Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 174(4): 897-907.e14, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30078705

RESUMO

Akt is a critical protein kinase that drives cancer proliferation, modulates metabolism, and is activated by C-terminal phosphorylation. The current structural model for Akt activation by C-terminal phosphorylation has centered on intramolecular interactions between the C-terminal tail and the N lobe of the kinase domain. Here, we employ expressed protein ligation to produce site-specifically phosphorylated forms of purified Akt1 that are well suited for mechanistic analysis. Using biochemical, crystallographic, and cellular approaches, we determine that pSer473-Akt activation is driven by an intramolecular interaction between the C-tail and the pleckstrin homology (PH)-kinase domain linker that relieves PH domain-mediated Akt1 autoinhibition. Moreover, dual phosphorylation at Ser477/Thr479 activates Akt1 through a different allosteric mechanism via an apparent activation loop interaction that reduces autoinhibition by the PH domain and weakens PIP3 affinity. These results provide a new framework for understanding how Akt is controlled in cell signaling and suggest distinct functions for differentially modified Akt forms.


Assuntos
Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina/metabolismo , Treonina/metabolismo , Cristalografia por Raios X , Ativação Enzimática , Células HCT116 , Humanos , Fosforilação , Domínios de Homologia à Plecstrina , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-akt/química , Serina/química , Transdução de Sinais , Treonina/química
2.
J Cell Sci ; 137(7)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477340

RESUMO

Axonal transport in neurons is essential for cargo movement between the cell body and synapses. Caenorhabditis elegans UNC-104 and its homolog KIF1A are kinesin-3 motors that anterogradely transport precursors of synaptic vesicles (pre-SVs) and are degraded at synapses. However, in C. elegans, touch neuron-specific knockdown of the E1 ubiquitin-activating enzyme, uba-1, leads to UNC-104 accumulation at neuronal ends and synapses. Here, we performed an RNAi screen and identified that depletion of fbxb-65, which encodes an F-box protein, leads to UNC-104 accumulation at neuronal distal ends, and alters UNC-104 net anterograde movement and levels of UNC-104 on cargo without changing synaptic UNC-104 levels. Split fluorescence reconstitution showed that UNC-104 and FBXB-65 interact throughout the neuron. Our theoretical model suggests that UNC-104 might exhibit cooperative cargo binding that is regulated by FBXB-65. FBXB-65 regulates an unidentified post-translational modification (PTM) of UNC-104 in a region beside the cargo-binding PH domain. Both fbxb-65 and UNC-104, independently of FBXB-65, regulate axonal pre-SV distribution, transport of pre-SVs at branch points and organismal lifespan. FBXB-65 regulates a PTM of UNC-104 and the number of motors on the cargo surface, which can fine-tune cargo transport to the synapse.


Assuntos
Transporte Axonal , Proteínas de Caenorhabditis elegans , Proteínas F-Box , Cinesinas , Animais , Transporte Axonal/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas F-Box/metabolismo , Cinesinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Domínios de Homologia à Plecstrina , Processamento de Proteína Pós-Traducional
3.
Nucleic Acids Res ; 50(1): 1-16, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34268577

RESUMO

In eukaryotes, three RNA polymerases (RNAPs) play essential roles in the synthesis of various types of RNA: namely, RNAPI for rRNA; RNAPII for mRNA and most snRNAs; and RNAPIII for tRNA and other small RNAs. All three RNAPs possess a short flexible tail derived from their common subunit RPB6. However, the function of this shared N-terminal tail (NTT) is not clear. Here we show that NTT interacts with the PH domain (PH-D) of the p62 subunit of the general transcription/repair factor TFIIH, and present the structures of RPB6 unbound and bound to PH-D by nuclear magnetic resonance (NMR). Using available cryo-EM structures, we modelled the activated elongation complex of RNAPII bound to TFIIH. We also provide evidence that the recruitment of TFIIH to transcription sites through the p62-RPB6 interaction is a common mechanism for transcription-coupled nucleotide excision repair (TC-NER) of RNAPI- and RNAPII-transcribed genes. Moreover, point mutations in the RPB6 NTT cause a significant reduction in transcription of RNAPI-, RNAPII- and RNAPIII-transcribed genes. These and other results show that the p62-RPB6 interaction plays multiple roles in transcription, TC-NER, and cell proliferation, suggesting that TFIIH is engaged in all RNAP systems.


Assuntos
RNA Polimerase II/química , Fator de Transcrição TFIIH/química , Sítios de Ligação , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Domínios de Homologia à Plecstrina , Ligação Proteica , RNA Polimerase II/metabolismo , Fator de Transcrição TFIIH/metabolismo
4.
Mol Microbiol ; 118(3): 155-174, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35766104

RESUMO

Kinesins are motor proteins found in all eukaryotic lineages that move along microtubules to mediate cellular processes such as mitosis and intracellular transport. In trypanosomatids, the kinesin superfamily has undergone a prominent expansion, resulting in one of the most diverse kinesin repertoires that includes the two kinetoplastid-restricted families X1 and X2. Here, we characterize in Trypanosoma brucei TbKifX2A, an orphaned X2 kinesin. TbKifX2A tightly interacts with TbPH1, a kinesin-like protein with a likely inactive motor domain, a rarely reported occurrence. Both TbKifX2A and TbPH1 localize to the microtubule quartet (MtQ), a characteristic but poorly understood cytoskeletal structure that wraps around the flagellar pocket as it extends to the cell body anterior. The proximal proteome of TbPH1 revealed two other interacting proteins, the flagellar pocket protein FP45 and intriguingly another X2 kinesin, TbKifX2C. Simultaneous ablation of TbKifX2A/TbPH1 results in the depletion of FP45 and TbKifX2C and also an expansion of the flagellar pocket, among other morphological defects. TbKifX2A is the first motor protein to be localized to the MtQ. The observation that TbKifX2C also associates with the MtQ suggests that the X2 kinesin family may have co-evolved with the MtQ, both kinetoplastid-specific traits.


Assuntos
Cinesinas , Proteínas de Protozoários , Trypanosoma brucei brucei , Citoesqueleto/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Domínios de Homologia à Plecstrina , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo
5.
Hepatology ; 76(3): 612-629, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34767673

RESUMO

BACKGROUND AND AIMS: HCC is one of the main types of primary liver cancer, with high morbidity and mortality and poor treatment effect. Tripartite motif-containing protein 11 (TRIM11) has been shown to promote tumor formation in lung cancer, breast cancer, gastric cancer, and so on. However, the specific function and mechanism of TRIM11 in HCC remain open for study. APPROACH AND RESULTS: Through clinical analysis, we found that the expression of TRIM11 was up-regulated in HCC tissues and was associated with high tumor node metastasis (TNM) stages, advanced histological grade, and poor patient survival. Then, by gain- and loss-of-function investigations, we demonstrated that TRIM11 promoted cell proliferation, migration, and invasion in vitro and tumor growth in vivo. Mechanistically, RNA sequencing and mass spectrometry analysis showed that TRIM11 interacted with pleckstrin homology domain leucine-rich repeats protein phosphatase 1 (PHLPP1) and promoted K48-linked ubiquitination degradation of PHLPP1 and thus promoted activation of the protein kinase B (AKT) signaling pathway. Moreover, overexpression of PHLPP1 blocked the promotional effect of TRIM11 on HCC function. CONCLUSIONS: Our study confirmed that TRIM11 plays an oncogenic role in HCC through the PHLPP1/AKT signaling pathway, suggesting that targeting TRIM11 may be a promising target for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Leucina , Neoplasias Hepáticas/patologia , Domínios de Homologia à Plecstrina , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Fosfatase 1/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina , Ubiquitina-Proteína Ligases/metabolismo
6.
Inflamm Res ; 72(3): 373-385, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36562794

RESUMO

OBJECTIVE: Pleckstrin homology domain and leucine-rich repeat protein phosphatase 2 (PHLPP2) is linked to various pathological states. However, whether PHLPP2 mediates diabetic retinopathy is unaddressed. This work explored the biological function of PHLPP2 in modulating high glucose (HG)-elicited damage of retinal ganglion cells (RGCs), an in vitro model for studying diabetic retinopathy. METHODS: Mouse RGCs were treated with HG to establish a cell model. PHLPP2 was silenced by transfecting specific shRNAs targeting PHLPP2. RT-qPCR, immunoblotting, CCK-8 assay, flow cytometry, TUNEL assay, and ELISA were carried out. RESULTS: Significant increases in PHLPP2 levels were observed in cultured RGCs exposed to HG. The severe damages evoked by HG to RGCs were remarkably weakened in PHLPP2-silenced RGCs, including improved cell survival, attenuated cell apoptosis, repressed oxidative stress, and prohibited proinflammatory response. The silencing of PHLPP2 strengthened the activation of Nrf2 in HG-treated RGCs via modulation of the Akt-GSK-3ß axis. Interruption of the Akt-GSK-3ß axis reversed PHLPP2-silencing-elicited Nrf2 activation. The protective effects of PHLPP2 silencing on HG-induced injury of RGCs were diminished by Nrf2 inhibition. CONCLUSIONS: The loss of PHLPP2 was beneficial for HG-injured RGCs through the effect on the Akt-GSK-3ß-Nrf2 pathway. This work suggests a possible role of PHLPP2 in diabetic retinopathy.


Assuntos
Retinopatia Diabética , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/farmacologia , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Transdução de Sinais , Proteínas de Repetições Ricas em Leucina , Domínios de Homologia à Plecstrina , Células Ganglionares da Retina/metabolismo , Retinopatia Diabética/genética , Estresse Oxidativo , Glucose/farmacologia , Apoptose
7.
Cardiovasc Drugs Ther ; 37(6): 1087-1101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35715527

RESUMO

PURPOSE: Ischemic postconditioning (IPostC) alleviates myocardial ischemia/reperfusion (IR) injury, but the protective effect is lost during diabetes. PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) is able to inactivate Akt. Our previous study found that PHLPP1 expression was upregulated in diabetic hearts. We presumed that the attenuation of myocardial injury by IPostC might be hindered by PHLPP1 overexpression in diabetic animals. METHODS AND RESULTS: Nondiabetic and diabetic mice were subjected to 45 min of ischemia followed by 2 h of reperfusion with or without IPostC. H9c2 cells were exposed to normal or high glucose and were subjected to 4 h of hypoxia followed by 4 h of reoxygenation with or without hypoxic postconditioning (HPostC). IPostC attenuated postischemic infarction, apoptosis, creatine kinase-MB, and oxidative stress, which were accompanied by increased p-Akt and decreased PHLPP1 expression and p-Mst1 in nondiabetic but not in diabetic mice. PHLPP1 knockdown or an Mst1 inhibitor reduced hypoxia/reoxygenation (HR)-induced cardiomyocyte damage in H9c2 cells exposed to normal glucose, but the effect was abolished by a PI3K/Akt inhibitor. HPostC attenuated HR-induced cardiomyocyte injury and oxidative stress accompanied by increased p-Akt as well as decreased PHLPP1 expression and p-Mst1 in H9c2 cells exposed to normal glucose but not high glucose. In addition, HPostC in combination with PHLPP1 knockdown or PHLPP1 knockdown alone reduced cell death and oxidative stress in H9c2 cells exposed to high glucose, which was hindered by PI3K/Akt inhibitor. CONCLUSION: IPostC prevented myocardial IR injury partly through PHLPP1/Akt/Mst1 signaling, and abnormalities in this pathway may be responsible for the loss of IPostC cardioprotection in diabetes.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Pós-Condicionamento Isquêmico , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Repetições Ricas em Leucina , Infarto do Miocárdio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Pós-Condicionamento Isquêmico/métodos , Domínios de Homologia à Plecstrina , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Hipóxia/complicações , Glucose
8.
Nucleic Acids Res ; 49(5): 2916-2930, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33211877

RESUMO

TFIIH is a crucial transcription and DNA repair factor consisting of the seven-subunit core. The core subunit p62 contains a pleckstrin homology domain (PH-D), which is essential for locating TFIIH at transcription initiation and DNA damage sites, and two BSD (BTF2-like transcription factors, synapse-associated proteins and DOS2-like proteins) domains. A recent cryo-electron microscopy (cryo-EM) structure of human TFIIH visualized most parts of core, except for the PH-D. Here, by nuclear magnetic resonance spectroscopy we have established the solution structure of human p62 PH-D connected to the BSD1 domain by a highly flexible linker, suggesting the flexibility of PH-D in TFIIH. Based on this dynamic character, the PH-D was modeled in the cryo-EM structure to obtain the whole human TFIIH core structure, which indicates that the PH-D moves around the surface of core with a specific but limited spatial distribution; these dynamic structures were refined by molecular dynamics (MD) simulations. Furthermore, we built models, also refined by MD simulations, of TFIIH in complex with five p62-binding partners, including transcription factors TFIIEα, p53 and DP1, and nucleotide excision repair factors XPC and UVSSA. The models explain why the PH-D is crucially targeted by these factors, which use their intrinsically disordered acidic regions for TFIIH recruitment.


Assuntos
Fator de Transcrição TFIIH/química , Microscopia Crioeletrônica , Humanos , Simulação de Dinâmica Molecular , Domínios de Homologia à Plecstrina , Domínios Proteicos
9.
Proc Natl Acad Sci U S A ; 117(24): 13468-13479, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32467162

RESUMO

The functions of nervous and neuroendocrine systems rely on fast and tightly regulated release of neurotransmitters stored in secretory vesicles through SNARE-mediated exocytosis. Few proteins, including tomosyn (STXBP5) and amisyn (STXBP6), were proposed to negatively regulate exocytosis. Little is known about amisyn, a 24-kDa brain-enriched protein with a SNARE motif. We report here that full-length amisyn forms a stable SNARE complex with syntaxin-1 and SNAP-25 through its C-terminal SNARE motif and competes with synaptobrevin-2/VAMP2 for the SNARE-complex assembly. Furthermore, amisyn contains an N-terminal pleckstrin homology domain that mediates its transient association with the plasma membrane of neurosecretory cells by binding to phospholipid PI(4,5)P2 However, unlike synaptrobrevin-2, the SNARE motif of amisyn is not sufficient to account for the role of amisyn in exocytosis: Both the pleckstrin homology domain and the SNARE motif are needed for its inhibitory function. Mechanistically, amisyn interferes with the priming of secretory vesicles and the sizes of releasable vesicle pools, but not vesicle fusion properties. Our biochemical and functional analyses of this vertebrate-specific protein unveil key aspects of negative regulation of exocytosis.


Assuntos
Exocitose , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Células Cromafins/metabolismo , Humanos , Lipossomos/metabolismo , Fusão de Membrana , Células PC12 , Domínios de Homologia à Plecstrina , Ligação Proteica , Ratos , Proteínas SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/metabolismo , Vertebrados , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
10.
Biophys J ; 121(12): 2419-2435, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35591789

RESUMO

Syncytial cells contain multiple nuclei and have local distribution and function of cellular components despite being synthesized in a common cytoplasm. The syncytial Drosophila blastoderm embryo shows reduced spread of organelle and plasma membrane-associated proteins between adjacent nucleo-cytoplasmic domains. Anchoring to the cytoarchitecture within a nucleo-cytoplasmic domain is likely to decrease the spread of molecules; however, its role in restricting this spread has not been assessed. In order to analyze the cellular mechanisms that regulate the rate of spread of plasma membrane-associated molecules in the syncytial Drosophila embryos, we express a pleckstrin homology (PH) domain in a localized manner at the anterior of the embryo by tagging it with the bicoid mRNA localization signal. Anteriorly expressed PH domain forms an exponential gradient in the anteroposterior axis with a longer length scale compared with Bicoid. Using a combination of experiments and theoretical modeling, we find that the characteristic distribution and length scale emerge due to plasma membrane sequestration and restriction within an energid. Loss of plasma membrane remodeling to form pseudocleavage furrows shows an enhanced spread of PH domain but not Bicoid. Modeling analysis suggests that the enhanced spread of the PH domain occurs due to the increased spread of the cytoplasmic population of the PH domain in pseudocleavage furrow mutants. Our analysis of cytoarchitecture interaction in regulating plasma membrane protein distribution and constraining its spread has implications on the mechanisms of spread of various molecules, such as morphogens in syncytial cells.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Membrana Celular/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Domínios de Homologia à Plecstrina
11.
Clin Genet ; 102(1): 72-77, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35347702

RESUMO

Pathogenic variants in IQ motif and SEC7 domain containing protein 2 (IQSEC2) gene cause a variety of neurodevelopmental disorders, with intellectual disability as a uniform feature. We report five cases, each with a novel missense variant in the pleckstrin homology (PH) domain of the IQSEC2 protein. Male patients all present with moderate to profound intellectual disability, significant delays or absent language and speech and variable seizures. We describe the phenotypic spectrum associated with missense variants in PH domain of IQSEC2, further delineating the genotype-phenotype correlation for this X-linked gene.


Assuntos
Encefalopatias , Deficiência Intelectual , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Mutação , Fenótipo , Domínios de Homologia à Plecstrina
12.
FASEB J ; 35(8): e21815, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34314064

RESUMO

The Src homology 2 containing inositol 5-phosphatase 2 (SHIP2) is a large multidomain enzyme that catalyzes the dephosphorylation of the phospholipid phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5)P3 ) to form PI(3,4)P2 . PI(3,4,5)P3 is a key lipid second messenger controlling the recruitment of signaling proteins to the plasma membrane, thereby regulating a plethora of cellular events, including proliferation, growth, apoptosis, and cytoskeletal rearrangements. SHIP2, alongside PI3K and PTEN, regulates PI(3,4,5)P3 levels at the plasma membrane and has been heavily implicated in serious diseases such as cancer and type 2 diabetes; however, many aspects of its regulation mechanism remain elusive. We recently reported an activating effect of the SHIP2 C2 domain and here we describe an additional layer of regulation via the pleckstrin homology-related (PHR) domain. We show a phosphoinositide-induced transition to a high activity state of the enzyme that increases phosphatase activity up to 10-15 fold. We further show that PI(3,4)P2 directly interacts with the PHR domain to trigger this allosteric activation. Modeling of the PHR-phosphatase-C2 region of SHIP2 on the membrane suggests no major inter-domain interactions with the PHR domain, but close contacts between the two linkers offer a possible path of allosteric communication. Together, our data show that the PHR domain acts as an allosteric module regulating the catalytic activity of SHIP2 in response to specific phosphoinositide levels in the cell membrane.


Assuntos
Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Domínios de Homologia à Plecstrina , Regulação Alostérica , Biocatálise , Humanos , Modelos Moleculares , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo
13.
Mol Biol Rep ; 49(5): 4123-4128, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35526246

RESUMO

BACKGROUND: Pleckstrin homology (PH) domains are common modules of ∼120 amino acids found in proteins involved in signalling, cytoskeletal organization, membrane transport, and modification of phospholipids. Previous live cell studies have involved the use of the green-fluorescent protein (GFP) labelling of PH-domain of phospholipase C δ1 (PLC δ1) to study the interactions of molecules at the membrane interface. METHODS AND RESULTS: For this study, the aim was to construct and express the GFP-PH domain of PLC δ1 in the Saccharomyces cerevisiae BY4741. The transformants expressing GFP-PH domain of PLC δ1 displayed localised fluorescence to the cell periphery (plasma membrane) while the negative control expressed GFP within the cytoplasm only. No GFP was observed in the non-transformed yeast cells. CONCLUSIONS: Thus, this technique could be useful in future molecular interactions studies targeted specifically at the yeast cell membrane interface in live yeast cells.


Assuntos
Domínios de Homologia à Plecstrina , Saccharomyces cerevisiae , Animais , Proteínas Sanguíneas , Membrana Celular/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mamíferos/metabolismo , Fosfolipase C delta , Fosfoproteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosfolipases Tipo C/química , Fosfolipases Tipo C/metabolismo
14.
Proc Natl Acad Sci U S A ; 116(26): 12845-12850, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31189604

RESUMO

Dynamin proteins assemble into characteristic helical structures around necks of clathrin-coated membrane buds. Hydrolysis of dynamin-bound GTP results in both fission of the membrane neck and partial disruption of the dynamin oligomer. Imaging by atomic force microscopy reveals that, on GTP hydrolysis, dynamin oligomers undergo a dynamic remodeling and lose their distinctive helical shape. While breakup of the dynamin helix is a critical stage in clathrin-mediated endocytosis, the mechanism for this remodeling of the oligomer has not been resolved. In this paper, we formulate an analytical, elasticity-based model for the reshaping and disassembly of the dynamin scaffold. We predict that the shape of the oligomer is modulated by the orientation of dynamin's pleckstrin homology (PH) domain relative to the underlying membrane. Our results indicate that tilt of the PH domain drives deformation and fragmentation of the oligomer, in agreement with experimental observations. This model motivated the introduction of the tilted helix: a curve that maintains a fixed angle between its normal and the normal of the embedding surface. Our findings highlight the importance of tilt as a key regulator of size and morphology of membrane-bound oligomers.


Assuntos
Dinaminas/química , Elasticidade , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Domínios de Homologia à Plecstrina , Conformação Proteica em alfa-Hélice , Subunidades Proteicas/química
15.
Proc Natl Acad Sci U S A ; 116(43): 21539-21544, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591208

RESUMO

The pleckstrin homology (PH) domain is well known for its phospholipid targeting function. The PH-TEC homology (PHTH) domain within the TEC family of tyrosine kinases is also a crucial component of the autoinhibitory apparatus. The autoinhibitory surface on the PHTH domain has been previously defined, and biochemical investigations have shown that PHTH-mediated inhibition is mutually exclusive with phosphatidylinositol binding. Here we use hydrogen/deuterium exchange mass spectrometry, nuclear magnetic resonance (NMR), and evolutionary sequence comparisons to map where and how the PHTH domain affects the Bruton's tyrosine kinase (BTK) domain. The data map a PHTH-binding site on the activation loop face of the kinase C lobe, suggesting that the PHTH domain masks the activation loop and the substrate-docking site. Moreover, localized NMR spectral changes are observed for non-surface-exposed residues in the active site and on the distal side of the kinase domain. These data suggest that the association of PHTH induces allosteric conformational shifts in regions of the kinase domain that are critical for catalysis. Through statistical comparisons of diverse tyrosine kinase sequences, we identify residues unique to BTK that coincide with the experimentally determined PHTH-binding surface on the kinase domain. Our data provide a more complete picture of the autoinhibitory conformation adopted by full-length TEC kinases, creating opportunities to target the regulatory domains to control the function of these kinases in a biological setting.


Assuntos
Tirosina Quinase da Agamaglobulinemia/química , Tirosina Quinase da Agamaglobulinemia/metabolismo , Tirosina Quinase da Agamaglobulinemia/genética , Regulação Alostérica , Sítios de Ligação , Humanos , Metabolismo dos Lipídeos , Lipídeos/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Domínios de Homologia à Plecstrina , Domínios Proteicos , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo
16.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628517

RESUMO

Neurofibromin, the main RasGAP in the nervous system, is a 2818 aa protein with several poorly characterized functional domains. Mutations in the NF1-encoding gene lead to an autosomal dominant syndrome, neurofibromatosis, with an incidence of 1 out of 3000 newborns. Missense mutations spread in the Sec14-PH-encoding sequences as well. Structural data could not highlight the defect in mutant Sec14-PH functionality. By performing molecular dynamics simulations at different temperatures, we found that the lid-lock is fundamental for the structural interdependence of the NF1 bipartite Sec14-PH domain. In fact, increased flexibility in the lid-lock loop, observed for the K1750Δ mutant, leads to disconnection of the two subdomains and can affect the stability of the Sec14 subdomain.


Assuntos
Neurofibromatose 1 , Neurofibromina 1 , Genes da Neurofibromatose 1 , Humanos , Recém-Nascido , Simulação de Dinâmica Molecular , Neurofibromatose 1/genética , Neurofibromina 1/genética , Domínios de Homologia à Plecstrina
17.
Biophys J ; 120(10): 1994-2008, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33775637

RESUMO

Akt plays a key role in the Ras/PI3K/Akt/mTOR signaling pathway. In breast cancer, Akt translocation to the plasma membrane is enabled by the interaction of its pleckstrin homology domain (PHD) with calmodulin (CaM). At the membrane, the conformational change promoted by PIP3 releases CaM and facilitates Thr308 and Ser473 phosphorylation and activation. Here, using modeling and molecular dynamics simulations, we aim to figure out how CaM interacts with Akt's PHD at the atomic level. Our simulations show that CaM-PHD interaction is thermodynamically stable and involves a ß-strand rather than an α-helix, in agreement with NMR data, and that electrostatic and hydrophobic interactions are critical. The PHD interacts with CaM lobes; however, multiple modes are possible. IP4, the polar head of PIP3, weakens the CaM-PHD interaction, implicating the release mechanism at the plasma membrane. Recently, we unraveled the mechanism of PI3Kα activation at the atomistic level and the structural basis for Ras role in the activation. Here, our atomistic structural data clarify the mechanism of how CaM interacts, delivers, and releases Akt-the next node in the Ras/PI3K pathway-at the plasma membrane.


Assuntos
Calmodulina , Domínios de Homologia à Plecstrina , Calmodulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
18.
J Biol Chem ; 295(50): 16920-16928, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33023908

RESUMO

Gα proteins promote dynamic adjustments of cell shape directed by actin-cytoskeleton reorganization via their respective RhoGEF effectors. For example, Gα13 binding to the RGS-homology (RH) domains of several RH-RhoGEFs allosterically activates these proteins, causing them to expose their catalytic Dbl-homology (DH)/pleckstrin-homology (PH) regions, which triggers downstream signals. However, whether additional Gα proteins might directly regulate the RH-RhoGEFs was not known. To explore this question, we first examined the morphological effects of expressing shortened RH-RhoGEF DH/PH constructs of p115RhoGEF/ARHGEF1, PDZ-RhoGEF (PRG)/ARHGEF11, and LARG/ARHGEF12. As expected, the three constructs promoted cell contraction and activated RhoA, known to be downstream of Gα13 Intriguingly, PRG DH/PH also induced filopodia-like cell protrusions and activated Cdc42. This pathway was stimulated by constitutively active Gαs (GαsQ227L), which enabled endogenous PRG to gain affinity for Cdc42. A chemogenetic approach revealed that signaling by Gs-coupled receptors, but not by those coupled to Gi or Gq, enabled PRG to bind Cdc42. This receptor-dependent effect, as well as CREB phosphorylation, was blocked by a construct derived from the PRG:Gαs-binding region, PRG-linker. Active Gαs interacted with isolated PRG DH and PH domains and their linker. In addition, this construct interfered with GαsQ227L's ability to guide PRG's interaction with Cdc42. Endogenous Gs-coupled prostaglandin receptors stimulated PRG binding to membrane fractions and activated signaling to PKA, and this canonical endogenous pathway was attenuated by PRG-linker. Altogether, our results demonstrate that active Gαs can recognize PRG as a novel effector directing its DH/PH catalytic module to gain affinity for Cdc42.


Assuntos
Movimento Celular , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Domínios de Homologia à Plecstrina/genética , Pseudópodes/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Fosforilação
19.
J Biol Chem ; 295(49): 16562-16571, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32948655

RESUMO

Phospholipase Cε (PLCε) is activated downstream of G protein-coupled receptors and receptor tyrosine kinases through direct interactions with small GTPases, including Rap1A and Ras. Although Ras has been reported to allosterically activate the lipase, it is not known whether Rap1A has the same ability or what its molecular mechanism might be. Rap1A activates PLCε in response to the stimulation of ß-adrenergic receptors, translocating the complex to the perinuclear membrane. Because the C-terminal Ras association (RA2) domain of PLCε was proposed to the primary binding site for Rap1A, we first confirmed using purified proteins that the RA2 domain is indeed essential for activation by Rap1A. However, we also showed that the PLCε pleckstrin homology (PH) domain and first two EF hands (EF1/2) are required for Rap1A activation and identified hydrophobic residues on the surface of the RA2 domain that are also necessary. Small-angle X-ray scattering showed that Rap1A binding induces and stabilizes discrete conformational states in PLCε variants that can be activated by the GTPase. These data, together with the recent structure of a catalytically active fragment of PLCε, provide the first evidence that Rap1A, and by extension Ras, allosterically activate the lipase by promoting and stabilizing interactions between the RA2 domain and the PLCε core.


Assuntos
Fosfoinositídeo Fosfolipase C/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Regulação Alostérica , GTP Fosfo-Hidrolases/metabolismo , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosfoinositídeo Fosfolipase C/química , Fosfoinositídeo Fosfolipase C/genética , Domínios de Homologia à Plecstrina , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espalhamento a Baixo Ângulo , Difração de Raios X , Proteínas rap1 de Ligação ao GTP/química , Proteínas rap1 de Ligação ao GTP/genética
20.
Nat Chem Biol ; 15(4): 358-366, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30742123

RESUMO

Peripheral membrane proteins orchestrate many physiological and pathological processes, making regulation of their activities by small molecules highly desirable. However, they are often refractory to classical competitive inhibition. Here, we demonstrate that potent and selective inhibition of peripheral membrane proteins can be achieved by small molecules that target protein-membrane interactions by a noncompetitive mechanism. We show that the small molecule Bragsin inhibits BRAG2-mediated Arf GTPase activation in vitro in a manner that requires a membrane. In cells, Bragsin affects the trans-Golgi network in a BRAG2- and Arf-dependent manner. The crystal structure of the BRAG2-Bragsin complex and structure-activity relationship analysis reveal that Bragsin binds at the interface between the PH domain of BRAG2 and the lipid bilayer to render BRAG2 unable to activate lipidated Arf. Finally, Bragsin affects tumorsphere formation in breast cancer cell lines. Bragsin thus pioneers a novel class of drugs that function by altering protein-membrane interactions without disruption.


Assuntos
Fator 1 de Ribosilação do ADP/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Fator 1 de Ribosilação do ADP/metabolismo , Linhagem Celular Tumoral , GTP Fosfo-Hidrolases , Proteínas Ativadoras de GTPase , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Células HeLa , Humanos , Bicamadas Lipídicas , Glicoproteínas de Membrana/metabolismo , Nucleotídeos , Domínios de Homologia à Plecstrina/fisiologia , Ligação Proteica , Transdução de Sinais , Relação Estrutura-Atividade , Sulfotransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA