Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 17(4): 240-56, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26790531

RESUMO

Eph receptor Tyr kinases and their membrane-tethered ligands, the ephrins, elicit short-distance cell-cell signalling and thus regulate many developmental processes at the interface between pattern formation and morphogenesis, including cell sorting and positioning, and the formation of segmented structures and ordered neural maps. Their roles extend into adulthood, when ephrin-Eph signalling regulates neuronal plasticity, homeostatic events and disease processes. Recently, new insights have been gained into the mechanisms of ephrin-Eph signalling in different cell types, and into the physiological importance of ephrin-Eph in different organs and in disease, raising questions for future research directions.


Assuntos
Efrinas/fisiologia , Receptores da Família Eph/metabolismo , Transdução de Sinais , Animais , Crescimento e Desenvolvimento/fisiologia , Humanos
2.
J Neurosci ; 41(17): 3808-3821, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33727334

RESUMO

To assemble the functional circuits of the nervous system, the neuronal axonal growth cones must be precisely guided to their proper targets, which can be achieved through cell-surface guidance receptor activation by ligand binding in the periphery. We investigated the function of paxillin, a focal adhesion protein, as an essential growth cone guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory selection in the limb mesenchyme. Using in situ mRNA detection, we first show paxillin expression in LMC neurons of chick and mouse embryos at the time of spinal motor axon extension into the limb. Paxillin loss-of-function and gain-of-function using in ovo electroporation in chick LMC neurons, of either sex, perturbed LMC axon trajectory selection, demonstrating an essential role of paxillin in motor axon guidance. In addition, a neuron-specific paxillin deletion in mice led to LMC axon trajectory selection errors. We also show that knocking down paxillin attenuates the growth preference of LMC neurites against ephrins in vitro, and erythropoietin-producing human hepatocellular (Eph)-mediated retargeting of LMC axons in vivo, suggesting paxillin involvement in Eph-mediated LMC motor axon guidance. Finally, both paxillin knockdown and ectopic expression of a nonphosphorylable paxillin mutant attenuated the retargeting of LMC axons caused by Src overexpression, implicating paxillin as a Src target in Eph signal relay in this context. In summary, our findings demonstrate that paxillin is required for motor axon guidance and suggest its essential role in the ephrin-Eph signaling pathway resulting in motor axon trajectory selection.SIGNIFICANCE STATEMENT During the development of neural circuits, precise connections need to be established among neurons or between neurons and their muscle targets. A protein family found in neurons, Eph, is essential at different stages of neural circuit formation, including nerve outgrowth and pathfinding, and is proposed to mediate the onset and progression of several neurodegenerative diseases, such as Alzheimer's disease. To investigate how Ephs relay their signals to mediate nerve growth, we investigated the function of a molecule called paxillin and found it important for the development of spinal nerve growth toward their muscle targets, suggesting its role as an effector of Eph signals. Our work could thus provide new information on how neuromuscular connectivity is properly established during embryonic development.


Assuntos
Axônios/fisiologia , Paxilina/fisiologia , Medula Espinal/crescimento & desenvolvimento , Animais , Orientação de Axônios/fisiologia , Embrião de Galinha , Eletroporação , Efrinas/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Genes src/genética , Humanos , Masculino , Camundongos , MicroRNAs/genética , Neurônios Motores/fisiologia , Mutação/genética , Neuritos/fisiologia , Medula Espinal/citologia
3.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925443

RESUMO

The cornea, while appearing to be simple tissue, is actually an extremely complex structure. In order for it to retain its biomechanical and optical properties, perfect organization of its cells is essential. Proper regeneration is especially important after injuries and in the course of various diseases. Eph receptors and ephrin are mainly responsible for the proper organization of tissues as well as cell migration and communication. In this review, we present the current state of knowledge on the role of Eph and ephrins in corneal physiology and diseases, in particular, we focused on the functions of the epithelium and endothelium. Since the role of Eph and ephrins in the angiogenesis process has been well established, we also analyzed their influence on conditions with corneal neovascularization.


Assuntos
Córnea/fisiologia , Doenças da Córnea/etiologia , Efrinas/fisiologia , Receptores da Família Eph/fisiologia , Animais , Doenças da Córnea/tratamento farmacológico , Neovascularização da Córnea/etiologia , Endotélio Corneano/patologia , Endotélio Corneano/fisiologia , Epitélio Corneano/patologia , Epitélio Corneano/fisiologia , Humanos , Terapia de Alvo Molecular
4.
Exp Cell Res ; 381(1): 57-65, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31075258

RESUMO

Eph receptor and ephrin signaling has a major role in segregating distinct cell populations to form sharp borders. Expression of interacting Ephs and ephrins typically occurs in complementary regions, such that polarised activation of both components occurs at the interface. Forward signaling through Eph receptors can drive cell segregation, but it is unclear whether reverse signaling through ephrins can also contribute. We have tested the role of reverse signaling, and of polarised versus non-polarised activation, in assays in which contact repulsion drives cell segregation and border sharpening. We find that polarised forward signaling drives stronger segregation than polarised reverse signaling. Nevertheless, reverse signaling contributes since bidirectional Eph and ephrin activation drives stronger segregation than unidirectional forward signaling alone. In contrast, non-polarised Eph activation drives little segregation. We propose that although polarised forward signaling is the principal driver of segregation, reverse signaling enables bidirectional repulsion which prevents mingling of each population into the other.


Assuntos
Efrinas/fisiologia , Receptores da Família Eph/fisiologia , Transdução de Sinais , Movimento Celular , Polaridade Celular , Efrinas/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Transdução de Sinais/genética
5.
Adv Exp Med Biol ; 1190: 33-42, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31760636

RESUMO

Myelination and remyelination in the central nervous system (CNS) are essential for rapid conduction of action potentials and for appropriate neuronal communications supporting higher brain functions. Myelination is dependent on developmental stage and is controlled by neuronal axons-oligodendrocyte (OL) signaling. Numerous studies of the initial myelination and remyelination stages in the CNS have demonstrated several key cytoskeletal signals in axons and OLs. In this review, we focus on cytoskeletal signal-regulated OL myelination and remyelination, with particular attention to neuronal Notch proteins, bidirectional Eph/ephrin signaling, OL integrin and cadherin superfamily proteins, OL actin rearrangement, and OL tyrosine kinase Fyn substrate proteins during the initial myelination and remyelination stages in the CNS.


Assuntos
Citoesqueleto/fisiologia , Oligodendroglia/fisiologia , Remielinização , Transdução de Sinais , Sistema Nervoso Central/fisiologia , Efrinas/fisiologia , Humanos , Bainha de Mielina/fisiologia , Receptores Notch/fisiologia
6.
Dev Dyn ; 247(9): 1043-1056, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30016580

RESUMO

BACKGROUND: The development of a functioning nervous system requires precise assembly of neuronal connections, which can be achieved by the guidance of axonal growth cones to their proper targets. How axons are guided by signals transmitted to the cytoskeleton through cell surface-expressed guidance receptors remains unclear. We investigated the function of Nck2 adaptor protein as an essential guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory into the limb. RESULTS: Nck2 mRNA and protein are preferentially expressed in the medial subgroups of chick LMC neurons during axon trajectory into the limb. Nck2 loss- and gain-of-function in LMC neurons using in ovo electroporation perturb LMC axon trajectory selection demonstrating an essential role of Nck2 in motor axon guidance. We also showed that Nck2 knockdown and overexpression perturb the growth preference of LMC neurites against ephrins in vitro and Eph-mediated redirection of LMC axons in vivo. Finally, the significant changes of LMC neurite growth preference against ephrins in the context of Nck2 and α2-chimaerin loss- and gain-of-function implicated Nck2 function to modulate α2-chimaerin activity. CONCLUSIONS: Here, we showed that Nck2 is required for Eph-mediated axon trajectory selection from spinal motor neurons through possible interaction with α2-chimaerin. Developmental Dynamics 247:1043-1056, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Orientação de Axônios/fisiologia , Extremidades/fisiologia , Cones de Crescimento/fisiologia , Neurônios Motores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Embrião de Galinha , Quimerina 1/metabolismo , Efrinas/fisiologia , Extremidades/embriologia , Neuritos , Receptores da Família Eph/metabolismo
7.
Eur J Neurosci ; 48(2): 1803-1817, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29904965

RESUMO

To explore roles for ephrin-B/EphB signaling in cortical interneurons, we previously generated ephrin-B (Efnb1/b2/b3) conditional triple mutant (TMlz ) mice using a Dlx1/2.Cre inhibitory neuron driver and green fluorescent protein (GFP) reporters for the two main inhibitory interneuron groups distinguished by expression of either glutamic acid decarboxylase 1 (GAD1; GAD67-GFP) or 2 (GAD2; GAD65-GFP). This work showed a general involvement of ephrin-B in migration and population of interneurons into the embryonic neocortex. We now determined whether specific interneurons are selectively affected in the adult brains of TMlz .Cre mice by immunostaining with antibodies that identify the different subtypes. The results indicate that GAD67-GFP-expressing interneurons that also express parvalbumin (PV), calretinin (CR) and, to a lesser extent, somatostatin (SST) and Reelin (Rln) were significantly reduced in the cortex and hippocampal CA1 region in TMlz .Cre mutant mice. Neuropeptide Y (NPY) interneurons that also express GAD67-GFP were reduced in the hippocampal CA1 region, but much less so in the cortex, although these cells exhibited abnormal cortical layering. In GAD65-GFP-expressing interneurons, CR subtypes were reduced in both cortex and hippocampal CA1 region, whereas Rln interneurons were reduced exclusively in hippocampus, and the numbers of NPY and vasoactive intestinal polypeptide (VIP) subtypes appeared normal. PV and CR subtype interneurons in TMlz .Cre mice also exhibited reductions in their perisomatic area, suggesting abnormalities in dendritic/axonal complexity. Altogether, our data indicate that ephrin-B expression within forebrain interneurons is required in specific subtypes for their normal population, cortical layering and elaboration of cell processes.


Assuntos
Região CA1 Hipocampal/citologia , Movimento Celular/fisiologia , Efrinas/fisiologia , Neurônios GABAérgicos , Interneurônios , Córtex Somatossensorial/citologia , Animais , Contagem de Células , Efrinas/deficiência , Feminino , Neurônios GABAérgicos/classificação , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/fisiologia , Interneurônios/classificação , Interneurônios/citologia , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Proteína Reelina
8.
Apoptosis ; 23(5-6): 265-289, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29767378

RESUMO

The Erythropoietin-producing human hepatocellular carcinoma (Eph) receptors constitute the largest family of receptor tyrosine kinases and interact with a group of ligands called Ephrins. An essential feature of the Eph receptors and Ephrin ligands is that both are membrane-bound and, upon cell-cell interaction, initiate a bidirectional signaling involving both the receptor (forward signaling) and the ligand (reverse signaling). They regulate a large set of pleiotropic functions in virtually every tissue and physiological system. In vitro as well as in vivo data support a role for Eph and Ephrin molecules in cellular processes such as proliferation, cell-cell attraction and repulsion, motility and sorting. An increasing amount of evidence supports a role for these molecules in apoptosis and, although this function in cell death has been barely examined, the available information warrants a global consideration, to identify unmet needs and potential research avenues. Here we propose a comprehensive analysis of the data available regarding the importance of Ephs and Ephrins in cell death mechanisms throughout a large array of physiological systems.


Assuntos
Apoptose , Efrinas/fisiologia , Receptores da Família Eph/fisiologia , Animais , Humanos
9.
Artigo em Inglês | MEDLINE | ID: mdl-29886255

RESUMO

This study aimed to investigate the precise data of gene expression, functions, and chronological relationships amongst communication molecules involved in the bone remodeling process with an in vivo model using autologous transplanted scales of goldfish. Autotransplantation of methanol-fixed cell-free scales triggers scale resorption and regeneration, as well as helps elucidate the process of bone remodeling. We investigated osteoclastic markers, osteoblastic markers, and gene expressions of communicating molecules (RANKL, ephrinB2, EphB4, EphA4, Wnt10b) by qPCR, in situ hybridization for Wnt10b, and immunohistochemistry for EphrinB2 and EphA4 proteins to elucidate the bone remodeling process. Furthermore, functional inhibition experiments for the signaling of ephrinB2/Eph, ephrin/EphA4, and Wnt10b using specific antibodies, revealed that these proteins are involved in key signaling pathways promoting normal bone remodeling. Our data suggests that the remodeling process comprises of two successive phases. In the first absorption phase, differentiation of osteoclast progenitors by RANKL is followed by the bone absorption by mature, active osteoclasts, with the simultaneous induction of osteoblast progenitors by multinucleated osteoclast-derived Wnt10b, and proliferation of osteoblast precursors by ehprinB2/EphB4 signaling. Subsequently, during the second formation phase, termination of bone resorption by synergistic cooperation occurs, with downregulation of RANKL expression in activated osteoblasts and Ephrin/EphA4-mediated mutual inhibition between neighboring multinucleated osteoclasts, along with simultaneous activation of osteoblasts via forward and reverse EphrinB2/EphB4 signaling between neighboring osteoblasts. In addition, the present study shows that autologous transplantation of methanol-fixed cell-free scale is an ideal in vivo model to study bone remodeling.


Assuntos
Escamas de Animais/transplante , Remodelação Óssea/fisiologia , Comunicação Celular/fisiologia , Efrinas/fisiologia , Proteínas de Peixes/fisiologia , Ligante RANK/fisiologia , Proteínas Wnt/fisiologia , Animais , Western Blotting , Carpa Dourada , Osteoblastos/citologia , Osteoclastos/citologia
10.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 40(2): 294-298, 2018 Apr 28.
Artigo em Zh | MEDLINE | ID: mdl-29724323

RESUMO

During the process of bone remodeling,the bone homeostasis is tightly controlled by the coupling of bone resorption and bone formation,depending upon cellular communication between osteoclasts and osteoblasts. Many studies have identified that the bi-directional transduction of erythropoietin producing hepatocyte kinase receptor and ephrin ligand (Eph/ephrin) is one of signal transduction pathways in bone remodeling. This review focus on the potential role of Eph/ephrin in bone remodeling,especially in alveolar remodeling.


Assuntos
Remodelação Óssea , Efrinas/fisiologia , Receptores da Família Eph/fisiologia , Humanos , Osteoblastos , Osteoclastos
11.
Semin Cell Dev Biol ; 23(1): 16-25, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22040915

RESUMO

The impact of Eph and ephrin signaling on cell behavior is complex and highly context dependent. Forward signaling initiated by Eph receptor activation and reverse signaling initiated by ephrin activation often mediate opposite effects. The apparent ligand-independent functions of Eph receptors recognized recently add another layer of complexity. This review will attempt to sort out the information generated recently on signaling by the A subfamily of Eph receptors and ephrin ligands. We will focus on EphA/ephrin-A signaling in the context of several physiological and disease processes, where new progresses have been made lately and unifying themes are emerging amid previous confusions. For more comprehensive survey of literature on Eph/ephrin signaling pathways and networks, readers are referred to outstanding reviews both in this volume and in other recent publications.


Assuntos
Receptores da Família Eph/metabolismo , Transdução de Sinais , Animais , Adesão Celular , Movimento Celular , Efrinas/metabolismo , Efrinas/fisiologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Receptor Cross-Talk
12.
Semin Cell Dev Biol ; 23(1): 65-74, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22040914

RESUMO

Great strides have been made regarding our understanding of the processes and signaling events influenced by Eph/ephrin signaling that play a role in cell adhesion and cell movement. However, the precise mechanisms by which these signaling events regulate cell and tissue architecture still need further resolution. The Eph/ephrin signaling pathways and the ability to regulate cell-cell adhesion and motility constitutes an impressive system for regulating tissue separation and morphogenesis (Pasquale, 2005, 2008 [1,2]). Moreover, the de-regulation of this signaling system is linked to the promotion of aggressive and metastatic tumors in humans [2]. In the following section, we discuss some of the interesting mechanisms by which ephrins can signal through their own intracellular domains (reverse signaling) either independent of forward signaling or in addition to forward signaling through a cognate receptor. In this review we discuss how ephrins (Eph ligands) "reverse signal" through their intracellular domains to affect cell adhesion and movement, but the focus is on modes of action that are independent of SH2 and PDZ interactions.


Assuntos
Efrinas/fisiologia , Transdução de Sinais , Animais , Adesão Celular , Movimento Celular , Efrinas/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Domínios PDZ , Receptores da Família Eph/metabolismo , Domínios de Homologia de src
13.
Semin Cell Dev Biol ; 23(1): 83-91, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22040916

RESUMO

In nervous system assembly, Eph/ephrin signaling mediates many axon guidance events that shape the formation of precise neuronal connections. However, due to the complexity of interactions between Ephs and ephrins, the molecular logic of their action is still being unraveled. Considerable advances have been made by studying the innervation of the limb by spinal motor neurons, a series of events governed by Eph/ephrin signaling. Here, we discuss the contributions of different Eph/ephrin modes of interaction, downstream signaling and electrical activity, and how these systems may interact both with each other and with other guidance molecules in limb muscle innervation. This simple model system has emerged as a very powerful tool to study this set of molecules, and will continue to be so by virtue of its simplicity, accessibility and the wealth of pioneering cellular studies.


Assuntos
Efrinas/fisiologia , Neurônios Motores/metabolismo , Receptores da Família Eph/fisiologia , Transdução de Sinais , Medula Espinal/citologia , Animais , Efrinas/metabolismo , Extremidades/inervação , Humanos , Sistema Nervoso/citologia , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/metabolismo , Receptores da Família Eph/metabolismo
14.
Semin Cell Dev Biol ; 23(1): 75-82, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22040917

RESUMO

Eph receptors and their ligands ephrins comprise a complex signaling system with diverse functions that span a wide range of tissues and developmental stages. The variety of Eph receptor functions stems from their ability to mediate bidirectional signaling through trans-cellular Eph/ephrin interactions. Initially thought to act by directing repulsion between cells, Ephs have also been demonstrated to induce and maintain cell adhesive responses at excitatory synapses in the central nervous system. EphB receptors are essential to the development and maintenance of dendritic spines, which accommodate the postsynaptic sites of most glutamatergic excitatory synapses in the brain. Functions of EphB receptors are not limited to control of the actin cytoskeleton in dendritic spines, as EphB receptors are also involved in the formation of functional synaptic specializations through the regulation of glutamate receptor trafficking and functions. In addition, EphB receptors have recently been linked to the pathophysiology of Alzheimer's disease and neuropathic pain, thus becoming promising targets for therapeutic interventions. In this review, we discuss recent findings on EphB receptor functions in synapses, as well as the mechanisms of bidirectional trans-synaptic ephrin-B/EphB receptor signaling that shape dendritic spines and influence post-synaptic differentiation.


Assuntos
Efrinas/fisiologia , Receptores da Família Eph/metabolismo , Transdução de Sinais , Sinapses/fisiologia , Animais , Adesão Celular , Diferenciação Celular , Dendritos/metabolismo , Dendritos/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Plasticidade Neuronal , Transporte Proteico , Receptores de Glutamato/metabolismo , Sinapses/metabolismo
15.
Semin Cell Dev Biol ; 23(1): 58-64, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22044884

RESUMO

Axon-cell and axon-dendrite contact is a highly regulated process necessary for the formation of precise neural circuits and a functional neural network. Eph-ephrin interacting molecules on the membranes of axon nerve terminals and target dendrites act as bidirectional ligands/receptors to transduce signals into both the Eph-expressing and ephrin-expressing cells to regulate cytoskeletal dynamics. In particular, recent evidence indicates that ephrin reverse signal transduction events are important in controlling both axonal and dendritic elaborations of neurons in the developing nervous system. Here we review how ephrin reverse signals are transduced into neurons to control maturation of axonal pre-synaptic and dendritic post-synaptic structures.


Assuntos
Axônios/fisiologia , Encéfalo/citologia , Efrinas/fisiologia , Transdução de Sinais , Sinapses/fisiologia , Animais , Axônios/metabolismo , Encéfalo/crescimento & desenvolvimento , Dendritos/metabolismo , Dendritos/fisiologia , Efrinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sinapses/metabolismo
16.
Semin Cell Dev Biol ; 23(1): 92-101, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22040910

RESUMO

Eph receptor tyrosine kinases mediate cell-cell communication by interacting with ephrin ligands residing on adjacent cell surfaces. In doing so, these juxtamembrane signaling complexes provide important contextual information about the cellular microenvironment that helps orchestrate tissue morphogenesis and maintain homeostasis. Eph/ephrin signaling has been implicated in various aspects of mammalian skin physiology, with several members of this large family of receptor tyrosine kinases and their ligands present in the epidermis, hair follicles, sebaceous glands, and underlying dermis. This review focuses on the emerging role of Eph receptors and ephrins in epidermal keratinocytes where they can modulate proliferation, migration, differentiation, and death. The activation of Eph receptors by ephrins at sites of cell-cell contact also appears to play a key role in the maturation of intercellular junctional complexes as keratinocytes move out of the basal layer and differentiate in the suprabasal layers of this stratified, squamous epithelium. Furthermore, alterations in the epidermal Eph/ephrin axis have been associated with cutaneous malignancy, wound healing defects and inflammatory skin conditions. These collective observations suggest that the Eph/ephrin cell-cell communication pathway may be amenable to therapeutic intervention for the purpose of restoring epidermal tissue homeostasis and integrity in dermatological disorders.


Assuntos
Diferenciação Celular , Efrinas/fisiologia , Epiderme/metabolismo , Receptores da Família Eph/fisiologia , Transdução de Sinais , Animais , Adesão Celular , Proliferação de Células , Efrinas/metabolismo , Epiderme/patologia , Humanos , Queratinócitos/metabolismo , Queratinócitos/fisiologia , Receptores da Família Eph/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Cicatrização
17.
Semin Cell Dev Biol ; 23(1): 1-6, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22040913

RESUMO

In the classical view of axon guidance, neurons send out axons which are endowed with guidance receptors enabling them to find their (distant) target areas by an interaction with their ligands expressed in specific spatio-temporal patterns along their pathways and in their target area. However, this view has recently been confounded by more detailed analyses of, for example, the expression patterns of EphAs and ephrinAs in the retinotectal projection. Here ephrinA 'ligands' are expressed not only in the target area but also on the projecting RGC axons, and EphA 'receptors' not only on retinal ganglion cell (RGC) axons but also in the target area itself. This review describes the on-going functional characterisation of the surprising co-expression of ephrinAs and EphAs on retinal ganglion cell (RGC) axons and other cell types. It also investigates the function of ephrinAs as receptors and describes their interaction with co-receptors involved in mediating this function.


Assuntos
Axônios/metabolismo , Encéfalo/anatomia & histologia , Efrinas/fisiologia , Receptores da Família Eph/metabolismo , Animais , Encéfalo/citologia , Mapeamento Encefálico , Efrinas/genética , Efrinas/metabolismo , Expressão Gênica , Humanos , Neurônios Motores/metabolismo , Receptores da Família Eph/genética , Receptores de Fator de Crescimento Neural/metabolismo , Transdução de Sinais , Percepção Visual
18.
Semin Cell Dev Biol ; 23(1): 7-15, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22044886

RESUMO

The axonal connections between the retina and its midbrain target, the superior colliculus (SC), is mapped topographically, such that the spatial relationships of cell bodies in the retina are maintained when terminating in the SC. Topographic map development uses a Cartesian mapping system such that each axis of the retina is mapped independently. Along the nasal-temporal mapping axis, EphAs and ephrin-As, are graded molecular cues required for topographic mapping while the dorsal-ventral axis is mapped in part via EphB and ephrin-Bs. Because both Ephs and ephrins are cell surface molecules they can signal in the forward and reverse directions. Eph/ephrin signaling leads to changes in cytoskeletal dynamics that lead to actin depolymerization and endocytosis guiding axons via attraction and repulsion.


Assuntos
Mapeamento Encefálico , Efrinas/fisiologia , Receptores da Família Eph/fisiologia , Transdução de Sinais , Colículos Superiores/anatomia & histologia , Animais , Efrinas/genética , Efrinas/metabolismo , Expressão Gênica , Humanos , Receptores da Família Eph/genética , Receptores da Família Eph/metabolismo , Células Ganglionares da Retina/metabolismo , Colículos Superiores/citologia , Colículos Superiores/crescimento & desenvolvimento , Sinapses/metabolismo , Percepção Visual
19.
Biochim Biophys Acta ; 1835(2): 243-57, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23396052

RESUMO

Although at present, there is a high incidence of prostate cancer, particularly in the Western world, mortality from this disease is declining and occurs primarily only from clinically significant late stage tumors with a poor prognosis. A major current focus of this field is the identification of new biomarkers which can detect earlier, and more effectively, clinically significant tumors from those deemed "low risk", as well as predict the prognostic course of a particular cancer. This strategy can in turn offer novel avenues for targeted therapies. The large family of Receptor Tyrosine Kinases, the Ephs, and their binding partners, the ephrins, has been implicated in many cancers of epithelial origin through stimulation of oncogenic transformation, tumor angiogenesis, and promotion of increased cell survival, invasion and migration. They also show promise as both biomarkers of diagnostic and prognostic value and as targeted therapies in cancer. This review will briefly discuss the complex roles and biological mechanisms of action of these receptors and ligands and, with regard to prostate cancer, highlight their potential as biomarkers for both diagnosis and prognosis, their application as imaging agents, and current approaches to assessing them as therapeutic targets. This review demonstrates the need for future studies into those particular family members that will prove helpful in understanding the biology and potential as targets for treatment of prostate cancer.


Assuntos
Efrinas/fisiologia , Neoplasias da Próstata/tratamento farmacológico , Receptor EphA1/fisiologia , Biomarcadores , Efrinas/análise , Humanos , Masculino , Células Neoplásicas Circulantes/química , Neoplasias da Próstata/etiologia , Receptor EphA1/análise , Receptor EphA1/antagonistas & inibidores , Transdução de Sinais
20.
Br J Cancer ; 111(7): 1255-61, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25144626

RESUMO

The dismal outlook for patients with the most aggressive and common form of adult brain cancer, glioblastoma (GBM), motivates a search for new therapeutic strategies and targets for this aggressive disease. Here we review the findings to date on the role of Eph family receptor tyrosine kinases and their ephrin ligands in brain cancer. Expression of the Eph family of cell surface proteins is generally downregulated to very low levels in normal adult tissues making them particularly attractive for directed therapeutic targeting. Recent Eph targeting studies in pre-clinical models of GBM have been very encouraging and may provide an avenue to treat these highly refractory aggressive tumours.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Receptores da Família Eph/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais , Efrinas/fisiologia , Glioblastoma/tratamento farmacológico , Humanos , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores da Família Eph/genética , Receptores da Família Eph/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA