifically the newly identified strain Phaeobacter piscinae S26, to counteract these threats in a sustainable manner. Through a systematic assessment of the antagonistic effect of P. piscinae S26 against V. crassostreae DMC-1, particularly within the context of algal feed systems, the study demonstrates the effectiveness of P. piscinae S26 as probiotic and thereby provides a strategic pathway for addressing disease outbreaks in aquaculture. This finding has the potential of significantly contributing to the long-term stability of the industry, highlighting the potential of probiotics as an efficient and environmentally conscious approach to safeguarding aquaculture productivity against the adverse impact of pathogens.


Assuntos
Doenças dos Peixes , Probióticos , Rhodobacteraceae , Vibrio , Animais , Humanos , Vibrio/fisiologia , Peixes , Aquicultura , Probióticos/farmacologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia
8.
Appl Environ Microbiol ; 90(5): e0234923, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38597602

RESUMO

Piscine lactococcosis is a significant threat to cultured and wild fish populations worldwide. The disease typically presents as a per-acute to acute hemorrhagic septicemia causing high morbidity and mortality, recalcitrant to antimicrobial treatment or management interventions. Historically, the disease was attributed to the gram-positive pathogen Lactococcus garvieae. However, recent work has revealed three distinct lactococcosis-causing bacteria (LCB)-L. garvieae, L. petauri, and L. formosensis-which are phenotypically and genetically similar, leading to widespread misidentification. An update on our understanding of lactococcosis and improved methods for identification are urgently needed. To this end, we used representative isolates from each of the three LCB species to compare currently available and recently developed molecular and phenotypic typing assays, including whole-genome sequencing (WGS), end-point and quantitative PCR (qPCR) assays, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), API 20 Strep and Biolog systems, fatty acid methyl ester analysis (FAME), and Sensititre antimicrobial profiling. Apart from WGS, sequencing of the gyrB gene was the only method capable of consistent and accurate identification to the species and strain level. A qPCR assay based on a putative glycosyltransferase gene was also able to distinguish L. petauri from L. garvieae/formosensis. Biochemical tests and MALDI-TOF MS showed some species-specific patterns in sugar and fatty acid metabolism or protein profiles but should be complemented by additional analyses. The LCB demonstrated overlap in host and geographic range, but there were relevant differences in host specificity, regional prevalence, and antimicrobial susceptibility impacting disease treatment and prevention. IMPORTANCE: Lactococcosis affects a broad range of host species, including fish from cold, temperate, and warm freshwater or marine environments, as well as several terrestrial animals, including humans. As such, lactococcosis is a disease of concern for animal and ecosystem health. The disease is endemic in European and Asian aquaculture but is rapidly encroaching on ecologically and economically important fish populations across the Americas. Piscine lactococcosis is difficult to manage, with issues of vaccine escape, ineffective antimicrobial treatment, and the development of carrier fish or biofilms leading to recurrent outbreaks. Our understanding of the disease is also widely outdated. The accepted etiologic agent of lactococcosis is Lactococcus garvieae. However, historical misidentification has masked contributions from two additional species, L. petauri and L. formosensis, which are indistinguishable from L. garvieae by common diagnostic methods. This work is the first comprehensive characterization of all three agents and provides direct recommendations for species-specific diagnosis and management.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Positivas , Lactococcus , Lactococcus/genética , Lactococcus/isolamento & purificação , Lactococcus/classificação , Animais , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Peixes/microbiologia , Sequenciamento Completo do Genoma , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Microb Pathog ; 186: 106498, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097116

RESUMO

Vibrio vulnificus is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-V. vulnificus infection remains uncertain. In this study, American eels were infected with different dose of V. vulnificus to determine the LD50. Then, bacterial load in the liver and kidney histopathology were assessed post the LD50 of V. vulnificus infection. Additionally, gene expressions of 18 immune related genes in the liver, spleen and kidney were detected. Furthermore, transcriptome sequencing and enrichment of differentially expressed genes (DEGs) were analyzed in the eel spleens between pre-infection (Con_0), post-36 h (Vv_36), and post-60 h (Vv_60) infection. The results showed that LD50 of V. vulnificus to American eels was determined to be 5.0 × 105 cfu/g body weight, and the bacterial load peaked at 24 and 12 h post the infection (hpi) in the kidney and liver, respectively. The histopathology was highlighted by necrotic hepatocytes and splenic cells, congestion blood vessels in liver and spleen, atrophied glomeruli and vacuolization of renal tubular epithelial cells. The results of RT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated expression post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 16 DEGs play essential role to the immunosuppression in American eels, and the protein-protein interactions shed light on the widespread upregulation GEGs related to metabolism and immune response maintained the host cell homeostasis post the V. vulnificus infection, shedding new light on our understanding of the V. vulnificus pathogenesis towards understudied American eel and the host anti-V. vulnificus infection strategies in gene transcript.


Assuntos
Anguilla , Doenças dos Peixes , Vibrioses , Vibrio vulnificus , Animais , Vibrio vulnificus/genética , Anguilla/genética , Anguilla/microbiologia , Virulência/genética , RNA-Seq , Doenças dos Peixes/microbiologia
10.
Microb Pathog ; 189: 106597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395316

RESUMO

Vibrio anguillarum is one of the major pathogens responsible for bacterial infections in marine environments, causing significant impacts on the aquaculture industry. The misuse of antibiotics leads to bacteria developing multiple drug resistances, which is detrimental to the development of the fisheries industry. In contrast, live attenuated vaccines are gradually gaining acceptance and widespread recognition. In this study, we constructed a double-knockout attenuated strain, V. anguillarum ΔspeA-aroC, to assess its potential for preparing a live attenuated vaccine. The research results indicate a significant downregulation of virulence-related genes, including Type VI secretion system, Type II secretion system, biofilm synthesis, iron uptake system, and other related genes, in the mutant strain. Furthermore, the strain lacking the genes exhibited a 67.47% reduction in biofilm formation ability and increased sensitivity to antibiotics. The mutant strain exhibited significantly reduced capability in evading host immune system defenses and causing in vivo infections in spotted sea bass (Lateolabrax maculatus), with an LD50 that was 13.93 times higher than that of the wild-type V. anguillarum. Additionally, RT-qPCR analysis of immune-related gene expression in spotted sea bass head kidney and spleen showed a weakened immune response triggered by the knockout strain. Compared to the wild-type V. anguillarum, the mutant strain caused reduced levels of tissue damage. The results demonstrate that the deletion of speA and aroC significantly reduces the biosynthesis of biofilms in V. anguillarum, leading to a decrease in its pathogenicity. This suggests a crucial role of biofilms in the survival and invasive capabilities of V. anguillarum.


Assuntos
Bass , Doenças dos Peixes , Vibrioses , Vibrio , Animais , Vibrioses/microbiologia , Bass/microbiologia , Virulência/genética , Vibrio/genética , Antibacterianos , Doenças dos Peixes/microbiologia
11.
Microb Pathog ; 189: 106575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423405

RESUMO

BACKGROUND: The bacterial pathogen, Flavobacterium columnare causes columnaris disease in Labeo rohita globally. Major effects of this bacterial infection include skin rashes and gill necrosis. Nimbolide, the key ingredient of the leaf extract of Azadirachta indica possesses anti-bacterial properties effective against many microorganisms. Nano-informatics plays a promising role in drug development and its delivery against infections caused by multi-drug-resistant bacteria. Currently, studies in the disciplines of dentistry, food safety, bacteriology, mycology, virology, and parasitology are being conducted to learn more about the wide anti-virulence activity of nimbolide. METHODS: The toxicity of nimbolide was predicted to determine its dosage for treating bacterial infection in Labeo rohita. Further, comparative 3-D structure prediction and docking studies are done for nimbolide conjugated nanoparticles with several key target receptors to determine better natural ligands against columnaris disease. The nanoparticle conjugates are being designed using in-silico approaches to study molecular docking interactions with the target receptor. RESULTS: Bromine conjugated nimbolide shows the best molecular interaction with the target receptors of selected species ie L rohita. Nimbolide comes under the class III level of toxic compound so, attempts are made to reduce the dosage of the compound without compromising its efficiency. Further, bromine is also used as a common surfactant and can eliminate heavy metals from wastewater. CONCLUSION: The dosage of bromine-conjugated nimbolide can be reduced to a non-toxic level and thus the efficiency of the Nimbolide can be increased. Moreover, it can be used to synthesize nanoparticle composites which have potent antibacterial activity towards both gram-positive and gram-negative bacteria. This material also forms a good coating on the surface and kills both airborne and waterborne bacteria.


Assuntos
Cyprinidae , Doenças dos Peixes , Infecções por Flavobacteriaceae , Infecções por Bactérias Gram-Negativas , Limoninas , Animais , Nanoconjugados , Antibacterianos/farmacologia , Simulação de Acoplamento Molecular , Bromo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Flavobacterium , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/microbiologia
12.
Microb Pathog ; 190: 106614, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492825

RESUMO

Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1ß, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.


Assuntos
Aeromonas hydrophila , Antioxidantes , Carpas , Eleutherococcus , Fermentação , Doenças dos Peixes , Lacticaseibacillus rhamnosus , Probióticos , Animais , Lacticaseibacillus rhamnosus/metabolismo , Carpas/microbiologia , Probióticos/farmacologia , Probióticos/administração & dosagem , Antioxidantes/metabolismo , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/imunologia , Ração Animal , Inflamação/prevenção & controle , Citocinas/metabolismo , Aquicultura
13.
Microb Pathog ; 190: 106611, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467165

RESUMO

Vibrio anguillarum is an important fish pathogen in mariculture, which can infect fish with great economic losses. In this study, a Vibrio anguillarum isolated from Sebastes schlegelii was named VA1 and was identified and characterized from aspects of morphology, physiological and biochemical characteristics, 16SRNA, virulence genes, drug sensitivity, and extracellular enzyme activity. At the same time, The VA1 was investigated at the genomic level. The results showed that a Gram-negative was isolated from the diseased fish. The VA1 was characterized with uneven surface and visible flagella wrapped in a sheath and microbubble structures. The VA1 was identified as Vibrio anguillarum based on the 16S RNA sequence and physiological and biochemical characteristics. The VA1 carried most of the virulence genes (24/29) and was resistant to penicillin, oxacillin, ampicillin, cefradine, neomycin, pipemidic acid, ofloxacin, and norfloxacin. The pathogenicity of the isolated strain was confirmed by an experimental analysis, and its LD50 was 6.43 × 106 CFU/ml. The VA1 had the ability to secrete gelatinase, protease, and amylase, and it had α-hemolysis. The whole genome size of the VA1 was 4232328bp and the G + C content was 44.95 %, consisting of two circular chromosomes, Chromosome1 and Chromosome2, with no plasmid. There were 1006 predicted protein coding sequences (CDSs). A total of 526 genes were predicted as virulence-related genes which could be classified as type IV pili, flagella, hemolysin, siderophore, and type VI secretion system. Virulence genes and correlation data were supported with the histopathological examination of the affected organs and tissues. 194 genes were predicted as antibiotic resistance genes, including fluoroquinolone antibiotic, aminoglycoside antibiotic, and beta-lactam resistant genes, which agreed with the results of the above drug sensitivity, indicating VA1 to be a multidrug-resistant bacterium. This study provided a theoretical basis for a better understanding of pathogenicity and antibiotic resistance, which might contribute to the prevention of V. anguillarum in the future.


Assuntos
Antibacterianos , Doenças dos Peixes , Genoma Bacteriano , Filogenia , Vibrioses , Vibrio , Fatores de Virulência , Sequenciamento Completo do Genoma , Vibrio/genética , Vibrio/patogenicidade , Vibrio/isolamento & purificação , Vibrio/classificação , Vibrio/efeitos dos fármacos , Doenças dos Peixes/microbiologia , Animais , Fatores de Virulência/genética , Vibrioses/microbiologia , Vibrioses/veterinária , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Testes de Sensibilidade Microbiana , Virulência/genética , Peixes/microbiologia , Composição de Bases
14.
Microb Pathog ; 192: 106683, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735447

RESUMO

Bacteria possess the ability to develop diverse and ingenious strategies to outwit the host immune system, and proteases are one of the many weapons employed by bacteria. This study sought to identify S. agalactiae additional serine protease and determine its role in virulence. The S. agalactiae THN0901 genome features one S8 family serine peptidase B (SfpB), acting as a secreted and externally exposed entity. A S8 family serine peptidase mutant strain (ΔsfpB) and complement strain (CΔsfpB) were generated through homologous recombination. Compared to the wild-type strain THN0901, the absorption of EtBr dyes was significantly reduced (P < 0.01) in ΔsfpB, implying an altered cell membrane permeability. In addition, the ΔsfpB strain had a significantly lower survival rate in macrophages (P < 0.01) and a 61.85 % lower adhesion ability to the EPC cells (P < 0.01) compared to THN0901. In the in vivo colonization experiment using tilapia as a model, 210 fish were selected and injected with different bacterial strains at a concentration of 3 × 106 CFU/tail. At 6, 12, 24, 48, 72 and 96 h post-injection, three fish were randomly selected from each group and their brain, liver, spleen, and kidney tissues were isolated. Subsequently, it was demonstrated that the ΔsfpB strain exhibited a markedly diminished capacity for colonization in tilapia. Additionally, the cumulative mortality of ΔsfpB in fish after intraperitoneal injection was reduced by 19.92-23.85 %. In conclusion, the findings in this study have demonstrated that the SfpB plays a significant role in S. agalactiae cell membrane stability and immune evasion. The immune evasion is fundamental for the development and transmission of invasive diseases, the serine protease SfpB may be a promising candidate for the development of antimicrobial agents to reduce the transmission of S. agalactiae.


Assuntos
Membrana Celular , Doenças dos Peixes , Evasão da Resposta Imune , Infecções Estreptocócicas , Streptococcus agalactiae , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidade , Streptococcus agalactiae/enzimologia , Streptococcus agalactiae/imunologia , Animais , Virulência , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/imunologia , Membrana Celular/metabolismo , Doenças dos Peixes/microbiologia , Doenças dos Peixes/imunologia , Aderência Bacteriana , Macrófagos/microbiologia , Macrófagos/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Serina Proteases/genética , Serina Proteases/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Camundongos
15.
Microb Pathog ; 193: 106725, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38848933

RESUMO

Fish-borne pathogens such as A. hydrophila and F. aquidurense are the most resistant strains in pisciculture farming. Removing the aforementioned pathogens without antibiotics presents a formidable challenge. To overcome this problem, silver nanoparticles (AgNPs) are synthesized using silver nitrate, water medium, and as an AzadirachtaIndica leaf extract via the green synthesis route. X-ray diffraction (XRD) pattern results authenticate the synthesized material is the face-centered cubic structure of silver. The optical absorption edge of the synthesized product was found at the wavelength of 440 nm from the UV-visible spectra, which is confirmed to relate to the Surface Plasmon Resonance peaks of silver particles. In addition, the optical band gap value of the synthesized Ag sample is measured to be 2.81 eV from the obtained optical absorption spectra. EDX spectrum of the synthesized product also supports confirming the silver particle formation. The FT-IR spectra of the neem extract and silver nanoparticles showed their characteristic functional groups, respectively. The presence of bands between 1000 cm-1 to 500 cm-1 indicates to the formation of silver particles. Spherical particles appeared in the synthesized Ag using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The particle size of Ag NPs was measured as 40 nm and 62 ± 10 nm by TEM and Dynamic Light Scattering (DLS). The zeta potential was also measured as -12 mV showing the synthesized sample's stable nature. Using the DPPH assay, synthesized AgNPs were taken along with the various concentrations of ascorbic acid (20, 40, 60, 80, and 100 µg/mL) to examine the free radical scavenging activity (RSA). RSA value is higher (84 ± 2 %) for synthesized AgNPs at higher concentration (100 µg/mL) than 21 ± 2 % at low concentration (100 µg/mL). The antimicrobial efficacy of the AgNPs against A. hydrophila and F. aquidurense was performed through the agar diffusion method and its results showed the inhibitory zones of the F.aquidurense and A. hydrophila were measured as 25 ± 3 mm, and 28 ± 4 mm respectively. The synthesized Ag particles showed excellent antimicrobial and antioxidant properties confirmed by antimicrobial and DPPH experiments. It implies that the green synthesized silver nanoparticles could be a good alternative for antibiotics in aquaculture farms. The exposure of low concentrations of silver nanoparticles to zebrafish and brine shrimp does not affect the viability and morphology. The exposure of silver nanoparticles in the fisheries in optimized concentration and time could control the fish-borne pathogens without antibiotics.


Assuntos
Química Verde , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Extratos Vegetais , Prata , Difração de Raios X , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Folhas de Planta/química , Azadirachta/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antioxidantes/farmacologia , Antioxidantes/química , Aeromonas hydrophila/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Tamanho da Partícula , Microscopia Eletrônica de Varredura , Peixes , Nitrato de Prata/farmacologia , Nitrato de Prata/química , Compostos de Bifenilo , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Picratos
16.
Microb Pathog ; 193: 106744, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876321

RESUMO

Antibiotic resistance and re-emergence of highly resistant pathogens is a grave concern everywhere and this has consequences for all kinds of human activities. Herein, we showed that N-palmitoylethanolamine-derived cationic lipid (cN16E) had a lower minimum inhibitory concentration (MIC) against both Gram-positive and Gram-negative bacteria when it was loaded with Butea monosperma seed lectin (BMSL). The analysis using lectin-FITC conjugate labelling indicated that the improved antibacterial activity of BMSL conjugation was due to bacterial cell surface glycan recognition. Live and dead staining experiments revealed that the BMSL-cN16E conjugate (BcN16E) exerts antibacterial activity by damaging the bacterial membrane. BcN16E antimicrobial activity was demonstrated using an infected zebrafish animal model because humans have 70 % genetic similarity to zebrafish. BcN16E therapeutic potential was established successfully by rescuing fish infected with uropathogenic Escherichia coli (UPEC). Remarkably, the rescued infected fish treated with BcN16E prevented reinfection without further therapy, indicating BcN16E immunomodulatory potential. Thus, the study examined the expression of immune-related genes, including tnfα, ifnγ, il-1ß, il-4, il-10, tlr-2, etc. There was a significant elevation in the expression of all these genes compared to control and fish treated with BMSL or cN16E alone. Interestingly, when the rescued zebrafish were reinfected with the same pathogen, the levels of expression of these genes were many folds higher than seen earlier. Radial immune diffusion analyses (RIA) using zebrafish serum revealed antibody production during the initial infection and treatment. Interestingly, reinfected fish had significant immunoprecipitation in RIA, a feature absent in the groups treated with cN16E, BMSL, and control. These results clearly show that the BcN16E complex not only rescued infected zebrafish but also conferred long-lasting protection in terms of immunomodulation that protects against multiple reinfections. The findings support that BcN16E has immense potential as a novel immunostimulant for various biomedical applications.


Assuntos
Imunomodulação , Testes de Sensibilidade Microbiana , Peixe-Zebra , Animais , Imunomodulação/efeitos dos fármacos , Modelos Animais de Doenças , Reinfecção/prevenção & controle , Antibacterianos/farmacologia , Lipídeos/sangue , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Lectinas/farmacologia , Citocinas/metabolismo , Lectinas de Plantas/farmacologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/prevenção & controle , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-38809248

RESUMO

A rapidly growing nontuberculous mycobacterium was isolated from diseased koi carp in Niigata, Japan, which was identified as representing a novel Mycolicibacterium species through whole genome sequence analysis. The bacterial isolates (NGTWS0302, NGTWS1803T and NGTWSNA01) were found to belong to the genus Mycolicibacterium through phylogenetic analysis using whole genome sequences of mycobacteria species. The bacterial colony was smooth, moist and non-chromogenic on 1% Ogawa medium at 30 °C. In biochemical characteristic tests, the bacterial isolates showed positive reactions for catalase activity, Tween 80 hydrolysis and tellurite reduction. The isolates were sensitive to 2-4 µg ml-1 ampicillin, kanamycin and rifampicin. Based on these results, we propose a novel Mycolicibacterium species, Mycolicibacterium cyprinidarum sp. nov. The type strain is NGTWS1803T (=JCM 35117T=ATCC TSD-289T).


Assuntos
Técnicas de Tipagem Bacteriana , Carpas , DNA Bacteriano , Filogenia , RNA Ribossômico 16S , Animais , Carpas/microbiologia , Japão , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Doenças dos Peixes/microbiologia , Antibacterianos/farmacologia , Ácidos Graxos , Testes de Sensibilidade Microbiana , Sequenciamento Completo do Genoma , Composição de Bases
18.
Vet Res ; 55(1): 75, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867318

RESUMO

Flavobacterium psychrophilum, the causative agent of bacterial cold-water disease, is a devastating, worldwide distributed, fish pathogen causing significant economic loss in inland fish farms. Previous epidemiological studies showed that prevalent clonal complexes (CC) differ in fish species affected with disease such as rainbow trout, coho salmon and ayu, indicating significant associations between particular F. psychrophilum genotypes and host species. Yet, whether the population structure is driven by the trade of fish and eggs or by host-specific pathogenicity is uncertain. Notably, all F. psychrophilum isolates retrieved from ayu belong to Type-3 O antigen (O-Ag) whereas only very few strains retrieved from other fish species possess this O-Ag, suggesting a role in outbreaks affecting ayu. Thus, we investigated the links between genotype and pathogenicity by conducting comparative bath infection challenges in two fish hosts, ayu and rainbow trout, for a collection of isolates representing different MLST genotypes and O-Ag. Highly virulent strains in one host species exhibited low to no virulence in the other. F. psychrophilum strains associated with ayu and possessing Type-3 O-Ag demonstrated significant variability in pathogenicity in ayu, ranging from avirulent to highly virulent. Strikingly, F. psychrophilum strains retrieved from rainbow trout and possessing the Type-3 O-Ag were virulent for rainbow trout but not for ayu, indicating that Type-3 O-Ag alone is not sufficient for pathogenicity in ayu, nor does it prevent pathogenicity in rainbow trout. This study revealed that the association between a particular CC and host species partly depends on the pathogen's adaptation to specific host species.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Flavobacterium , Especificidade de Hospedeiro , Oncorhynchus mykiss , Osmeriformes , Animais , Flavobacterium/patogenicidade , Flavobacterium/fisiologia , Flavobacterium/genética , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Infecções por Flavobacteriaceae/microbiologia , Oncorhynchus mykiss/microbiologia , Osmeriformes/microbiologia , Virulência , Genótipo
19.
Vet Res ; 55(1): 60, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750480

RESUMO

Bacterial ClpB is an ATP-dependent disaggregate that belongs to the Hsp100/Clp family and facilitates bacterial survival under hostile environmental conditions. Streptococcus agalactiae, which is regarded as the major bacterial pathogen of farmed Nile tilapia (Oreochromis niloticus), is known to cause high mortality and large economic losses. Here, we report a ClpB homologue of S. agalactiae and explore its functionality. S. agalactiae with a clpB deletion mutant (∆clpB) exhibited defective tolerance against heat and acidic stress, without affecting growth or morphology under optimal conditions. Moreover, the ΔclpB mutant exhibited reduced intracellular survival in RAW264.7 cells, diminished adherence to the brain cells of tilapia, increased sensitivity to leukocytes from the head kidney of tilapia and whole blood killing, and reduced mortality and bacterial loads in a tilapia infection assay. Furthermore, the reduced virulence of the ∆clpB mutant was investigated by transcriptome analysis, which revealed that deletion of clpB altered the expression levels of multiple genes that contribute to the stress response as well as certain metabolic pathways. Collectively, our findings demonstrated that ClpB, a molecular chaperone, plays critical roles in heat and acid stress resistance and virulence in S. agalactiae. This finding provides an enhanced understanding of the functionality of this ClpB homologue in gram-positive bacteria and the survival strategy of S. agalactiae against immune clearance during infection.


Assuntos
Doenças dos Peixes , Chaperonas Moleculares , Infecções Estreptocócicas , Streptococcus agalactiae , Estresse Fisiológico , Animais , Camundongos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ciclídeos , Doenças dos Peixes/microbiologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Células RAW 264.7 , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/fisiologia , Streptococcus agalactiae/patogenicidade , Streptococcus agalactiae/genética , Virulência
20.
Vet Res ; 55(1): 102, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152462

RESUMO

In Chile, Piscirickettsia salmonis contains two genetically isolated genogroups, LF-89 and EM-90. However, the impact of a potential co-infection with these two variants on Salmonid Rickettsial Septicemia (SRS) in Atlantic salmon (Salmo salar) remains largely unexplored. In our study, we evaluated the effect of P. salmonis LF-89-like and EM-90-like co-infection on post-smolt Atlantic salmon after an intraperitoneal challenge to compare changes in disease dynamics and host immune response. Co-infected fish had a significantly lower survival rate (24.1%) at 21 days post-challenge (dpc), compared with EM-90-like single-infected fish (40.3%). In contrast, all the LF-89-like single-infected fish survived. In addition, co-infected fish presented a higher presence of clinical lesions than any of the single-infected fish. The gene expression of salmon immune-related biomarkers evaluated in the head kidney, spleen, and liver showed that the EM-90-like isolate and the co-infection induced the up-regulation of cytokines (e.g., il-1ß, ifnγ, il8, il10), antimicrobial peptides (hepdicin) and pattern recognition receptors (PRRs), such as TLR5s. Furthermore, in serum samples from EM-90-like and co-infected fish, an increase in the total IgM level was observed. Interestingly, specific IgM against P. salmonis showed greater detection of EM-90-like antigens in LF-89-like infected fish serum (cross-reaction). These data provide evidence that P. salmonis LF-89-like and EM-90-like interactions can modulate SRS disease dynamics in Atlantic salmon, causing a synergistic effect that increases the severity of the disease and the mortality rate of the fish. Overall, this study contributes to achieving a better understanding of P. salmonis population dynamics.


Assuntos
Coinfecção , Doenças dos Peixes , Piscirickettsia , Infecções por Piscirickettsiaceae , Salmo salar , Animais , Piscirickettsia/fisiologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/imunologia , Infecções por Piscirickettsiaceae/veterinária , Infecções por Piscirickettsiaceae/microbiologia , Coinfecção/veterinária , Coinfecção/microbiologia , Coinfecção/imunologia , Chile , Sepse/veterinária , Sepse/microbiologia , Sepse/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA