Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 413
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Rev ; 74(2): 387-438, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35302046

RESUMO

Post-traumatic epilepsy (PTE) is one of the most devastating long-term, network consequences of traumatic brain injury (TBI). There is currently no approved treatment that can prevent onset of spontaneous seizures associated with brain injury, and many cases of PTE are refractory to antiseizure medications. Post-traumatic epileptogenesis is an enduring process by which a normal brain exhibits hypersynchronous excitability after a head injury incident. Understanding the neural networks and molecular pathologies involved in epileptogenesis are key to preventing its development or modifying disease progression. In this article, we describe a critical appraisal of the current state of PTE research with an emphasis on experimental models, molecular mechanisms of post-traumatic epileptogenesis, potential biomarkers, and the burden of PTE-associated comorbidities. The goal of epilepsy research is to identify new therapeutic strategies that can prevent PTE development or interrupt the epileptogenic process and relieve associated neuropsychiatric comorbidities. Therefore, we also describe current preclinical and clinical data on the treatment of PTE sequelae. Differences in injury patterns, latency period, and biomarkers are outlined in the context of animal model validation, pathophysiology, seizure frequency, and behavior. Improving TBI recovery and preventing seizure onset are complex and challenging tasks; however, much progress has been made within this decade demonstrating disease modifying, anti-inflammatory, and neuroprotective strategies, suggesting this goal is pragmatic. Our understanding of PTE is continuously evolving, and improved preclinical models allow for accelerated testing of critically needed novel therapeutic interventions in military and civilian persons at high risk for PTE and its devastating comorbidities. SIGNIFICANCE STATEMENT: Post-traumatic epilepsy is a chronic seizure condition after brain injury. With few models and limited understanding of the underlying progression of epileptogenesis, progress is extremely slow to find a preventative treatment for PTE. This study reviews the current state of modeling, pathology, biomarkers, and potential interventions for PTE and comorbidities. There's new optimism in finding a drug therapy for preventing PTE in people at risk, such as after traumatic brain injury, concussion, and serious brain injuries, especially in military persons.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Epilepsia Pós-Traumática , Epilepsia , Animais , Biomarcadores , Lesões Encefálicas/complicações , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Epilepsia Pós-Traumática/tratamento farmacológico , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/prevenção & controle , Humanos , Modelos Moleculares , Convulsões/complicações
2.
J Neuroinflammation ; 21(1): 172, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014496

RESUMO

Post-traumatic epilepsy (PTE) is one of the most debilitating consequences of traumatic brain injury (TBI) and is one of the most drug-resistant forms of epilepsy. Novel therapeutic treatment options are an urgent unmet clinical need. The current focus in healthcare has been shifting to disease prevention, rather than treatment, though, not much progress has been made due to a limited understanding of the disease pathogenesis. Neuroinflammation has been implicated in the pathophysiology of traumatic brain injury and may impact neurological sequelae following TBI including functional behavior and post-traumatic epilepsy development. Inflammasome signaling is one of the major components of the neuroinflammatory response, which is increasingly being explored for its contribution to the epileptogenic mechanisms and a novel therapeutic target against epilepsy. This review discusses the role of inflammasomes as a possible connecting link between TBI and PTE with a particular focus on clinical and preclinical evidence of therapeutic inflammasome targeting and its downstream effector molecules for their contribution to epileptogenesis. Finally, we also discuss emerging evidence indicating the potential of evaluating inflammasome proteins in biofluids and the brain by non-invasive neuroimaging, as potential biomarkers for predicting PTE development.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Inflamassomos , Humanos , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/imunologia , Inflamassomos/metabolismo , Animais , Epilepsia Pós-Traumática/metabolismo , Epilepsia Pós-Traumática/etiologia
3.
Epilepsia ; 65(2): 511-526, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052475

RESUMO

OBJECTIVE: This study was undertaken to assess reproducibility of the epilepsy outcome and phenotype in a lateral fluid percussion model of posttraumatic epilepsy (PTE) across three study sites. METHODS: A total of 525 adult male Sprague Dawley rats were randomized to lateral fluid percussion-induced brain injury (FPI) or sham operation. Of these, 264 were assigned to magnetic resonance imaging (MRI cohort, 43 sham, 221 traumatic brain injury [TBI]) and 261 to electrophysiological follow-up (EEG cohort, 41 sham, 220 TBI). A major effort was made to harmonize the rats, materials, equipment, procedures, and monitoring systems. On the 7th post-TBI month, rats were video-EEG monitored for epilepsy diagnosis. RESULTS: A total of 245 rats were video-EEG phenotyped for epilepsy on the 7th postinjury month (121 in MRI cohort, 124 in EEG cohort). In the whole cohort (n = 245), the prevalence of PTE in rats with TBI was 22%, being 27% in the MRI and 18% in the EEG cohort (p > .05). Prevalence of PTE did not differ between the three study sites (p > .05). The average seizure frequency was .317 ± .725 seizures/day at University of Eastern Finland (UEF; Finland), .085 ± .067 at Monash University (Monash; Australia), and .299 ± .266 at University of California, Los Angeles (UCLA; USA; p < .01 as compared to Monash). The average seizure duration did not differ between UEF (104 ± 48 s), Monash (90 ± 33 s), and UCLA (105 ± 473 s; p > .05). Of the 219 seizures, 53% occurred as part of a seizure cluster (≥3 seizures/24 h; p >.05 between the study sites). Of the 209 seizures, 56% occurred during lights-on period and 44% during lights-off period (p > .05 between the study sites). SIGNIFICANCE: The PTE phenotype induced by lateral FPI is reproducible in a multicenter design. Our study supports the feasibility of performing preclinical multicenter trials in PTE to increase statistical power and experimental rigor to produce clinically translatable data to combat epileptogenesis after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Animais , Masculino , Ratos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/patologia , Percussão , Fenótipo , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Convulsões
4.
Epilepsia ; 65(7): 1962-1974, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38752783

RESUMO

OBJECTIVE: Posttraumatic epilepsy (PTE) significantly impacts morbidity and mortality, yet local PTE data remain scarce. In addition, there is a lack of evidence on cognitive comorbidity in individuals with PTE in the literature. We sought to identify potential PTE predictors and evaluate cognitive comorbidity in patients with PTE. METHODS: A 2-year retrospective cohort study was employed, in which adults with a history of admission for traumatic brain injury (TBI) in 2019 and 2020 were contacted. Three hundred one individuals agreed to participate, with a median follow-up time of 30.75 months. The development of epilepsy was ascertained using a validated tool and confirmed by our neurologists during visits. Clinical psychologists assessed the patients' cognitive performance. RESULTS: The 2-year cumulative incidence of PTE was 9.3% (95% confidence interval [CI] 5.9-12.7). The significant predictors of PTE were identified as a previous history of brain injury [hazard ratio [HR] 4.025, p = .021], and intraparenchymal hemorrhage (HR: 2.291, p = .036), after adjusting for other confounders. TBI patients with PTE performed significantly worse on the total ACE-III cognitive test (73.5 vs 87.0, p = .018), CTMT (27.5 vs 33.0, p = .044), and PSI (74.0 vs 86.0, p = .006) than TBI patients without PTE. A significantly higher percentage of individuals in the PTE group had cognitive impairment, compared to the non-PTE group based on ACE-III (53.6% vs 46.4%, p = .001) and PSI (70% vs 31.7%, p = .005) scores at 2 years post-TBI follow-up. SIGNIFICANCE: This study emphasizes the link between TBI and PTE and the chance of developing cognitive impairment in the future. Clinicians can target interventions to prevent PTE by identifying specific predictors, which helps them make care decisions and develop therapies to improve patients' quality of life.


Assuntos
Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Epilepsia Pós-Traumática , Humanos , Lesões Encefálicas Traumáticas/epidemiologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/psicologia , Feminino , Masculino , Estudos Retrospectivos , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/etiologia , Malásia/epidemiologia , Adulto , Incidência , Epilepsia Pós-Traumática/epidemiologia , Epilepsia Pós-Traumática/etiologia , Pessoa de Meia-Idade , Estudos de Coortes , Fatores de Risco , Adulto Jovem
5.
Epilepsia ; 65(7): 2127-2137, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761065

RESUMO

OBJECTIVE: The mechanistic target of rapamycin (mTOR) pathway has been implicated in promoting epileptogenesis in animal models of acquired epilepsy, such as posttraumatic epilepsy (PTE) following traumatic brain injury (TBI). However, the specific anatomical regions and neuronal populations mediating mTOR's role in epileptogenesis are not well defined. In this study, we tested the hypothesis that mTOR activation in dentate gyrus granule cells promotes neuronal death, mossy fiber sprouting, and PTE in the controlled cortical impact (CCI) model of TBI. METHODS: An adeno-associated virus (AAV)-Cre viral vector was injected into the hippocampus of Rptorflox/flox (regulatory-associated protein of mTOR) mutant mice to inhibit mTOR activation in dentate gyrus granule cells. Four weeks after AAV-Cre or AAV-vehicle injection, mice underwent CCI injury and were subsequently assessed for mTOR pathway activation by Western blotting, neuronal death, and mossy fiber sprouting by immunopathological analysis, and posttraumatic seizures by video-electroencephalographic monitoring. RESULTS: AAV-Cre injection primarily affected the dentate gyrus and inhibited hippocampal mTOR activation following CCI injury. AAV-Cre-injected mice had reduced neuronal death in dentate gyrus detected by Fluoro-Jade B staining and decreased mossy fiber sprouting by ZnT3 immunostaining. Finally, AAV-Cre-injected mice exhibited a decrease in incidence of PTE. SIGNIFICANCE: mTOR pathway activation in dentate gyrus granule cells may at least partly mediate pathological abnormalities and epileptogenesis in models of TBI and PTE. Targeted modulation of mTOR activity in this hippocampal network may represent a focused therapeutic approach for antiepileptogenesis and prevention of PTE.


Assuntos
Giro Denteado , Modelos Animais de Doenças , Epilepsia Pós-Traumática , Serina-Treonina Quinases TOR , Animais , Giro Denteado/metabolismo , Giro Denteado/patologia , Camundongos , Serina-Treonina Quinases TOR/metabolismo , Epilepsia Pós-Traumática/etiologia , Fibras Musgosas Hipocampais/efeitos dos fármacos , Masculino , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Camundongos Endogâmicos C57BL , Neurônios/patologia , Neurônios/metabolismo , Eletroencefalografia , Camundongos Transgênicos
6.
J Surg Res ; 300: 102-108, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38805843

RESUMO

INTRODUCTION: Post-traumatic seizures (PTSs) contribute to morbidity after traumatic brain injury (TBI). Early PTS are rare in combat casualties sustaining TBI, but the prevalence of late PTS is poorly described. We sought to define the prevalence and risk factors of late PTS in combat casualties with computed tomography evidence of TBI. METHODS: From 2010 to 2015, 687 combat casualties were transferred to a military treatment facility and included in the Department of Defense Trauma Registry. 71 patients with radiographic evidence of TBI were analyzed. Data collection included demographics, injury characteristics, interventions, medications, and outcomes. RESULTS: Of the 71 patients with evidence of TBI, 66 patients survived hospitalization and were followed. No patients had early PTS, and most received antiepileptic drugs (AEDs) for prophylaxis. At a median follow-up of 7.4 y, late PTS occurred in 25.8% of patients. Patients with late PTS were more severely injured (median Injury severity score 30 versus 24, P = 0.005) and required more blood products (18 units versus 2, P = 0.045). Patients with late PTS were more likely to have had a penetrating TBI (76.5% versus 38.8%, P = 0.01), multiple types of intracranial hemorrhage (94.1% versus 63.3%, P = 0.02), and cranial decompression (76.5% versus 28.6%, P = 0.001). Six-month Glasgow outcome scores were worse (3.5 versus 4.1 P = 0.001) in the late PTS population. No significant relationship was observed between administration of AEDs for early PTS prophylaxis and late PTS. CONCLUSIONS: Combat casualties with TBI suffering late PTS are more severely injured and require more blood products. Penetrating TBI, intracranial hemorrhage, and need for cranial decompression are correlated with late PTS, and associated with worse Glasgow Outcome Score. The administration of prophylactic AEDs for early PTS was not associated with a difference in rates of late PTS.


Assuntos
Lesões Encefálicas Traumáticas , Humanos , Masculino , Adulto , Lesões Encefálicas Traumáticas/complicações , Feminino , Fatores de Risco , Adulto Jovem , Estudos Retrospectivos , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/epidemiologia , Epilepsia Pós-Traumática/prevenção & controle , Epilepsia Pós-Traumática/diagnóstico , Convulsões/etiologia , Convulsões/epidemiologia , Convulsões/prevenção & controle , Convulsões/diagnóstico , Anticonvulsivantes/uso terapêutico , Prevalência , Militares/estatística & dados numéricos , Tomografia Computadorizada por Raios X , Sistema de Registros/estatística & dados numéricos , Seguimentos , Guerra do Iraque 2003-2011 , Escala de Gravidade do Ferimento
7.
Semin Neurol ; 44(3): 333-341, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621706

RESUMO

Posttraumatic epilepsy (PTE) is a complication of traumatic brain injury that can increase morbidity, but predicting which patients may develop PTE remains a challenge. Much work has been done to identify a variety of risk factors and biomarkers, or a combination thereof, for patients at highest risk of PTE. However, several issues have hampered progress toward fully adapted PTE models. Such issues include the need for models that are well-validated, cost-effective, and account for competing outcomes like death. Additionally, while an accurate PTE prediction model can provide quantitative prognostic information, how such information is communicated to inform shared decision-making and treatment strategies requires consideration of an individual patient's clinical trajectory and unique values, especially given the current absence of direct anti-epileptogenic treatments. Future work exploring approaches integrating individualized communication of prediction model results are needed.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Humanos , Prognóstico , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/diagnóstico , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico
8.
Neurobiol Dis ; 179: 106053, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871641

RESUMO

PTE is a neurological disorder characterized by recurrent and spontaneous epileptic seizures. PTE is a major public health problem occurring in 2-50% of TBI patients. Identifying PTE biomarkers is crucial for the development of effective treatments. Functional neuroimaging studies in patients with epilepsy and in epileptic rodents have observed that abnormal functional brain activity plays a role in the development of epilepsy. Network representations of complex systems ease quantitative analysis of heterogeneous interactions within a unified mathematical framework. In this work, graph theory was used to study resting state functional magnetic resonance imaging (rs-fMRI) and reveal functional connectivity abnormalities that are associated with seizure development in traumatic brain injury (TBI) patients. We examined rs-fMRI of 75 TBI patients from Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) which aims to identify validated Post-traumatic epilepsy (PTE) biomarkers and antiepileptogenic therapies using multimodal and longitudinal data acquired from 14 international sites. The dataset includes 28 subjects who had at least one late seizure after TBI and 47 subjects who had no seizures within 2 years post-injury. Each subject's neural functional network was investigated by computing the correlation between the low frequency time series of 116 regions of interest (ROIs). Each subject's functional organization was represented as a network consisting of nodes, brain regions, and edges that show the relationship between the nodes. Then, several graph measures concerning the integration and the segregation of the functional brain networks were extracted in order to highlight changes in functional connectivity between the two TBI groups. Results showed that the late seizure-affected group had a compromised balance between integration and segregation and presents functional networks that are hyperconnected, hyperintegrated but at the same time hyposegregated compared with seizure-free patients. Moreover, TBI subjects who developed late seizures had more low betweenness hubs.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Humanos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Epilepsia Pós-Traumática/diagnóstico por imagem , Epilepsia Pós-Traumática/etiologia , Encéfalo/diagnóstico por imagem , Biomarcadores , Convulsões/diagnóstico por imagem , Imageamento por Ressonância Magnética
9.
Ann Neurol ; 92(4): 663-669, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35713346

RESUMO

We determined the incidence of post-traumatic epilepsy after severe traumatic brain injury. Of 392 patients surviving to discharge, cumulative incidence of post-traumatic epilepsy was 25% at 5 years and 32% at 15 years, an increase compared with historical reports. Among patients with one late seizure (>7 days post-trauma), the risk of seizure recurrence was 62% after 1 year and 82% at 10 years. Competing hazards regression identified age, decompressive hemicraniectomy, and intracranial infection as independent predictors of post-traumatic epilepsy. Patients with severe traumatic brain injury and a single late post-traumatic seizure will likely require long-term antiseizure medicines. ANN NEUROL 2022;92:663-669.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/epidemiologia , Epilepsia/epidemiologia , Epilepsia/etiologia , Epilepsia Pós-Traumática/epidemiologia , Epilepsia Pós-Traumática/etiologia , Humanos , Incidência , Fatores de Risco , Convulsões/complicações
10.
J Neurol Neurosurg Psychiatry ; 94(3): 245-249, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36241423

RESUMO

BACKGROUND: Post-traumatic epilepsy (PTE) is a severe complication of traumatic brain injury (TBI). Electroencephalography aids early post-traumatic seizure diagnosis, but its optimal utility for PTE prediction remains unknown. We aim to evaluate the contribution of quantitative electroencephalograms to predict first-year PTE (PTE1). METHODS: We performed a multicentre, retrospective case-control study of patients with TBI. 63 PTE1 patients were matched with 63 non-PTE1 patients by admission Glasgow Coma Scale score, age and sex. We evaluated the association of quantitative electroencephalography features with PTE1 using logistic regressions and examined their predictive value relative to TBI mechanism and CT abnormalities. RESULTS: In the matched cohort (n=126), greater epileptiform burden, suppression burden and beta variability were associated with 4.6 times higher PTE1 risk based on multivariable logistic regression analysis (area under the receiver operating characteristic curve, AUC (95% CI) 0.69 (0.60 to 0.78)). Among 116 (92%) patients with available CT reports, adding quantitative electroencephalography features to a combined mechanism and CT model improved performance (AUC (95% CI), 0.71 (0.61 to 0.80) vs 0.61 (0.51 to 0.72)). CONCLUSIONS: Epileptiform and spectral characteristics enhance covariates identified on TBI admission and CT abnormalities in PTE1 prediction. Future trials should incorporate quantitative electroencephalography features to validate this enhancement of PTE risk stratification models.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Humanos , Epilepsia Pós-Traumática/diagnóstico , Epilepsia Pós-Traumática/etiologia , Estudos Retrospectivos , Estudos de Casos e Controles , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico , Eletroencefalografia/efeitos adversos
11.
Cell Mol Neurobiol ; 43(8): 4059-4069, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37889439

RESUMO

Posttraumatic epilepsy (PTE) is a severe complication arising from a traumatic brain injury caused by various violent actions on the brain. The underlying mechanisms for the pathogenesis of PTE are complex and have not been fully defined. Approximately, one-third of patients with PTE are resistant to antiepileptic therapy. Recent research evidence has shown that neuroinflammation is critical in the development of PTE. This article reviews the immune-inflammatory mechanisms regarding microglial activation, astrocyte proliferation, inflammatory signaling pathways, chronic neuroinflammation, and intestinal flora. These mechanisms offer novel insights into the pathophysiological mechanisms of PTE and have groundbreaking implications in the prevention and treatment of PTE. Immunoinflammatory cross-talk between glial cells and gut microbiota in posttraumatic epilepsy. This graphical abstract depicts the roles of microglia and astrocytes in posttraumatic epilepsy, highlighting the influence of the gut microbiota on their function. TBI traumatic brain injury, AQP4 aquaporin-4, Kir4.1 inward rectifying K channels.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Humanos , Doenças Neuroinflamatórias , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/patologia , Lesões Encefálicas Traumáticas/complicações , Encéfalo/patologia , Astrócitos/patologia
12.
Epilepsia ; 64(7): 1842-1852, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37073101

RESUMO

OBJECTIVE: Posttraumatic epilepsy (PTE) develops in as many as one third of severe traumatic brain injury (TBI) patients, often years after injury. Analysis of early electroencephalographic (EEG) features, by both standardized visual interpretation (viEEG) and quantitative EEG (qEEG) analysis, may aid early identification of patients at high risk for PTE. METHODS: We performed a case-control study using a prospective database of severe TBI patients treated at a single center from 2011 to 2018. We identified patients who survived 2 years postinjury and matched patients with PTE to those without using age and admission Glasgow Coma Scale score. A neuropsychologist recorded outcomes at 1 year using the Expanded Glasgow Outcomes Scale (GOSE). All patients underwent continuous EEG for 3-5 days. A board-certified epileptologist, blinded to outcomes, described viEEG features using standardized descriptions. We extracted 14 qEEG features from an early 5-min epoch, described them using qualitative statistics, then developed two multivariable models to predict long-term risk of PTE (random forest and logistic regression). RESULTS: We identified 27 patients with and 35 without PTE. GOSE scores were similar at 1 year (p = .93). The median time to onset of PTE was 7.2 months posttrauma (interquartile range = 2.2-22.2 months). None of the viEEG features was different between the groups. On qEEG, the PTE cohort had higher spectral power in the delta frequencies, more power variance in the delta and theta frequencies, and higher peak envelope (all p < .01). Using random forest, combining qEEG and clinical features produced an area under the curve of .76. Using logistic regression, increases in the delta:theta power ratio (odds ratio [OR] = 1.3, p < .01) and peak envelope (OR = 1.1, p < .01) predicted risk for PTE. SIGNIFICANCE: In a cohort of severe TBI patients, acute phase EEG features may predict PTE. Predictive models, as applied to this study, may help identify patients at high risk for PTE, assist early clinical management, and guide patient selection for clinical trials.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Humanos , Estudos de Casos e Controles , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico , Epilepsia Pós-Traumática/diagnóstico , Epilepsia Pós-Traumática/etiologia , Eletroencefalografia , Escala de Coma de Glasgow
13.
Neurochem Res ; 48(3): 909-919, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36383323

RESUMO

Post-traumatic epilepsy (PTE) caused by mild TBI (mild traumatic brain injury, mTBI) has a high incidence and poor prognosis, but its mechanisms are unclear. Herein, we investigated the role of reduced levels of neuronal autophagy during the latency period in the increased susceptibility to PTE. In the study, a gentle whole-body mechanical trauma rat model was prepared using Noble-Collip drums, and the extent of injury was observed by cranial CT and HE staining of hippocampal tissue. The incidence of epilepsy and its seizure form were observed 7-90 days after mTBI, and electroencephalography (EEG) was recorded during seizures in rats. Subcortical injection of non-epileptogenic dose of ferrous chloride (FeCl2) was used to observe the changes of PTE incidence after mTBI. Western blot and Real-time PCR were used to detect the level of autophagy in hippocampal cells at different time points during the latency period of PTE, and its incidence was observed after up-regulation of autophagy after administration of autophagy agonist-rapamycin. The results showed that mTBI was prepared by Noble-Collip drum, which could better simulate the clinical mTBI process. There was no intracerebral hemorrhage and necrosis in rats, no early-onset seizures, and the incidence of PTE after mTBI was 26.7%. The incidence of PTE was 56.7% in rats injected cortically with FeCl2 at a dose lower than the epileptogenic dose 48 h after mTBI, and the difference was significant compared with no FeCl2 injection, suggesting an increased susceptibility to PTE after mTBI. Further study of neuronal autophagy during PTE latency revealed that autophagy levels were reduced, and the incidence of PTE was significantly reduced after administration of rapamycin to upregulate autophagy. Taken together, the decreased level of neuronal autophagy during the latency period may be a possible mechanism for the increased susceptibility to PTE after mTBI.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Ratos , Animais , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/epidemiologia , Lesões Encefálicas Traumáticas/complicações , Convulsões/etiologia , Concussão Encefálica/complicações , Autofagia
14.
Metab Brain Dis ; 38(3): 749-765, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36715879

RESUMO

Traumatic brain injury (TBI) leads to post-traumatic epilepsy (PTE); hence, both TBI and PTE share various similar molecular mechanisms. MicroRNA (miRNA) is a small noncoding RNA that acts as a gene-silencing molecule. Notably, the dysregulation of miRNAs in various neurological diseases, including TBI and epilepsy, has been reported in several studies. However, studies on commonly dysregulated miRNAs and the regulation of shared pathways in both TBI and epilepsy that can identify potential biomarkers of PTE are still lacking. This systematic review covers the peer-review publications of TBI and database studies of epilepsy-dysregulated miRNAs of clinical studies. For TBI, 290 research articles were identified after screening, and 12 provided data for dysregulated miRNAs in humans. The compiled data suggest that 85 and 222 miRNAs are consecutively dysregulated in TBI and epilepsy. In both, 10 miRNAs were found to be commonly dysregulated, implying that they are potentially dysregulated miRNAs for PTE. Furthermore, the targets and involvement of each putative miRNA in different pathways were identified and evaluated. Additionally, clusters of predicted miRNAs were analyzed. Each miRNA's regulatory role was linked with apoptosis, inflammation, and cell cycle regulation pathways. Hence, these findings provide insight for future diagnostic biomarkers.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , MicroRNAs , Humanos , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/genética , MicroRNAs/genética , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/genética , Epilepsia/diagnóstico , Epilepsia/genética , Biomarcadores
15.
Ter Arkh ; 95(12): 1128-1132, 2023 Dec 28.
Artigo em Russo | MEDLINE | ID: mdl-38785052

RESUMO

This study is aimed at investigating epileptic seizures, one of the consequences of traumatic brain injury (TBI). Immediate and early post-traumatic seizures, as well as late post-traumatic epileptic seizures or post-traumatic epilepsy, can have different pathogenetic bases. The following key risk factors associated with post-traumatic epilepsy are known: duration of unconsciousness, gunshot wounds, intracranial hemorrhage, diffuse axonal injury, prolonged (more than 3 days) post-traumatic amnesia, acute subdural hematoma with surgical evacuation, immediate and early post-traumatic epileptic seizures, fracture of the skull bones. The role of genetic factors in post-traumatic seizures is poorly understood due to the complexity and multiple causal mechanisms. This paper addresses the role of genetic factors in the occurrence and severity of epileptic events in patients with TBI. In particular, we investigated the role of the Cys112Arg single nucleotide polymorphism of the apolipoprotein E gene. Apolipoprotein E is known for its role in the transport and metabolism of lipids and, therefore, the development of cardiovascular diseases; it is also associated with Alzheimer's disease and has recently been studied in the context of association with epilepsy. The study shows an association between this polymorphism and the risk of immediate and early epileptic seizures in patients with severe TBI.


Assuntos
Apolipoproteínas E , Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Polimorfismo de Nucleotídeo Único , Humanos , Apolipoproteínas E/genética , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/complicações , Epilepsia Pós-Traumática/genética , Epilepsia Pós-Traumática/etiologia , Predisposição Genética para Doença , Fatores de Risco
16.
Epilepsia ; 63(4): 992-1002, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35037242

RESUMO

OBJECTIVES: There is no effective therapy to prevent the development of posttraumatic epilepsy (PTE). Recently, we reported that administration of the antiseizure medication (ASM) levetiracetam (LEV) shortly after trauma prevented the development of epileptiform activity in two experimental models of neurotrauma. However, the time window for effective intervention with LEV may be too narrow for most clinical settings. Using the controlled cortical impact (CCI) injury model, the current study tested whether early administration of brivaracetam (BRV), an ASM with 20 times the affinity of LEV for the SV2A synaptic vesicle protein, could improve upon the antiepileptogenic action observed with LEV. METHODS: Rats (postnatal day [P] 24-32) subjected to CCI injury were given a single dose of BRV (21 or 100 mg/kg, i.p.) at one of three post-injury time points: immediately (0-2 minutes), 30 minutes, or 60 minutes. Control animals received only vehicle (0.9% saline). Posttraumatic electrographic epileptiform activity was assayed ex vivo from coronal neocortical slices collected proximal to the injury (four per rat) 3-4 weeks after injury. In this model, ictal-like burst discharges occur spontaneously or can be evoked in an "all or none" manner with applied electrical stimulation within the first 2 weeks after injury. RESULTS: A single dose of BRV administered to rats up to 60 minutes after traumatic brain injury (TBI) significantly reduced the development of posttraumatic epileptiform activity by (1) inhibiting the development of both evoked and spontaneous epileptiform activity, (2) raising the threshold for stimulus-evoked epileptiform discharges, and (3) reducing the intensity of epileptiform bursts that arise after cortical neurotrauma. SIGNIFICANCE: Clinically there has been little success preventing the development of posttraumatic epilepsy. The results of this study support the hypothesis that early intervention with BRV has the potential to prevent or reduce posttraumatic epileptogenesis, and that there may be a limited time window for successful prophylactic intervention.


Assuntos
Anticonvulsivantes , Epilepsia Pós-Traumática , Animais , Epilepsia Pós-Traumática/tratamento farmacológico , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/prevenção & controle , Levetiracetam/uso terapêutico , Pirrolidinonas/farmacologia , Pirrolidinonas/uso terapêutico , Ratos
17.
Epilepsia ; 63(11): 2802-2812, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35996866

RESUMO

Posttraumatic epilepsy (PTE) is a well-known chronic complication following traumatic brain injury (TBI). Despite some evidence that age at the time of injury may influence the likelihood of PTE, the incidence of PTE in pediatric populations remains unclear. We therefore conducted a systematic review to determine the overall reported incidence of PTE, and explore potential risk factors associated with PTE after pediatric TBI. A comprehensive literature search of the PubMed, Embase, and Web of Science databases was conducted, including randomized controlled trials and cohort studies assessing the incidence of PTE in TBI pediatric patients. We excluded studies with a sample size of <10 patients and those in which a pediatric cohort was not clearly discernable. The review was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. We found that the overall incidence of PTE following pediatric TBI was 10% (95% confidence interval [CI] = 5.9%-15%). Subgroup analysis of a small number of studies demonstrated that the occurrence of early seizures (cumulative incidence ratio [CIR] = 7.28, 95% CI = 1.09-48.4, p = .040), severe TBI (CIR = 1.81, 95% CI = 1.23-2.67, p < .001), and intracranial hemorrhage (CIR = 1.60, 95% CI = 1.06-2.40, p = .024) increased the risk of PTE in this population. Other factors, including male sex and neurosurgical intervention, were nonsignificantly associated with a higher incidence of PTE. In conclusion, PTE is a significant chronic complication following childhood TBI, similar to in the adult population. Further standardized investigation into clinical risk factors and management guidelines is warranted. PROSPERO ID# CRD42021245802.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Adulto , Humanos , Criança , Masculino , Incidência , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/complicações , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/epidemiologia , Fatores de Risco , Estudos de Coortes
18.
Epilepsia ; 63(7): 1849-1861, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35451496

RESUMO

OBJECTIVE: This study was undertaken to identify prognostic biomarkers for posttraumatic epileptogenesis derived from parameters related to the hippocampal position and orientation. METHODS: Data were derived from two preclinical magnetic resonance imaging (MRI) follow-up studies: EPITARGET (156 rats) and Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx; University of Eastern Finland cohort, 43 rats). Epileptogenesis was induced with lateral fluid percussion-induced traumatic brain injury (TBI) in adult male Sprague Dawley rats. In the EPITARGET cohort, T 2 ∗ -weighted MRI was performed at 2, 7, and 21 days and in the EpiBioS4Rx cohort at 2, 9, and 30 days and 5 months post-TBI. Both hippocampi were segmented using convolutional neural networks. The extracted segmentation mask was used for a geometric construction, extracting 39 parameters that described the position and orientation of the left and right hippocampus. In each cohort, we assessed the parameters as prognostic biomarkers for posttraumatic epilepsy (PTE) both individually, using repeated measures analysis of variance, and in combination, using random forest classifiers. RESULTS: The extracted parameters were highly effective in discriminating between sham-operated and TBI rats in both the EPITARGET and EpiBioS4Rx cohorts at all timepoints (t; balanced accuracy > .9). The most discriminating parameter was the inclination of the hippocampus ipsilateral to the lesion at t = 2 days and the volumes at t ≥ 7 days after TBI. Furthermore, in the EpiBioS4Rx cohort, we could effectively discriminate epileptogenic from nonepileptogenic animals with a longer MRI follow-up, at t = 150 days (area under the curve = .78, balanced accuracy = .80, p = .0050), based on the orientation of both hippocampi. We found that the ipsilateral hippocampus rotated outward on the horizontal plane, whereas the contralateral hippocampus rotated away from the vertical direction. SIGNIFICANCE: We demonstrate that assessment of TBI-induced hippocampal deformation by clinically translatable MRI methodologies detects subjects with prior TBI as well as those at high risk of PTE, paving the way toward subject stratification for antiepileptogenesis studies.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Animais , Biomarcadores , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Epilepsia/diagnóstico , Epilepsia Pós-Traumática/diagnóstico por imagem , Epilepsia Pós-Traumática/tratamento farmacológico , Epilepsia Pós-Traumática/etiologia , Hipocampo/diagnóstico por imagem , Humanos , Masculino , Percussão , Prognóstico , Ratos , Ratos Sprague-Dawley
19.
Acta Neurol Scand ; 146(5): 485-491, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35833266

RESUMO

OBJECTIVES: Early post-traumatic seizures (EPTS) are a well-known complication of traumatic brain injury (TBI). EPTS increase the risk of secondary brain injury and may cause significant challenges during the period of critical care. Routine use of prophylactic anti-seizure medication is controversial due to conflicting reports on efficacy and risk of adverse effects. The purpose of this study was to expand the understanding of EPTS by examining incidence and risk factors in hospitalized patients with TBI. MATERIAL & METHODS: Adult patients with TBI and evidence of intracranial injury admitted to Oslo University Hospital between 2015 and 2019 were identified from the Oslo TBI Registry - Neurosurgery. Demographic and clinical data including occurrence of seizures were retrieved from the registry. The patients did not receive routine seizure prophylaxis. Univariate and multivariable logistic regression analyses were used to investigate risk factors associated with EPTS. RESULTS: 103 of 1827 patients (5.6%) had new-onset seizures within the first week after TBI. The following factors were in multivariable analyses associated with EPTS; alcohol abuse (odds ratio [OR] 3.6, 95% CI 2.3-5.7, p < .001), moderate and severe brain injury (OR 2.2, 95% CI 1.3-3.8, p = .004 and OR 2.1, 95% CI 1.2-3.6, p = .012), brain contusion (OR 1.6, 95% CI 1.0-2.4, p = .046) and subdural hematoma (OR 1.6, 95% CI 1.0-2.6, p = .052). CONCLUSION: In our material, EPTS occurred in 5.6% of hospital-admitted TBI-patients. Alcohol abuse was the most significant risk factor, followed by moderate and severe brain injury. The results of this study contribute to the discussion about preventive treatment of EPTS in certain risk groups.


Assuntos
Alcoolismo , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Epilepsia Pós-Traumática , Adulto , Alcoolismo/complicações , Lesões Encefálicas/complicações , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/epidemiologia , Epilepsia Pós-Traumática/complicações , Epilepsia Pós-Traumática/etiologia , Humanos , Incidência
20.
J Endocrinol Invest ; 45(2): 379-389, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34351610

RESUMO

PURPOSE: That thyroid hormones exert pleiotropic effects and have a contributory role in triggering seizures in patients with traumatic brain injury (TBI) can be hypothesized. We aimed at investigating thyroid function tests as prognostic factors of the development of seizures and of functional outcome in TBI. METHODS: This retrospective study enrolled 243 adult patients with a diagnosis of mild-to-severe TBI, consecutively admitted to our rehabilitation unit for a 6-month neurorehabilitation program. Data on occurrence of seizures, brain imaging, injury characteristics, associated neurosurgical procedures, neurologic and functional assessments, and death during hospitalization were collected at baseline, during the workup and on discharge. Thyroid function tests (serum TSH, fT4, and fT3 levels) were performed upon admission to neurorehabilitation. RESULTS: Serum fT3 levels were positively associated with an increased risk of late post-traumatic seizures (LPTS) in post-TBI patients independent of age, sex and TBI severity (OR = 1.85, CI 95% 1.22-2.61, p < 0.01). Measured at admission, fT3 values higher than 2.76 pg/mL discriminated patients with late post-traumatic seizures from those without, with a sensitivity of 74.2% and a specificity of 60.9%. Independently from the presence of post-traumatic epilepsy and TBI severity, increasing TSH levels and decreasing fT3 levels were associated with worse neurological and functional outcome, as well as with higher risk of mortality within 6 months from the TBI event. CONCLUSIONS: Serum fT3 levels assessed in the subacute phase post-TBI are associated with neurological and functional outcome as well as with the risk of seizure occurrence. Further studies are needed to investigate the mechanisms underlying these associations.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Exame Neurológico/métodos , Recuperação de Função Fisiológica , Glândula Tireoide/metabolismo , Tri-Iodotironina/sangue , Encéfalo/diagnóstico por imagem , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/mortalidade , Lesões Encefálicas Traumáticas/reabilitação , Epilepsia Pós-Traumática/sangue , Epilepsia Pós-Traumática/diagnóstico , Epilepsia Pós-Traumática/epidemiologia , Epilepsia Pós-Traumática/etiologia , Feminino , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Valor Preditivo dos Testes , Prognóstico , Medição de Risco/métodos , Testes de Função Tireóidea/métodos , Testes de Função Tireóidea/estatística & dados numéricos , Índices de Gravidade do Trauma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA